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The recent net-proton fluctuation results of the STAR (Solenoidal Tracker At RHIC) experiment from the
beam energy scan (BES) program at the BNL Relativistic Heavy Ion Collider (RHIC) have drawn much attention
to exploring the QCD critical point and the nature of deconfinement phase transition. There has been much
speculation that the nonmonotonic behavior of κσ 2 of the produced protons around

√
sNN = 19.6 GeV in the

STAR results may be due to the existence of a QCD critical point. However, the experimentally measured proton
distributions contain protons from heavy resonance decays, from baryon stopping, and from direct production
processes. These proton distributions are used to estimate the net-proton number fluctuation. Because it is
difficult to disentangle the protons from the above-mentioned sources, it is better to devise a method which will
account for the directly produced baryons (protons) to study the dynamical fluctuation at different center-of-mass
energies. This is because it is assumed that any associated criticality in the system could affect the particle
production mechanism and hence the dynamical fluctuation in various conserved numbers. In the present work,
we demonstrate a method to estimate the number of stopped protons at RHIC BES energies for central 0–5%
Au+Au collisions within STAR acceptance and discuss its implications on the net-proton fluctuation results.

DOI: 10.1103/PhysRevC.95.044903

I. INTRODUCTION

One of the main motivations of studying heavy-ion
collisions is to explore the QCD phase diagram of the
strong interaction. Quantum chromodynamics predicts a phase
transition from a hadron gas (HG) phase to a quark-gluon
plasma (QGP) phase by varying the temperature T and/or
baryon density μB of the system. Lattice QCD calculations
indicate a smooth crossover along the temperature axis, while
various other models predict a first-order phase transition at
high baryon density. The existence of the QCD critical point
is thus expected at finite μB and T , where the first-order phase
transition line ends [1–8]. The search for the QCD critical
point is one of the main motivations behind the recent STAR
(Solenoidal Tracker At RHIC) net-proton [9], net-charge [10],
and PHENIX net-charge [11] measurements at the BNL
Relativistic Heavy Ion Collider (RHIC). It is necessary to
look into the dynamical behavior of the produced system
by considering the observable effects of baryon stopping and
initial-state participant fluctuations. To do this, the present
work is an effort to quantify the effect of stopped baryons,
which are prevalent at lower collision energies around the
RHIC Beam Energy Scan (BES), where a possible critical
point in the QCD phase diagram is expected to be observed.

The phenomenon of baryon stopping could be used as
a direct tool to explore the QCD phase transition and as
a probe of the equation of state (EOS) of the system [12].
The reduced curvature obtained from the net-proton rapidity
distribution at midrapidity is used as an observable for baryon
stopping. As discussed in Ref. [12], the behavior of the
midrapidity curvature with

√
sNN has been studied and a
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zig-zag type of structure is observed. A three-fluid dynamics
(3FD) calculation with hadronic EOS fails to explain the ob-
served structure, whereas 3FD with first-order phase transition
from a hadronic phase to a deconfined phase of quark-gluon
plasma qualitatively reproduces the structure [12]. Hence, it is
argued that the nonmonotonic behavior of baryon stopping
is due to a phase transition and is most probably of first
order in nature. Theoretical studies based on STAR net-proton
fluctuation [9] hint for a phase transition at low

√
sNN taking

inclusive protons, i.e., from both production and stopping.
However, as baryon stopping plays a major role at lower
collision energies and almost vanishes at higher energies, there
seems to be a need to disentangle the contribution of stopped
baryons and the produced baryons in order to understand the
observed structures and hence the QCD phase diagram.

The conserved number fluctuations are associated with the
possible existence of a critical point, which are dynamical in
nature. The present work is motivated to re-visit the net-baryon
(proton) number fluctuation, which is related to the particle
production mechanism. But most of the experimentally mea-
sured proton distributions contain the protons from stopping
and resonance decays besides those from direct production.
Also, it has been studied earlier that the change in the mean
of proton distributions (which will be there, after subtracting
the stopped protons) will have a large effect on the correlation
of the protons and antiprotons, and it can influence the higher
moments of net-proton fluctuations [13]. Particularly, at lower
center-of-mass energies the stopping contribution is most
dominant and it will be interesting to look for the dynamical
fluctuations after removing these stopped protons. Various
other effects on the conserved number fluctuations have been
studied earlier in Refs. [13–18].

