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Repulsive three-body force and channel-coupling effects via 12C + 12C scattering at 100A MeV
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The angular distributions of differential cross sections of 12C + 12C elastic and inelastic scattering populating
the ground and excited states in 12C up to 15 MeV excitation energy are precisely measured for the first time at
an incident energy of 100A MeV to study the effect of repulsive three-body forces. Using the high-resolution
spectrometer Grand Raiden at the Research Center for Nuclear Physics (RCNP), Osaka University, we have
obtained the differential cross sections for the ground state (0+

1 ) and 4.44 MeV (2+
1 ) excited state, as well as the

summed differential cross sections for the states between 4.44 and 15 MeV in the angular range of 1.0◦–7.5◦.
The results are compared with microscopic coupled-channel calculations. The potential between the colliding
nuclei is determined by the double folding method with three different complex G-matrix interactions, the ESC,
CEG07b, and MPa interactions. The CEG07b and MPa interactions, which include repulsive three-body forces,
describe the data well, whereas the ESC interaction, which does not include repulsive three-body forces, fails
to reproduce the data. The results provide evidence of repulsive three-body forces in 12C and demonstrate the
possible sensitivity of elastic scattering to three-body forces.

DOI: 10.1103/PhysRevC.95.044616

I. INTRODUCTION

Three-body forces (3BFs) are known to play an important
role in the binding of nuclei and also in the equation of
state (EOS) for nuclear matter. For the binding of nuclei,
ab initio type calculations [1–5] that include the Fujita–
Miyazawa interactions [6] have demonstrated the importance
of the attractive 3BFs for understanding the structure of light
nuclei. For the EOS, 3BFs are important for reproducing the
saturation properties [7] and the compressibility at higher
densities [8]. A high-density environment is produced by
high-energy heavy-ion collisions so that sensitivity of the
cross section to repulsive 3BFs is expected. In the present
work, we study the relation between the high-energy 12C + 12C
scattering cross sections and repulsive 3BFs.

Heavy-ion elastic scattering has been studied over a wide
range of incident beam energies from 6A to 100A MeV,
particularly for the 12C + 12C and 16O + 16O systems [9–11].
The availability of the experimental angular distributions of the
differential cross sections has allowed the determination of the
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gross features of the local optical potentials and, in many cases,
the unambiguous determination of the real parts of the poten-
tials. The folding model is central to these studies and provides
insight into the role of the realistic effective nucleon-nucleon
(NN ) interactions in determining nuclear structures [12].
The folding model for proton-nucleus elastic scattering has
been successfully developed by applying the effective inter-
actions from the complex G-matrix calculations including
the 3BF effect in Refs. [13–15]. Using the same effective
interactions, the double-folding model for heavy-ion collisions
has also been developed, and the 3BF effect on the elastic
and inelastic cross sections has been investigated [16–21].
However, it seems that the analysis of the scattering of
heavy-ion systems with the confined 3BF effect provided by
the chiral effective field theory (CEFT) does not include the
medium effect in the high-density region, which has been
shown to be important in Refs. [22,23]. Construction of a
complex G-matrix interaction based on the CEFT interactions
that takes into account the medium effect is thus anticipated.
Nevertheless, all these theoretical studies show that the 3BF,
in particular the repulsive component, has to be taken into
account to explain the cross sections for high-energy collisions.

Recently, Furumoto et al. theoretically studied the effects
of the repulsive 3BF in 12C + 12C and 16O + 16O elastic
scattering at incident energies up to 400A MeV [18]. Clear
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effects of the 3BF in the differential cross sections for
high-energy collisions were observed. The optical potential for
heavy-ion collisions changes mostly in the real part with only
a minor change observed in the imaginary part. At energies
below 100A MeV the real part of the potential becomes
shallower when the repulsive 3BFs are taken into account.
Due to the short-range repulsion of the NN interactions, the
real part of the optical potential becomes repulsive at an energy
of 300A MeV without the 3BF. The inclusion of the repulsive
3BF adds a repulsive component to the potential and thus the
real part of the optical potential becomes repulsive at lower
energies, at around 200A MeV. Such a repulsive potential
leads to the characteristic behavior of the diffraction pattern
caused by the variation of the near-side and far-side compo-
nents of the elastic cross section. Furumoto et al. therefore
proposed observing the characteristic energy dependence of
the differential cross sections for heavy-ion elastic scattering,
which provides model-independent information on the change
in the optical potential; in particular, the effect of repulsive
forces.

