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Extrapolation of scattering data to the negative-energy region
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Explicit analytic expressions are derived for the effective-range function for the case when the interaction
is represented by a sum of the short-range square-well and long-range Coulomb potentials. These expressions
are then transformed into forms convenient for extrapolating to the negative-energy region and obtaining the
information about bound-state properties. Alternative ways of extrapolation are discussed. Analytic properties
of separate terms entering these expressions for the effective-range function and the partial-wave scattering
amplitude are investigated.
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I. INTRODUCTION

Asymptotic normalization coefficients (ANC) determine
the asymptotics of bound-state nuclear wave functions in
binary channels. ANCs are proportional to vertex constants,
which determine on-shell matrix elements of virtual a ↔
b + c processes and are related directly to the residue in
energy of the elastic b + c scattering amplitude at the pole
corresponding to the bound state of nucleus a [1]. ANCs are
fundamental nuclear characteristics important both in nuclear
reaction and nuclear structure physics. They are used actively
in analysis of nuclear reactions within various approaches. The
ANCs extracted from the analysis of one process can be used to
predict features of other ones. Comparing empirical values of
ANCs with theoretical ones allows one to evaluate the quality
of a model.

The ANC C
(l)
a→bc for the virtual decay a → b + c, where

l is the relative orbital angular momentum of b and c

in the bound state, determines the probability of the {bc}
configuration in nucleus a at distances greater than the radius
of nuclear interaction. Thus, the ANCs naturally appear in
expressions for the cross sections of nuclear reactions between
charged particles at low energies when, due to the Coulomb
repulsion, the reactions occur at large distances. Astrophysical
nuclear reactions represent the most important type of such
reactions. The role of ANCs in nuclear astrophysics was
first discussed in Refs. [2,3], where it was emphasized that
the ANC determines the overall normalization of peripheral
radiative capture reactions (see also Refs. [4,5]). Thus, the
ANC method can be employed as an indirect technique in
nuclear astrophysics. The ANCs can be used in evaluating the
radiative width of a resonance, decaying to a bound state [6].
An instructive example of using ANCs in nuclear structure
studies is the application of the ANC to determine the radii
of halo nuclei [7]. Thus, it is important to know the values of
ANCs.

In principle, values of ANCs can be deduced from the
microscopic calculations of wave functions for corresponding
nuclear systems. However, such calculations are quite involved
even for few-nucleon systems [8]. The ANCs, in contrast to

binding energies, cannot be directly measured. Nevertheless,
there is an indirect way to determine the ANC from experi-
ment: the ANC C

(l)
a→bc can be determined from experimental

data by extrapolating, in the center-of-mass (c.m.) energy E,
the partial-wave amplitude of elastic b + c scattering, obtained
by the phase-shift analysis, to the pole corresponding to the
bound state a and lying at E < 0. The most natural procedure
for such extrapolation is the analytic approximation of the
experimental values of the effective-range function (ERF)
with the subsequent continuation to the pole position. The
ERF method has been successfully employed to determine
the ANCs for bound (as well as resonant) nuclear states in
a number of works (see, e.g., Refs. [9–11] and references
therein).

The ERF is expressed in terms of scattering phase shifts.
In the case of charged particles, the ERF for the short-range
interaction should be modified. Such modification generates
additional terms in the ERF. These terms depend only on
the Coulomb interaction and may far exceed, in the absolute
value, the informative part of the ERF containing the phase
shifts. This fact hampers the practical procedure of the analytic
continuation and affects its accuracy. It was suggested in
Ref. [12] to use for the analytic continuation the quantity �l(E)
[which is defined below (see Sec. II)] rather than the ERF.
�l(E) does not contain the pure Coulomb terms. However, the
validity of employing �l(E) was not obvious, which resulted
in some discussion since �l(E), contrary to the ERF, possesses
an essential singularity at E = 0.