In heavy-ion collision experiments, a part of the incident
energy of the two colliding nuclei is used for fireball production
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and hence the production of secondary particles. Therefore,
the formation of a QGP in relativistic heavy-ion collisions
depends on the amount of stopping between the colliding ions,
particularly at low center-of-mass energies. Hence, baryon
stopping serves as an important tool to understand the particle
production mechanism. As the net-baryon number is con-
served and rapidity distribution is modified due to rescattering
of the particles after the collision, the net-baryon rapidity
distribution becomes a useful probe to give information about
baryon transport and baryon stopping. Since neutrons are
not measured in most heavy-ion experiments, the net-proton
rapidity distributions are used to quantify the baryon stopping
[19–24].

In the present work, we use the data of net-proton rapidity
distributions for the most central Au+Au collisions measured
at the BNL Alternating Gradient Synchrotron (AGS) and
CERN Super Proton Synchrotron (SPS), and by the BRAHMS
experiment at RHIC. We use a two-source function [12] to
analyze the net-proton distributions at different center-of-mass
energies. It is a combination of two thermal sources with a
shift in their rapidities. The same two-source function is used
in the present work to calculate the percentage of stopped
protons. Afterword, the percentage of stopped protons with√

sNN is parametrized and the values at RHIC BES energies are
interpolated. Finally, we estimate the contribution of stopped
protons in rapidity |y| < 0.5 and transverse momenta between
0.4 and 0.8 GeV/c, which are used to measure the protons and
antiprotons by the STAR experiment for net-proton fluctuation
studies [9].

The paper is organized as follows. In Sec. II, we discuss
the method used for the present analysis. It is divided into
three subsections: (a) estimation of baryon stopping in |y| <
0.5 (Sec. II A), (b) estimation of stopped protons in the
STAR transverse momentum (pT ) range (Sec. II B), and
(c) contribution of stopped protons in STAR measurements
(Sec. II C). We briefly discuss the implications of this work to
the net-proton fluctuation results of the STAR experiment at
RHIC in Sec. III. Finally in Sec. IV, we summarize our work.

II. METHOD

A. Estimation of baryon stopping in | y| < 0.5

Net-proton rapidity distribution of the experimental data is
best described by the following function:

dN/dy = a[exp{−(1/ws) cosh(y − yc.m. − ys)}
+ exp{−(1/ws) cosh(y − yc.m. + ys)}], (1)

where a, ys , and ws are the fit parameters of the function
and yc.m. is the center-of-mass rapidity of the colliding nuclei
[12]. Equation (1) is the sum of two thermal sources shifted
by rapidity ±ys from the midrapidity. ws is the width of
the sources and is given by ws = (temperature)/(transverse
mass), with the assumption that there is no spread of collective
velocities in the sources with respect to the source rapidities.
We have used Eq. (1) to fit the net-proton rapidity distributions
to quantify the baryon stopping. Since we are concerned about
symmetric collisions, the parameters of the two sources are
taken as identical. Parameters ys and ws are calculated from

the fitted function to the rapidity distribution of the secondary
particles.

Baryon stopping is directly measured via the rapidity
distribution of net-protons (i.e., the number of protons minus
antiprotons). At low energies like those at the AGS, the
production of antiprotons is very small so the net-proton
distribution is assumed to be the same as the proton distribution
and the rapidity distribution peaks at midrapidity [12]. As
the collision energy increases, a dip begins to appear at
midrapidity (y ≈ 0) and the peak shifts toward the forward
and backward rapidities, due to the production of antiprotons
at midrapidity. This indicates that with an increase in the
energy, the transparency at midrapidity increases. The rapidity
loss of the particle is defined as yloss = yb − y, where yb =
ln(