The calculations of Furumoto et al. [18] also show the
distinct effect of the repulsive 3BF on the differential cross
sections at 100A MeV. Therefore, as a starting point for sys-
tematic experimental studies of the differential cross sections
with different incident energies, we have measured elastic and
inelastic scattering of 12C + 12C at 100A MeV.

To completely understand elastic scattering, the effects of
channel coupling must be considered. Previous data on elastic
scatterings at 100A MeV [10,24,25] did not include data for
related inelastic scattering, and thus a detailed comparison
between the experimental data and theoretical calculations
could not be made, including the channel coupling effect.
In the present experiment, inelastic scattering cross sections
for excitations up to 15 MeV have been measured precisely,
together with the elastic cross section. In particular, the differ-
ential cross sections to the first-excited state, which gives the
largest coupling effect, have been determined independently
of the elastic and other inelastic channels.

A theoretical analysis of the data has been made by
using the double folding method based on complex G-matrix
interactions, which include the ESC, CEG07b [13,16], and
MPa [26,27] models. The ESC interaction is based only
on two-body NN interactions. The CEG07b interaction, on
the other hand, includes the effective 3BF in addition to
the two-body NN interactions. The repulsive part of the
3BF is expressed by the density-dependent change in the
vector-meson masses, whereas the attractive part is based
on the Fujita–Miyazawa diagram [6]. The MPa interaction
also uses the 3BF, but the repulsive part is replaced by a
multi-Pomeron exchange potential. Calculations have been
performed within the framework of the microscopic coupled-
channel calculations.

A part of this work has been previously published [21].
In this paper, we present the details of the data analysis
method and refined cross sections. We also add new theoretical
calculations and discussions. The following Sec. II describes
the experimental procedure. The data analysis method and
the results for the cross sections are presented in Sec. III.
Section IV presents the theoretical methods. Comparisons

between the results of the theoretical calculations and the
experimental data are shown in Sec. V. The results are
summarized in Sec. VI.

II. EXPERIMENTAL PROCEDURE

Elastic and inelastic scatterings for 12C + 12C were mea-
sured at an incident energy of 100A MeV (1.2 GeV) at the
Ring Cyclotron Facility of the Research Center of Nuclear
Physics (RCNP) in Osaka University. The high-resolution
spectrometer Grand Raiden was used for the measurements.

The 12C ions were produced by the NEOMAFIOS electron
cyclotron resonance (ECR) ion source [28]. The ions generated
in the ion source were injected into the azimuthally varying
field (AVF) cyclotron accelerator with K = 120 (K is defined
as acceleration voltage). The 12C beam was then injected
into the ring cyclotron with six sectors with K = 400 [29]
and accelerated up to 1.2 GeV. The accelerated beam was
transported to the target position through the high-resolution
west-south (WS) beam line [30]. The WS beam line was used
to deliver a beam under a double achromatic condition. To
obtain a small beam size and better angular resolution, a Monte
Carlo method was used to simulate the beam condition on
the target [31]. Based on the simulation we found a solution
without collimation of the beam. A beam angular spread
of 0.05◦ (1σ ) or smaller was obtained under an achromatic
focusing condition. The beam size was less than 2 mm at the
target.

In this experiment the beam intensity was 0.1–1.0 particle
nA on the target. A natural carbon target with a thickness of
1.18 mg/cm2 was used for measurements at small scattering
angles. A polyethylene film with a thickness of 11.40 mg/cm2

was used as a thick target to obtain a higher yield at large
angles. This target was also used for measuring 12C + p elastic
scattering to calibrate and confirm the validity of the scattering
angle and other analysis procedures. The obtained 12C + p
elastic-scattering cross sections were compared with published
data and the overall validity of the present measurement was
confirmed.