In this work, instead of using the conventional parametriza-
tion of the scattering phase shift in terms of the ERF
fitting parameters, we introduce the parametrization of the
ERF scattering phase shift using an analytic solution of the
Schrödinger equation at E > 0 with the adopted potential
in the form of the square-well plus Coulomb interaction. In
this approach our results are vigorous and obtained without
any approximation. One may think that the approach is
over-simplified because of the adopted square-well potential.
However, it is not. To support the claim, we would like to
remind to the readers a fundamental physics idea: a probe with
wavelength λ = 1/k, where k is the relative momentum of the
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interacting particles, is not sensitive to the structural details of
the interaction potential at distances r � λ [13]. Hence, in the
region of very low energies, which we always cross to when
extrapolating data down to the threshold, the results become
insensitive to the specific shape of the used potential, whether
it is Woods-Saxon, square-well, δ function, or anything else.
This idea is in the foundation of the effective field theory [13].
That makes our results quite general despite using a simplified
potential.

In the present work the obtained parametrization of the
ERF scattering phase shift in terms of the analytic functions
obtained from the solution of the Schrödinger equation at
E > 0 is used for analytical continuation of the scattering
phase shift to the region of the negative energies E < 0 to the
bound-state pole of the scattering amplitude. Various repre-
sentations of the Coulomb wave functions and corresponding
expressions for the partial-wave scattering amplitudes and
the ERF are considered and the most effective algorithm of
analytic continuation is identified. It is shown that, although
function �l(E) possesses the essential singularity at E = 0,
nevertheless, it can be analytically continued along the real
axis of E to the region of negative energies.

The paper is organized as follows. Section II contains the
general formalism of the elastic scattering for the superpo-
sition of the short-range and Coulomb interactions, which is
necessary for the subsequent discussion. The various versions
of the specific expressions of the scattering phase shifts in the
case of the square-well short-range potential are considered in
Sec. III. The results of calculations within the used model are
presented in Sec. IV.

We use the system of units in which h̄ = c = 1 throughout
the paper.

II. GENERAL FORMALISM OF SCATTERING IN THE
PRESENCE OF THE COULOMB INTERACTION

The full amplitude of the elastic scattering of particles
b and c in the presence of the Coulomb and short-range
(nuclear) interactions is written as the sum of the pure Coulomb
and Coulomb-nuclear amplitudes (the Coulomb interaction is
taken to be repulsive):

f (�k) = fC(�k) + fNC(�k), (1)

fC(�k) =
∞∑
l=0

(2l + 1)
exp(2iσl) − 1

2ik
Pl(cos θ ), (2)

fNC(�k) =
∞∑
l=0

(2l + 1) exp(2iσl)
exp(2iδl) − 1

2ik
Pl(cos θ ). (3)

Here, �k is the relative momentum of b and c, θ is the center-of-
mass scattering angle, σl = arg �(l + 1 + iη) and δl are the
pure Coulomb and Coulomb-nuclear phase shifts, respectively,
and �(z) is the � function.

η = ZbZce
2μ/k (4)

is the Coulomb (Sommerfeld) parameter for the b + c scatter-
ing state with the relative momentum related to the energy by

k = √
2μE, and μ, Zbe, and Zce are the reduced mass and the

electric charges of b and c.
The behavior of the Coulomb-nuclear partial-wave ampli-

tude fl = (exp(2iδl) − 1)/2ik is irregular near E = 0. There-
fore, one has to introduce the renormalized Coulomb-nuclear
partial-wave amplitude f̃l [14–16],

f̃l = exp(2iσl)
exp(2iδl) − 1

2ik

[
l!

�(l + 1 + iη)

]2

eπη. (5)

Equation (5) can be rewritten as

f̃l = exp(2iδl) − 1

2ik
C−2

l (η), (6)

where Cl(η) is the Coulomb penetration factor (or Gamow
factor),

Cl(η) =
[

2πη

exp(2πη) − 1
vl(η)

]1/2

, (7)

vl(η) =
l∏

n=1

(1 + η2/n2) (for l > 0), v0(η) = 1. (8)

The amplitude f̃l can be expressed in terms of the Coulomb-
modified ERF Kl(E) [14,16],

f̃l = k2l

Kl(E) − 2ηk2l+1h(η)vl(η)
(9)

= 1

kC2
l (η)(cot δl − i)

(10)

= 1

v2
l �l(E) − ikC2

l (η)
, (11)

where

Kl(E) = k2l+1
[
C2

l (η)(cot δl − i) + 2ηh(k)vl(η)
]
, (12)

h(η) = ψ(iη) + 1

2iη
− ln(iη), (13)

�l(E) = kC2
0 (η) cot δl, (14)

and ψ(x) is the digamma function.
It was shown in Ref. [14] that function Kl(E) defined by

Eq. (12) is analytic near E = 0 and can be expanded into
Taylor series in E. In the absence of the Coulomb interaction
(η = 0) Kl(E) = k2l+1 cot δl(k).