√
sNN/mp) is the beam rapidity with mp the mass of the

proton.
Therefore, the net-baryon number at midrapidity is the

measure of baryon stopping [19–21]. To quantify the baryon
stopping, we used Eq. (1) to fit the data of rapidity dis-
tribution for the most central Au+Au collisions at AGS
energies (2A, 4A, 8A GeV), and BRAHMS data at RHIC
energies (62.4 and 200 GeV). The fitting is performed using
the TMinute class available in the ROOT library with χ2

minimization. This is shown in Fig. 1 along with the fit
functions for different energies. Further, these fit functions are
used to estimate baryon stopping at the corresponding collision
energies.

In the center-of-mass system, the maximum rapidity that
an outgoing particle can have after the collision is yb, which is
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FIG. 1. Rapidity densities of protons at 2A, 4A, and 8A GeV
(AGS) and net-proton (Np − Np̄) (for RHIC energies) for central
Au+Au collisions in the center-of-mass system. Experimental data
are from E802 [25], E877 [26], E917 [27], E866 [28], and RHIC
experiments [20,24]. The open circles are experimentally measured
data points and the filled circles are the mirror reflections, assuming a
symmetry in particle production. Solid lines represent the two-source
fit function given by Eq. (1).
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TABLE I. Fraction of stopped protons in |y| < 0.5 at different
energies.

√
s

NN
(GeV) Elab (GeV/nucleon) N

protons
stopped(%)

2.35 2 64.22 ± 0.10
3.04 4 52.16 ± 0.15
4.09 8 44.61 ± 0 .12
62.4 4.57 ± 0.10
200 2.91 ± 0.0

only possible for full transparency. Therefore, by using Eq. (1),
the fraction of stopped protons in |y| < 0.5 at a particular
energy can be calculated as

f
protons
stopped =

∫ 0.5
−0.5

dN
dy

dy
∫ yb

−yb

dN
dy

dy
. (2)

Hence, the percentage of stopped protons can be estimated as

N
protons
stopped[%] = f

protons
stopped × 100%. (3)

It should be noted here that
∫ yb

−yb

dN
dy

dy gives the total number

of participating protons (NB
part) and for the top central Au+Au

collisions, NB
part ≈ 158. The calculated percentages of stopped

protons at these energies are shown in Table I.
Thereafter, by converting the laboratory energy to the

center-of-mass energy, a study of percentage of stopped pro-
tons with

√
sNN is done. The decreasing behavior of stopped

protons (Nproton
stopped[%]) with

√
sNN is best described by an

exponential function as shown in Fig. 2. Our observations are in
line with the earlier study [19]. Hence, a parametric form of the
percentage of stopped protons with

√
sNN is obtained. This is

given by N
protons
stopped[%] = A exp[−B ln(

√
sNN/s0)], where

√
s0

is taken to be 1 GeV and the obtained fitting parameters
are A = 118.89 ± 6.18 and B = 0.72 ± 0.05. Using this
parametrized function, we have interpolated the percentage
of stopping at RHIC BES energies in |y| < 0.5 for

√
s

NN
=

7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV. The values are
tabulated in Table II.
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FIG. 2. Percentage of baryon stopping as a function of
√

sNN ,
fitted with an exponentially decreasing function with energy.

TABLE II. Percentages of stopped protons at different RHIC BES
energies in |y| < 0.5 acceptance.

√
sNN (GeV) 7.7 11.5 19.6 27 39 62.4 200

N
protons
stopped (%) 27.27 20.43 13.90 11.03 8.46 6.03 2.60

Err{N protons
stopped%} 1.30 1.34 1.25 1.15 1.03 0.86 0.51

B. Estimation of stopped protons in STAR pT acceptance

In the previous section, we estimated the percentage of
stopped protons in |y| < 0.5 at RHIC BES energies. But
the STAR experiment measured the protons and antiprotons
in 0.4 < pT < 0.8 GeV/c to calculate the higher order
cumulants of net-proton distributions [9]. After estimating
the number of stopped protons at midrapidity, we calculate
the same in the STAR pT acceptance. Here we assume that
the stopped protons are uniformly distributed over the whole
pT spectra. To estimate the fraction of the stopped protons in
STAR pT acceptance we have fitted the proton pT spectra at
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FIG. 3. Invariant yield of protons at
√

sNN = 9.2 [35] and 19.6
[31] GeV for the most central Au+Au collisions. The open circles
are the experimental data measured by the STAR Collaboration. The
solid lines are the Levy-Tsallis function [29] for