The 12C particles scattered off the target were transported
and analyzed by the Grand Raiden high-resolution magnetic
spectrometer with excellent ion optical properties [32], illus-
trated in Fig. 1 (left). The position and angle of scattered 12C
particles were measured by a detector system at the focal plane,
also illustrated in Fig. 1 (right). The focal plane detectors
were composed of two vertical drift chambers (VDC1 and
VDC2) and three plastic scintillation detectors (PS1, PS2, and
PS3) with thickness of 3, 10, and 10 mm, respectively. The
scattered 12C particles were stopped in the PS3 detector. The
two drift chambers VDC1 and VDC2 determined the trajectory
of the scattered particles and the three plastic scintillation
detectors determined the energy loss. Scattered 12C particles
were identified from the two-dimensional correlation between
the time-of-flight and the deposited energy in the plastic
scintillators. The momentum of the scattered particles was
determined by the horizontal position at the focal plane
determined by VDC1 and VDC2 and the strength of the
magnetic field. Coincidence signals from the two downstream
scintillators PS1 and PS2 were taken as an event trigger. The
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FIG. 1. Schematic view of the magnetic spectrometer Grand
Raiden (left) and focal plane detector system setup (right). The
spectrometer consists of two dipole magnets (D1 and D2), two
quadrupoles (Q1 and Q2), a sextupole (SX), a multipole (MP), and
an additional dipole (DSR) magnet.

PS3 detector was used to measure the residual energy of the
scattered particles.

The laboratory scattering angle was from 1.0◦ to 7.5◦. The
horizontal and the vertical acceptances of the spectrometer
were respectively set to ±20 mrad and ±6 mrad by the
collimators placed at the entrance of the spectrometer. The
central scattering angles of the Grand Raiden spectrometer
were set to 2.0◦, 2.5◦, 3.5◦, 5.0◦, and 6.5◦ to guarantee overlap
of the scattering angles between the different angular settings.

III. DATA ANALYSIS AND RESULTS

A. Particle identification and spectrum fitting

Particles were identified by the energy loss (�E)-time of
flight (TOF) information obtained from the plastic scintillation
detectors. The accelerator RF signal was used as the start signal
in the TOF measurement. The particle identification results
are shown in Fig. 2. The 12C particles are clearly separated.
Due to the thickness of PS2, a tail was found for the energy
deposition by 12C. The 12C tail was precisely estimated by the
shape of the 10B and 12C components. The 10B component
was subtracted from the one-dimensional histogram of the
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FIG. 2. Particle identification during 12C + 12C scattering
experiment.

12C energy-loss distribution in PS2. Through this method, the
contribution of the tail was found to be less than (6.5 ± 0.5)%
for all angles. However, the area selected for data analysis
was only around the peak position. This event loss for 12C was
taken into account in the differential-cross-section calculation.
Finally, the correction factor for the differential cross sections
including the error was (6.5 ± 0.5)%.

For the reaction A(a,b)B, according to the energy
and momentum conservations, we obtain the Q value for the
reaction as

Q = Kb − Ka − mB +
√

m2
B + τ , (1)

where c = 1 and

τ = K2
a + 2Kama + K2

b + 2Kbmb

− 2
√(

K2
a + 2Kama

)(
K2

b + 2Kbmb

)
cos θ. (2)

The light velocity c is omitted as a natural unit. ma , mb, and
mB represent the masses of the projectile and the scattered and
recoil nuclei, respectively. Ka and Kb respectively denote the
kinetic energies of the projectile and the ejected particles, and θ
is the scattering angle for the ejected particles in the laboratory
frame. Using Eqs. (1) and (2), Q values were obtained event by
event. The momentum of a scattered 12C particle was obtained
by adding the central setting momentum pc of the spectrometer
and momentum shift �p obtained from the measured position
at the focal plane (p = pc + �p).

The scattering angle θ was determined from the angle θd

for the particle path at the focal plane, the central angle of
the spectrometer and the measured angular shift from the
center. The relation between θ and θd was obtained from the
optical matrix for the spectrometer and confirmed by a sieve
slit placed before the spectrometer. The vertical angles for the
particles were not taken into account due to the limited vertical
acceptance compared to the horizontal acceptance. A faint 12C
primary beam was used in an empty target run to determine the
angular resolution to be 0.105◦ (full width at half maximum,
FWHM) in the present experiment.

An example two-dimensional plot of the scattering angle
and the excitation energy for 12C is shown in Fig. 3. Three
horizontal bands, which correspond to the ground state and
the 4.44 MeV (2+

1 ) and 9.64 MeV (3−
1 ) excited states for

12C + 12C scattering, can be clearly seen. The curved band
seen in the figure is due 12C scattered from hydrogen in the
target. From the kinematics calculation, the 12C + p elastic
scattering and the 12C + 12C to 4.44 MeV excitation cross at
a scattering angle of 1.015◦ for the present energy. Another
crossing with the focus of the 9.64 MeV excitation for
12C + 12C occurs at 1.5◦. From Fig. 3, it is clearly observed
that the crossing angles are consistent with the kinematics
and are thus independent confirmation of the scattering angle
determination. The contributions of hydrogen were subtracted
by using previous data [33]. Details of the subtraction process
have been previously described [34].