It should be noted that amplitude f̃l(E) possesses the es-
sential singularity at E = 0. Nevertheless, analytic properties
of f̃l on the real axis of the physical sheet of E are analogous
to the ones of the partial wave scattering amplitude for the
short-range potential, and it can be analytically continued into
the negative-energy region.

If the b + c system involves, in the partial wave l, the
bound state a with the binding energy ε = �2/2μ > 0, then
the amplitude f̃l has a pole at E = −ε. The residue of f̃l at

044618-2



EXTRAPOLATION OF SCATTERING DATA TO THE . . . PHYSICAL REVIEW C 95, 044618 (2017)

this point is expressed in terms of the ANC C
(l)
a→bc [15],

resf̃l(E)|E=−ε = lim
E→−ε

[(E + ε)f̃l(E)] (15)

= − 1

2μ

[
l!

�(l + 1 + ηb)

]2[
C

(l)
a→bc

]2
, (16)

where ηb = ZbZce
2μ/� is the Coulomb parameter for the

b + c bound state a.

III. PHASE SHIFTS FOR THE SUM OF THE
SQUARE-WELL AND COULOMB POTENTIALS

The square-well potential is of the form

V (r) =
{−V0 if 0 � r � R

0 if r > R
, (17)

where r is the distance between interacting particles, R is the
radius of the square well, and V0 > 0 is its depth.

The Schrödinger equation describing the system under
consideration is

d2ul(r)

dr2
+ 2μ

[
E − l(l + 1)

2μr2
− ZbZce

2

r
− V (r)

]
ul(r) = 0.

(18)

Let us introduce the notations: α1 = ZbZce
2μ, η1 = α1/K ,

K = √
2μ(E + V0). The solution of Eq. (18) in the inner (r <

R) and external (r > R) regions are given by

Rin
l (r) = ul(r)

r
= const

Fl(η1,Kr)

Kr
, (19)

Rext
l (r) = Al[χ

(−)
l (η,kr) − Slχ

(+)
l (η,kr)]/r, (20)

χ
(±)
l (η,kr) = Gl(η,kr) ± iFl(η,kr), (21)

Sl = e2iδl . (22)

In Eqs. (19) and (20), Fl(η,ρ) and Gl(η,ρ) are the regular and
irregular Coulomb functions, respectively [17]. If the Coulomb
interaction is turned off (η = 0), then

Fl(0,kr) = krjl(kr), Gl(0,kr) = −kryl(kr), (23)

where jl(x) = √
π/2xJl+1/2(x) and yl(x) = √

π/2xYl+1/2(x)
are spherical Bessel and Neumann functions, respectively.

Now we introduce the functions

F̂l,η(k,r) = Fl(η,kr)/kr, (24)

Ĝl,η(k,r) = −Gl(η,kr)/kr, (25)

F̃l,η(k,r) = F̂l,η(k,r)/[klCl(η)], (26)

G̃l,η(k,r) = Ĝl,η(k,r)kl+1Cl(η), (27)

G̃
(−)
l,η (k,r) = kl+1Cl(η)[Ĝl,η(k,r) − iF̂l,η(k,r)]

= G̃l,η(k,r) − ik2l+1C2
l (η)F̃l,η(k,r). (28)

In Eqs. (26)–(28) the penetration factor Cl(η) is defined by
Eq. (7).

Note that F̃l(k,r) is regular at E = k2/2μ = 0, whereas
G̃l(k,r) possesses the Coulomb essential singularity at E = 0
and behaves irregularly at E → −0 [18]. As to G̃

(−)
l , it is a

smooth function on the real axis of E.
The phase shifts δl are found from the condition of equality

of logarithmic derivatives of Rin
l (r) and Rext

l (r) at r = R:

1

Rin
l (R)

dRin
l (R)

dR
= 1

Rext
l (R)

dRext
l (R)

dR
. (29)