√
sNN = 9.2 and the

Tsallis function [30] for
√

sNN = 19.6 GeV. The lower panels show
the ratio of data points to their functional values.
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FIG. 4. Invariant yield of protons at 62.4 [32] and 200 [33] GeV
for the most central Au+Au collisions. The open circles are the
experimental data measured by the STAR Collaboration. The solid
lines are the Levy-Tsallis function [29]. The lower panels show the
ratio of data points to their functional values.

different available BES energies. The fitting is performed with
a Levy-Tsallis function, which is given by Eq. (11) of Ref. [29]
for

√
sNN = 9.2, 62.4, and 200 GeV. Similarly, for

√
sNN =

19.6 GeV, the Tsallis distribution function, as given by Eq. (6)
of Ref. [30] is used. The fitting results of STAR proton data
are shown in Figs. 3 and 4. The ratios in the lower panels
of Figs. 3 and 4 suggest that the fit functions used describe
the experimentally measured proton spectra very well for all
center-of-mass energies. We integrate the fitted functions at a

 [GeV]NNs
50 100 150 200

 [%
]

pr
ot

on
s

Tp
N

0

10

20

30

40

50

FIG. 5. Percentage of protons in 0.4 < pT < 0.8 GeV/c as a
function of

√
sNN are well described by a first-order polynomial.

TABLE III. Percentages of protons obtained from pT spectra at
different BES energies in STAR pT acceptance.

√
sNN (GeV) 7.7 11.5 19.6 27 39 62.4 200

N protons
pT

(%) 39.95 39.93 39.88 39.84 39.79 39.66 38.94

Err{N protons
pT

%} 0.60 0.58 0.54 0.52 0.52 0.63 2.11

particular energy from pT = 0.0 to pT = ∞ and pT = 0.4 to
0.8 (GeV/c). Thus the total number of protons in the whole
pT range and the number of protons in 0.4 < pT < 0.8 GeV/c
are calculated.

The fraction of protons falling in 0.4 < pT < 0.8 GeV/c
region is estimated as

f protons
pT

= Nprotons(0.4 < pT < 0.8)

Nprotons(full pT )
. (4)

Hence, the percentage of protons in STAR pT acceptance is
given by

Nprotons
pT

[%] = f protons
pT

× 100%. (5)

Using Eq. (5), one can estimate the fraction of stopped
protons contributing in STAR pT acceptance. To calculate the
percentage in the RHIC BES energies, we have parametrized
these numbers with

√
sNN by first-order polynomials as

shown in Fig. 5. Then the contributions at different BES
energies are interpolated. The extracted values are tabulated
in Table III.

C. Contribution of stopped protons in STAR measurements

In the top central Au+Au collisions, around 158 protons
participate in each collision. We have already estimated the
percentage of number of protons in Table II in |y| < 0.5
for full pT coverage and in Table III for 0.4 < pT < 0.8
GeV/c. Therefore, one can easily calculate the effect of both
to estimate the total stopped protons in STAR acceptance. This
is given by

N
protons
stopped(STAR) = 158 × N

protons
stopped% × Nprotons

pT
%, (6)

where N
protons
stopped(STAR) is the total contribution of stopped

protons in STAR acceptance. In Table IV we enlist the
total number of stopped protons at BES energies in STAR
acceptance.

Figure 6 shows the energy-dependent behavior of the
stopped protons, which is consistent with the fact that stopping
is more at lower energies than at higher energies.