The two-dimensional plot in Fig. 3 was sliced into excitation
energy spectra of different angles. The excitation energy
spectra were analyzed for an angular step of 0.095◦. An
example slice at 1.5◦ is shown in Fig. 4. A peak at an
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FIG. 3. Two-dimensional plot of excitation energy and laboratory
angles for outgoing 12C particles for the spectrometer central angle
of 2.0◦.

excitation energy of 0 MeV arises from the elastic scattering.
The asymmetric shape of the peak is due to the asymmetric
broadening of the incident beam energy. Therefore, we used
this shape as the lineshape in the subsequent fitting process for
the excited states.

The peak to the right of the ground-state peak represents
inelastic scattering to the 4.44 MeV state (the first-excited state
of 12C). A shoulder observed on the right side of the peak is due
to projectile excitation events. In the present experiment, the
missing-mass technique does not distinguish the excitations for
the target and the projectile. Due to the γ -decay recoil of the
excited projectile, the original spectrum is modified and has a

FIG. 4. Example excitation spectrum obtained at scattering angle
of 1.5◦. The horizontal and vertical axes represent excitation energy
and counts, respectively. The fitted spectrum for the 4.44 MeV excited
state with the target and projectile excitation components is shown.
The spectral shape for the ground state is used as the lineshape. The
red and green curves show the phenomenological components of the
projectile and target excitations, respectively. The arrows numbered
1, 2, and 3 show the peak positions for the 7.65 MeV (0+

2 ) state, the
9.64 MeV (3−

1 ) state, and the 10.30 MeV state, respectively.

wider distribution. The modified spectral shape was calculated
by assuming the isotropic emission of γ rays from the excited
state. This spectrum was then folded by the lineshape used for
data fitting. The obtained shape together with the lineshape
determined for the ground state was used to fit the peak for
the 4.44 MeV (2+

1 ) state. The results are shown in Fig. 4. The
two components for the 4.44 MeV (2+

1 ) state are clearly seen.
Up to this region of excitation energy, the peaks can be clearly
separated. Moreover, the fitted values for the strength of these
transitions are almost the same as the simple sum for the events
at the peak regions.

The spectrum between 6 and 12 MeV was also fit by the
same procedure. The fitting results are also shown in Fig. 4
assuming contributions from the 7.65 MeV (0+

2 ), 9.64 MeV
(3−

1 ) and 10.30 MeV states and mutual excitation of the
4.44 MeV states. If the excitation energy is higher than
7.27 MeV, the 12C∗ decays by emitting α particles. Therefore,
no projectile excitations with an excitation energy higher than
7.27 MeV were detected in the present setup. The lineshape
for the ground state was applied to the 7.65 MeV (0+

2 ) state and
the 9.64 MeV (3−

1 ) states. For the 10.30 MeV state, a Gaussian
function with a width of 3.07 MeV FWHM was used [35].
The mutual excitation peak is expected to appear at around
4.44 (Target) + 4.44 (Projectile) MeV. However, those events
could not be estimated in the present work. Because of this
ambiguity, even though the fittings for the 7.65 MeV (0+

2 )
state, the 9.64 MeV (3−

1 ) state and the 10.30 MeV state can
well reproduce the excitation energy spectrum in some cases,
these states cannot be separately observed for many scattering
angles. Therefore, only the integrated cross sections for those
states are presented in this paper.

For excitation energies higher than 12 MeV, there exist
many excited states, and the resolution of the magnetic
spectrometer is not sufficient to distinguish each component
showing a continuum. The data above 12 MeV are not
presented in the present paper.

B. Differential cross section

The differential cross section is calculated by

dσ

d�
= N/εdεtεa

N0NT �
, (3)

where

N : number of detected reaction events,

εd : detection efficiency for 12C,

εt : trigger efficiency,

εa: efficiency of data analysis,

N0: number of incident nuclei,

NT : number of target nuclei per square centimeter, and

�: solid angle of detection.

The collected charge for the incident particles was measured
by a Faraday cup connected to a current integrator. In the data
analysis, the total number of pulses from the current integrator
was used for each run. Using the charge state for the incident
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carbon (6+) and the measured total charge, N0 was obtained. In
the calculation of the differential cross section, the efficiencies
(εd , εt , and εa) were determined from the data itself. The
average efficiency (εdεtεa) for all runs was about 75%.