In this equation and hereafter, dψ(R)/dR ≡ dψ(r)/dr|r=R .
Using Eqs. (19), (20), and (29), we get

cot δl

=
dĜl,η(k,R)

dR
F̂l,η1 (K,R) − dF̂l,η1 (K,R)

dR
Ĝl,η(k,R)

dF̂l,η(k,R)
dR

F̂l,η1 (K,R) − dF̂l,η1 (K,R)
dR

F̂l,η(k,R)
. (30)

IV. EFFECTIVE RANGE FUNCTION

According to Eqs. (12) and (30), the part of the ERF
depending on phase shifts is of the form

k2l+1C2
l (η) cot δl

= k2l+1C2
l (η)

[
dĜl,η(k,R)

dR
F̂l,η1 (K,R)− dF̂l,η1 (K,R)

dR
Ĝl,η(k,R)

dF̂l,η(k,R)
dR

F̂l,η1 (K,R)− dF̂l,η1 (K,R)
dR

F̂l,η(k,R)

]
.

(31)

We transform Eq. (31) using the modified Coulomb functions
F̃l,η, and G̃l,η introduced earlier to get

k2l+1C2
l (η) cot δl

=
dG̃l,η(k,R)

dR
F̃l,η1 (K,R) − dF̃l,η1 (K,R)

dR
G̃l,η(k,R)

dF̃l,η(k,R)
dR

F̃l,η1 (K,R) − dF̃l,η1 (K,R)
dR

F̃l,η(k,R)
. (32)

The denominator in Eq. (32) does not possess the Coulomb
singularities at E > −V0; however, the function G̃l(k,R)
is singular at E = 0 (see Sec. III). The singularities of
k2l+1C2

l (η) cot δl can be singled out using Eq. (28) as

k2l+1C2
l (η) cot δl

=
dG̃

(−)
l,η (k,R)

dR
F̃l,η1 (K,R) − dF̃l,η1 (K,R)

dR
G̃

(−)
l,η (k,R)

dF̃l,η(k,R)
dR

F̃l,η1 (K,R) − dF̃l,η1 (K,R)
dR

F̃l,η(k,R)

+ ik2l+1C2
l (η). (33)

The first term in the right-hand side of Eq. (33) is regular at
E = 0, whereas the second term has an essential singularity at
this point.

In what follows, the specific properties of different parts
of the ERF and the partial-wave scattering amplitude will be
illustrated by numerical calculations applying to the d + α
system in the S state (l = 0). This system involves one bound
state corresponding to the ground state of the 6Li nucleus.
An accurate bound-state information is required, e.g., for
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FIG. 1. Functional dependence of ikC2
0 (η) on energy E.

modeling astrophysical α + d → 6Li + γ radiative capture
reaction [19–22]. The following parameters are used in the
calculations: mα = 3755.58 MeV, md = 877.79 MeV, V0 =
7.64386 MeV, R = 3.73473 fm. The values of V0 and R were
fitted to the values of the binding energy ε = �2/2μ = 2.409
MeV and the dimensionless ANC C̃

(0)
6Li→αd

= C
(0)
6Li→αd

/
√

2� =
2.29 of 6Li in the d + α channel obtained by solving the
Faddeev equations for 6Li without the Coulomb interaction [9].

Consider first the features of the function ik2l+1C2
l (η) which

enters the expression for the ERF. The energy dependence of
this function at l = 0 is presented in Fig. 1. It is seen that the
imaginary part of ikC2

0 (η) is constant at E < 0. This property
can be rigorously proved. Making use of the definition Eq. (7)
for Cl(η) and the notations ηb = α1/�, α1 = ZbZce

2/μ, one
obtains at E < 0,

ikC2
0 (η) = 2πiα1

e−2πiηb − 1
= 2πiα1e

πiηb

e−πiηb − eπiηb

= −πα1
eπiηb

sin πηb

= −πα1 cot πηb − πα1i. (34)

It follows from Eq. (34) that Re[ikC2
0 (η)] possesses poles

at ηb = 1,2, . . . , corresponding to � = α1/n (n = 1,2, . . . ),
and zeros at ηb = 1/2,3/2,5/2 . . . , corresponding to � =
2α1/n (n = 1,3,5, . . . ). Another function that appears in the
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FIG. 2. Functional dependence of 2kηh(η) on energy E.

expression for the ERF and helps regularize it is 2kηh(η). Its
plot is shown in Fig. 2.