It is interesting to note that after subtracting the stopped
protons from the mean of STAR proton distributions [9], the

TABLE IV. Number of stopped protons at different RHIC BES
energies in STAR acceptance.

√
sNN (GeV) 7.7 11.5 19.6 27 39 62.4 200

N
protons
stopped(STAR) 17.21 12.89 8.76 6.94 5.32 3.78 1.6

Err{N protons
stopped(STAR)} 0.86 0.86 0.80 0.73 0.65 0.54 0.33
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FIG. 6. Mean number of protons from baryon stopping in STAR
acceptance as a function of

√
sNN , showing an exponential decrease

with energy.

remaining produced protons are consistent with the antiprotons
measured by the STAR experiment. This can be seen from
Table V. There is a small discrepancy between these two
numbers at 7.7 and 11.5 GeV measurements. This may be due
to the larger uncertainties in the experimental measurement of
the protons.

III. EXPERIMENTAL IMPLICATIONS

The discussed methodology would lead to the estimation
of the number of stopped protons that could improve the
understanding of dynamical fluctuations. Particularly, the κσ 2

variable of the produced protons only will be useful to study the
criticality in the QCD phase diagram. Because it is not possible
to tag a proton as coming from stopping or from production in
the experimental data, the correction for the stopped protons
to the net-proton multiplicity distribution cannot be applied
to the experimental measurement. The exact distribution of
stopped protons on an event-by-event basis is not known and
hence it is difficult to subtract the contribution of stopped
protons to the inclusive proton distribution, which needs
further investigation. Therefore, it is suggested that while
quoting the fluctuation results from net-proton multiplicity
distribution, a systematic uncertainty may be added by using
the Monte Carlo simulations and the results of this study to
quantify the effect of stopping on the fluctuations in their
respective acceptance. This proposed analysis bears values in
the low-energy BES program of RHIC, where a search for the
critical point and the associated criticality becomes prudently
viable.

TABLE V. Columns (a)
√

sNN (in GeV) at which the analysis
is performed, (b) mean number of protons obtained from baryon
stopping in STAR acceptance, (c) mean number of protons measured
by STAR experiment [34], (d) Diff. =[N protons

STAR -N protons
stopped(STAR)], and

(e) mean number of antiprotons measured by STAR experiment.

(a) (b) (c) (d) (e)√
sNN N

protons
stopped(STAR) N

protons
STAR Diff. N

antiprotons
STAR

7.7 17.21 ± 0.86 18.92 ± 0.01 1.71 ± 0.86 0.165
11.5 12.89 ± 0.86 15.00 ± 0.01 2.10 ± 0.86 0.49
19.6 9.73 ± 0.80 11.37 ± 0.00 1.63 ± 0.80 1.15
27.0 7.61 ± 0.73 9.39 ± 0.00 1.78 ± 0.73 1.65
39.0 5.78 ± 0.65 8.22 ± 0.00 2.44 ± 0.65 2.38
62.4 3.78 ± 0.54 7.25 ± 0.00 3.47 ± 0.54 3.14
200 1.54 ± 0.33 5.664 ± 0.00 4.12 ± 0.33 4.11

IV. SUMMARY

In the present work, we use the data of net-proton rapidity
distributions for the most central Au+Au collisions measured
by different experiments. Further, we use a two-source
function [12] to analyze the net-proton distributions and to
estimate the percentage of stopped protons at different center-
of-mass energies. Then the percentage of stopped protons is
interpolated at RHIC BES energies. Afterword, using invariant
transverse momentum spectra we estimate the fraction of
the number of protons contributing in STAR acceptance.
Finally, using these two numbers, we estimate the contribution
of stopped protons in |y| < 0.5 and transverse momentum
between 0.4 and 0.8 GeV/c, which is used to measure the
protons and antiprotons by STAR experiment for net-proton
fluctuation studies [9]. The critical point of the QCD phase
diagram is expected to show large dynamical fluctuations in
the produced conserved charges. Therefore, it will be exciting
to see these results after removing the contributions of stopped
protons, which have significant contributions, particularly at
lower collision energies.
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