The differential cross sections for the observed states in
the present experiment are extracted based on Eq. (3). Here,
we considered uncertainties in the beam intensity, the target
thickness, the solid angle, efficiencies, and state selections.
Actually, two cross sections of a scattering angle determined
by different central angular settings of the spectrometer did
not necessarily agree perfectly at the overlapping angles. The
differences were less than 10% in all cases. This inconsistency
was due to unknown systematic errors between the data for
different angular settings. The shapes of the differential cross
sections agree very well, so that the relative errors in the
differential cross sections are much smaller. To determine
the absolute differential cross sections, the elastic-scattering
differential cross sections were renormalized to the average
absolute values for the 2.0◦, 2.5◦, 3.5◦, and 5.0◦ data so that all
the data were connected with a single differential-cross-section
curve. The renormalization factor for each setting angle was
consistently used for the other excited states. Systematic errors
of ±10% were added for the absolute values of the cross
sections. The relative errors are much smaller than the size of
the marks and are shown by error bars in the figures.

The spectrum above 6 MeV includes contributions from
the three states at 7.65, 9.64 and 10.30 MeV and simultaneous
4.44 MeV excitations, and thus it is extremely difficult to
reliably obtain the differential cross sections for individual
states separately for all angles. Therefore, we present the
differential cross sections for the sum of these peaks. The
contributions of the tail from higher excitations above 12 MeV
and the continuum were subtracted under several shape
assumptions. The uncertainty observed in the different shape
assumptions was considered as an error in the cross sections.
These errors were included in the individual data points.

The angular spread of the incident 12C beam was measured
by using a faint beam and sieve slit. The beam spread was
found to be less than 0.105◦ FWHM. The obtained 12C + p
scattering differential cross sections by a polyethylene target
(CH2)n were consistent with the previous data [33] within the
error bars.

The obtained differential cross sections in the center of
mass frame are tabulated in Sec. VI.

IV. THEORETICAL ANALYSIS

In the following study, we investigate the effect of 3BFs
on the 12C + 12C elastic and inelastic cross sections. We apply
three types of complex G-matrix interactions in the framework
of a microscopic coupled-channel (MCC) calculation. The G-
matrix interaction derived from the realistic NN interactions
is the most reliable density-dependent NN interaction for
analyzing the nuclear structure and reactions. The Bethe–
Goldstone G-matrix equation describes two-body scattering
in a nuclear medium, including the effects of Pauli blocking
and the starting-energy dependence. The starting energy is
the initial energy of the two nucleons in the nuclear medium.
The complex G-matrix interaction is obtained by solving the

kF (fm-1)

E/
A 
(M
eV
)

FIG. 5. Saturation curves obtained based on ESC, CEG07b, and
MPa interactions. The horizontal and vertical axes represent the Fermi
momentum and the binding energy per nucleon, respectively. The box
shows the empirical value [36].

G-matrix equation with the scattering boundary conditions in
the nuclear medium. We apply both the real and imaginary
parts of the complex G-matrix interaction to construct the
complex nucleus-nucleus potentials.

A. Interaction model

First, we briefly introduce the three types of complex
G-matrix interactions, which are named as ESC, CEG07b,
and MPa. The CEG07b [13,16] and MPa [26,27] interactions
include the effect of a 3BF composed of repulsive and attractive
parts.

The two-body interaction ESC denotes the ESC08 NN
interaction model, which is the latest version of the meson
exchange potential from the Nijmegen group [37–40]. The
saturation curve for the nuclear matter obtained by ESC does
not satisfy the saturation property as shown in Fig. 5. CEG07b
is based on the ESC04 NN interaction model, which is
the older version of ESC08 and includes a 3BF effect. The
repulsive part of the 3BF is expressed by reducing the vector-
meson masses as the distill increases. [38]. The attractive part
of the 3BF is described by the Fujita–Miyazawa diagram [41].
Due to the 3BF effect, the saturation curve for the nuclear
matter is better reproduced as shown in Fig. 5. The CEG07b
interaction has often been applied to the proton-nucleus and
nucleus-nucleus scatterings by three of the present authors
(T.F., Y.S., and Y.Y.) [13,16–18,42,43].