Now we demonstrate that all three expressions given
by Eqs. (31), (32), and (33) can be used to calculate
k2l+1C2

l (η) cot δl and then compare the accuracy achieved by
these expressions. To this end, the ERF K0(E) of Eq. (12) was
calculated at E = 5 MeV and E = −5 MeV. The calculations
were performed to ten significant digits. The results of the
calculations are presented in Table I. The exact ERF should
be real both at positive and negative energies. It is seen
from the table that all three versions lead to similar results.
However, as to the computational side, the versions of Eqs. (32)
and (33) exploiting the modified Coulomb functions are
preferable, since they lead to more accurate results at negative
energies. The advantage of these versions increases further
as E approaches zero. Note that the version of Eq. (33) is
the most accurate out of all three versions. All numerical
results for cot δl discussed below are obtained using this
version.

The most important part of the ERF is the function
k2lv2

l �l(E) = k2l+1C2
l (η) cot δl . Its energy dependence at l =

0 is presented in Fig. 3. The function is complex at E < 0 and
displays the irregularities, which are concentrated near zero
from the left. It is seen that Im[kC2

0 (η) cot δ0] is constant at
E < 0. Moreover, this constant is exactly equal to Im[ikC2

0 (η)]
at E < 0 [see Fig. 1 and Eq. (34)].

TABLE I. Effective-range functions calculated using Eqs. (31), (32), and (33).

Version K0(5) K0(−5)

Eq. (31) 0.3120231954 − i0.14 × 10−8 −0.2802558905 − i0.63 × 10−4

Eq. (32) 0.3120231949 − i0.40 × 10−9 −0.2802915315 − i0.10 × 10−9

Eq. (33) 0.3120231949 − i0.40 × 10−9 −0.2802915316 + i0.14 × 10−10
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Consider now the function Dl(E) ≡ k2l+1C2
l (η)(cot δl − i).

Its plot is shown in Fig. 4 for l = 0. The function D0(E) is
complex at positive energies and real at negative energies.
Furthermore, as is seen from Figs. 1, 3, and 4, the irregu-
larities of functions kC2

0 (η) cot δ0 and ikC2
0 (η) at E → −0

disappear in the function D0(E), which is their difference.
Note that D0(E) is the inverse of the renormalized partial-wave
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FIG. 4. Functional dependence of kC2
0 (η)(cot δ0 − i) on energy E.
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FIG. 5. Dependence of ERF K0(E) on energy E. The imaginary
part is 0.

Coulomb-nuclear amplitude f̃0, see Eq. (9): D0(E) = (f̃0)−1

[generally Dl(E) = k2l(f̃l)−1].
Thus, the behavior of D0(E) shown in Fig. 4 corroborates

the above assertion that on the real E axis the analytical
properties of the amplitude f̃0 are similar to those of the partial-
wave amplitude of scattering from a short-range potential.
Hence, f̃0 can be analytically continued to the negative energy
region. However, one should not forget that both D0(E) and
f̃0(E) possess the essential singularity at E = 0.

Finally, we consider the full ERF Kl(E). The energy
dependence of K0(E) is displayed in Fig. 5. The ERF is real
for all real values of E and is not singular at E = 0.

The pole of the amplitude f̃0 was found using the require-
ment D0(E) ≡ kC2

0 (η)(cot δ0 − i) = 0. The zero of D0(E)
corresponds to the point where the red line crosses the negative
E-axis; see Fig. 4. The ANC C

(l)
a→bc at l = 0 is found using the

relationship

resf̃0(E)|E=−ε =
[
dD0(E)

dE

]−1∣∣∣∣
E=−ε

, (35)

and Eq. (16). Equation (35) in turn follows from Eqs. (11)
and (15). For the d + α system we obtain the following values
of the binding energy ε and the dimensionless ANC C̃

(l)
a→bc:

ε = 1.268 MeV, C̃
(0)
6Li→αd

= C
(0)
6Li→αd

/
√

2� = 2.683. These

values coincide with the values of ε and C̃
(0)
6Li→αd

obtained
from direct solution of the Schrödinger Eq. (18) for the
bound state of the d + α system. This agreement confirms the
validity of the employed procedure of the analytic continuation
of the scattering characteristics from positive to negative
energies.