MPa is based on the ESC08 NN interaction and includes
a three-body repulsive part expressed by the multi-Pomeron
exchange potential (MPP). Its attractive part is given phe-
nomenologically. MPa gives the most reliable saturation
properties, as seen in Fig. 5. In addition, MPa has been applied
not only to the nucleus-nucleus scattering system but also to
hypernuclei and neutron stars [26,27,44].

B. Theoretical frame of microscopic coupled-channel method

The collective excitation of nuclei is known to play an
important role in heavy-ion reactions. The strong coupling
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between the ground and low-lying collective states of colliding
nuclei requires a nonperturbative treatment to properly account
for the coupling effects on the elastic and inelastic scattering.
The coupled-channel method is one of the most reliable and
established reaction theories for studying the role of nuclear
excitations in heavy-ion reactions and for extracting nuclear
structure information through a coupled-channel analysis
of the experimental data [45]. In the present study, the
MCC method is applied to take into account such collective
excitation effects on the elastic and inelastic cross sections.

In the MCC calculation, the diagonal (α = β) and transition
(α �= β) potentials are derived from a microscopic viewpoint.
The microscopic potentials usually have the direct (U(D)) and
exchange (U(EX)) parts,

Uα(ij )→β(kl) = U
(D)
α(ij )→β(kl) + U

(EX)
α(ij )→β(kl), (4)

where α and β represent the channel numbers and i, j , k, and l
indicate the states of the projectile or target nuclei. The direct
part of the potential is given by

U
(D)
α(ij )→β(kl)(R)=

∫
ρ

(P )
i→k(rP )ρ(T )

j→l(rT )vD(s,ρ,E/A)d rPd rT ,

(5)

and the exchange part by

U
(EX)
α(ij )→β(kl)(R) =

∫
ρ

(P )
i→k(rP ,rP − s)ρ(T )

j→l(rT ,rT + s)vEX

× (s,ρ,E/A)exp

(
ik(R) · s

M

)
d rPd rT .

(6)

Here, s = rP + R − rT . The density matrix ρ(a,b) is ex-
panded by the usual density in the same manner as in Ref. [46].
The exponential function is derived from the plane-wave
representation for the NN relative motion [47–49]. k(R) is
the local momentum for the nucleus-nucleus relative motion.
M is the reduced mass for the reaction system. The superscripts
P and T for the transition density ρ

(P,T )
a→b , indicate the projectile

and target nuclei, respectively. ρ and E/A in the interaction
vD,EX are the local density and the incident energy per
nucleon, respectively. The detailed calculation method has
been previously reported [43].

In the present calculation, the so-called frozen-density
approximation is used for evaluating the local density. The
local density is evaluated at the positions of each nucleon for
the direct part, and at the middle point of an interacting nucleon
pair for the exchange part. To construct of the transition
potential, the local density is evaluated by averaging the
densities of the colliding nuclei in the initial and final states.
Finally, the evaluated local density is defined by

ρ = 1

2

(
ρ

(P )
i→i + ρ

(P )
k→k

) + 1

2

(
ρ

(T )
j→j + ρ

(T )
l→l

)
. (7)

Generally, the optical potential of nucleus-nucleus systems
is composed of real and imaginary parts. The imaginary part
represents all the fluxes escaping from the elastic-scattering
channel through all possible open reaction channels. It is
difficult to completely simulate these flux losses with the

imaginary part. To compensate for this, the renormalization
factor NW is introduced phenomenologically for the imaginary
part of the folding model potential, which is written as

U = V + iNWW. (8)

Here, V and W are the real and imaginary parts of the
double folding potential, respectively. The Coulomb potential
is also obtained by folding the proton densities of the projectile
and target nuclei with the NN Coulomb interaction. NW is the
only parameter used for fitting to the experimental data. Details
on the method for determining the value are given in the next
section.

V. RESULTS AND DISCUSSION

The experimental differential cross sections were analyzed
by the MCC method with a complex optical potential. In the
MCC calculation, we used the microscopic transition densities
for the 12C nucleus obtained by the 3α-RGM (resonance
group method) [50] calculation, that reproduces the electron-
scattering form factors for the 12C nucleus. The states in the
MCC calculation included the ground state (0+

1 ), the 4.44 MeV
(2+

1 ) state, the 7.65 MeV (0+
2 ) state, and the 9.64 MeV (3−

1 )
state. In addition to those states, we included two 0+ states
and three 2+ states that the RGM calculation predicted at
higher excitation energies up to 16 MeV. It should be noted
that the additional states are taken to be discretized continuum
states, except for the second 2+ state [50]. In the present MCC
calculations, the single and mutual excitation of 12C to the
above-mentioned states is taken into account fully in the CC
calculation. The calculation without the channel coupling (CC)
effect is called the 1-ch calculation.

A. Single-channel calculations

First, we tested three types of complex G-matrix interac-
tions in a single-channel (1-ch) calculation. Here, the NW value
is fixed by the reaction cross section because the cross section
is very sensitive to the strength of the imaginary potential.

Figure 6 shows the calculated reaction cross section and
the experimental data. The NW values for the three types of
the interactions are given in the legend of the figure. Using the
NW values determined from the reaction cross section, there
is no additional free parameter when we analyze the elastic
scattering. The calculated differential cross sections for 100A
MeV 12C + 12C elastic scattering in the 1-ch calculation with
the fixed NW values are shown in Fig. 7. The solid, dashed
and dot-dashed curves represent the calculation results with
the ESC, CEG07b, and MPa interactions, respectively. The
open circles denote the present experimental data measured
in the present experiment. The ESC model based only on
the two-body interaction does not reproduce the experimental
differential cross sections, except for the most forward angles.
On the other hand, the CEG07b and MPa models give better
fits to the data. The CEG07b model reproduces the differential
cross sections reasonably well for the whole angular range,
while the MPa model gives a slightly worse fit than that of
the CEG07b model. The calculated values for the MPa model
are slightly larger than those for the CEG07b model. The two
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FIG. 6. Calculated 12C + 12C reaction cross sections for different
complex G-matrix interactions and σR data as a function of beam
energy. The filled circles represent the reaction cross section exper-
imental data of Takechi [51]; the other open symbols denote 1-ch
calculations for the three kinds of interaction models.

models including the 3BF effect reproduce the data better
than the ESC interaction model without the 3BF effect. This
result suggests an important role for the 3BF effect in nucleus-
nucleus elastic scattering.

B. Full-coupled-channel calculations

The 1-ch calculation suggests that the 3BF makes an
important contribution to elastic scattering. However, the
coupled-channel effect needs to be included in the calculations
to confirm this result. The differential cross sections were
calculated using the MCC framework including the CC
effect. The three interaction models are applied in the MCC

FIG. 7. 1-ch calculation results for elastic-scattering differential
cross sections for 12C + 12C scattering at 100A MeV based on ESC
(solid curve), CEG07b (dashed curve), and MPa (dot-dashed curve)
interaction models in center-of-mass frame.

FIG. 8. Calculated reaction cross sections for the full-CC calcu-
lation with three kinds of interaction model. The results for several
NW values are also shown.

calculations. Here, we examine the suitable NW values that
reproduce the experimental data for the cross section in the
MCC calculation. Figure 8 shows the sensitivity of the cross
sections to the value of NW in the CC calculation, from
which we can determine the NW values to be used in the CC
calculation. We use NW = 0.57 in most of the following MCC
calculations. An exception is shown in Fig. 12 for studying the
sensitivity of NW value in the differential cross sections. This
implies that there is no additional free parameter in the MCC
calculations.

The calculated differential cross sections based on the ESC
model are shown in Fig. 9. The solid and dashed curves are
the calculated elastic and inelastic cross sections, respectively.
The dot-dashed curve shows the result of the sum of several

FIG. 9. Experimental and calculated differential cross sections
with ESC model (without the 3BF) for 12C + 12C scattering at 100A

MeV with NW = 0.57 in full-CC calculation.
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FIG. 10. Experimental and calculated differential cross sections
with CEG07b model (with the 3BF) for 12C + 12C scattering at 100A

MeV with NW = 0.57 in full-CC calculation.

inelastic cross sections, defined by

σSum = 1
2

(
σ12C(0+

2 )+12C(G.S.) + σ12C(3−
1 )+12C(G.S.)

)
+ σ

(J=0)
12C(2+

1 )+12C(2+
1 )

+ σ
(J=2)

12C(2+
1 )+12C(2+

1 )
+ σ

(J=4)
12C(2+

1 )+12C(2+
1 )

.