As mentioned earlier, if the Coulomb interaction is turned
off, then ε = 2.409 MeV and C̃

(0)
6Li→αd

= 2.29. Meanwhile,
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coincide.

the experimental value of ε is 1.47 MeV. The analytic
approximation of the experimental d +4 He scattering phase
shifts with subsequent continuation to negative energies results
in C̃

(0)
6Li→αd

= 2.93 [9].
Recently, in several works, experimental data on the elastic

scattering have been used to get the information about bound
states. The following procedure is usually used (see, e.g.,
Refs. [10,11]). The values of the ERF Kl(E) at E > 0 obtained
by the phase-shift analysis of experimental data are approx-
imated by some analytic function, say, by several first terms
of the effective-range expansion or by the Padé approximant.
The approximating function obtained in such a way, as well as
the exact function Kl(E) do not possess singularities at E = 0.
Hence, it could be continued analytically to the negative energy
region. After that, using Eq. (9) one can find the location of
the pole of the amplitude f̃l corresponding to the bound state
and the residue of f̃l at that pole in terms of which the value
of the ANC is expressed.

A somewhat different procedure was used in Ref. [12]
in order to obtain the information about the bound states
of the 16O nucleus from the data on the elastic α-12C
scattering: instead of Kl(E), function �l(E) is approximated
and continued to the region E < 0. Our results presented in
Fig. 3 show that �l(E) is a smooth function of E at E > 0;
however, its behavior is irregular near E = 0 at E < 0. On
the other hand, at E > 0 function �l(E) coincides with the
quantity Re[Dl(E)]. As is seen from Figs. 4 and 6, Re[Dl(E)]
is a smooth function of E both at E > 0 and at E < 0.
Therefore, Re[Dl(E)] can be considered as the extrapolation
of the function �l(E) defined at E > 0 to the negative-energy
region. This circumstance may serve as the justification of the
procedure suggested in Ref. [12].

V. CONCLUSIONS

In the present paper the explicit analytic expressions have
been derived for the ERF and the partial-wave scattering
amplitude in the case of the interaction given by the sum
of a short-range square-well and the Coulomb potentials.
These expressions have been transformed into the forms
convenient for the analytic continuation to the negative-energy
region. The analytic properties of separate terms entering the
expressions for the ERF and the scattering amplitude have
been investigated.

It is demonstrated that function �l(E) suggested in
Ref. [12] can be used to obtain information about bound-state
properties. In spite of having the essential singularity at E = 0,
function �l(E) can be analytically continued from the positive
to the negative energy region along the real E axis. For
instance, function f (z) = exp(−1/z2) provides an example of
such functions. Indeed, f (z) possesses the essential singularity
at E = 0. Nevertheless, the function itself and all its derivatives
are smooth functions on the real axis, including z = 0. Using
�l(E) rather than the ERF Kl(E) might be preferable, since
Kl(E), in contrast to �l(E), contains a pure Coulomb term
that may far exceed, in the absolute value, the term containing
the information about the phase shifts.

Note that all qualitative results obtained in the present work
do not depend on the specific values of the parameters of the
potential used in the numerical calculations. Moreover, though
all calculations were performed for l = 0, the inferences made
should be valid for arbitrary l.

It is interesting to note that if the Coulomb interaction
is turned off (η = 0), then Re[Dl(E)] evidently loses the
Coulomb essential singularity but acquires a square-root type
singularity at E = 0, which is absent at η 	= 0. This singularity
corresponds to the normal threshold of the scattering ampli-
tude. It follows from our calculations that, if one substitutes
γZbZc for ZbZc in Eq. (4), then at γ → 0 the first derivative of
Re[D0(E)] tends to −∞. One may conclude that the behavior
of Re[Dl(E)] in the vicinity of E = 0 is more smoother at
larger values of η, that is, at larger values of ZbZcμ. It means
that the procedure suggested in Ref. [12] is more effective for
heavier nuclei.

Concluding, we emphasize once again that despite using the
square-well potential (which allows to solve the Schrödinger
equation analytically), our results are quite general because at
very low energies for which λ = 1/k 
 r the scattering phase
shifts are not sensitive to the details of the adopted potential.
This idea is in the foundation of effective field theory. That is
why we believe that our results can be useful for researchers
working in the effective field theory [23–25] as well, since
they fit the elastic scattering data at positive energies, and here
we investigate a possibility of extrapolating the data to the
bound-state pole.
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