(9)

The factor 1
2 is included for the single-excitation cross sections

to the 0+
2 and 3−

1 unbound excited states located above the
3α threshold, because the calculated cross sections for these
inelastic channels include events in which either the projectile
12C or the target 12C is excited to the unbound states, while
the experimental data do not include the projectile-excited
events, as mentioned above. The 2+

2 excited state has not yet
been firmly established [52] and, therefore, we do not include
the 2+

2 excited state in the sum of inelastic cross sections
in the theoretical calculations. In addition, we note that the
calculation results are slightly different to those in Ref. [21].
Consequently, the factor 1

2 is added for the mutual excited
states in Ref. [21]. The calculated sum of several inelastic
cross sections is then slightly larger than that in Ref. [21].

Even if the CC effect is included, ESC does not accurately
reproduce the elastic or inelastic scatterings, particularly at
backward angles, as shown in Fig. 9.

In Figure 10, we compare the results of the full-CC calcu-
lation with the CEG07b model with experimental values. The
elastic cross sections are well reproduced at small scattering
angles. However, the calculated elastic cross sections slightly
underestimate the experimental values for angles larger than
6.0◦. The CEG07b interaction slightly overestimates the satu-
ration energy for EOS and is softer than the MPa interaction,
as shown in Fig. 5. This softness may decrease the elastic cross
sections for backward angles. In addition, the strong coupling
effect from the 2+

1 state causes a decrease in the cross section.
Details of the CC effect are described in the next section. For

FIG. 11. Experimental and calculated differential cross sections
with MPa model (with 3BF) for 12C + 12C scattering at 100A MeV
with NW = 0.57 in full-CC calculation.

the inelastic cross section of a single excitation of the 2+
1 state,

the calculated and experimental values are in good agreement.
Although the CEG07b model, which includes three-body

repulsion, reproduces the experimental data better than the
ESC model, it fails to reproduce the elastic cross section over
the entire angular range, and particularly at the large angles.
Here, we tested and confirmed that a small change in NW has
a negligible effect on the elastic cross section.

The full-CC calculation results with the MPa model are
shown in Fig. 11. The elastic and inelastic cross sections are
reproduced for the whole range of scattering angles except
for a slight overestimation of the cross section for the sum
of the four states (the dot-dashed curve). The MPa interaction
model provides the best overall description of the experimental
data for both the elastic and inelastic cross sections. It is
considered that a change in EOS between the CEG07b and
MPa interactions, as shown in Fig. 5, emerges for the elastic
cross section. The MPa interaction reproduces well the elastic
and inelastic cross sections. We described below a detailed
analysis based on the MPa interaction.

Here we show the effect of the renormalization factor
NW on the elastic and inelastic cross sections in the full-CC
calculation with the MPa interaction. The calculated elastic
and inelastic cross sections are shown in Fig. 12. The dotted,
short-dashed, solid, dot-dashed, and dot-dot-dashed curves
show the calculated elastic cross sections with NW = 0.2,
0.4, 0.57, 0.8, and 1.0, respectively. The bold (red) dotted,
short-dashed, dashed, dot-dashed, and dot-dot-dashed curves
are the results of the inelastic cross section calculated with
NW = 0.2, 0.4, 0.57, 0.8, and 1.0, respectively. The effect of
the NW value is clearly seen in the elastic and inelastic cross
sections. The same trend for NW was also seen in Ref. [16] for
the 16O + 16O system in the 1-ch calculation with the CEG07a
interaction (without the 3BF). We note that the NW value is
multiplied not only by the diagonal potentials but also by
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FIG. 12. Experimental and calculated differential cross sections
with MPa model (with the 3BF) for 12C + 12C scattering at 100A

MeV with several NW values in full-CC calculation. The meaning of
the curves is described in the text.

the transition potentials in our MCC calculation. Therefore,
the effect of NW effect on the elastic cross section cannot be
readily understood in the MCC calculation. In addition, the
effect of the NW value on the inelastic cross sections is more
complicated to understand.

C. Details of coupled-channel effect on elastic and
inelastic cross sections

Details of the CC effect with the MPa interaction are
presented in Fig. 13. As described above, we use NW = 0.57.

FIG. 13. Elastic cross section for 12C + 12C at E/A = 100 MeV.
The dotted and solid curves are the results with the ESC and MPa
interactions, respectively. The dashed and dot-dashed curves are the
results of the 2-ch (elastic and singe 2+

1 excited channels) and full-CC
calculations with MPa, respectively.

FIG. 14. Inelastic cross section for 4.44 MeV. The dotted and
solid curves are the 2-ch (elastic and singe excited channels) results
with ESC and MPa interactions, respectively. The dashed and
dot-dashed curves are the 5-ch [elastic, singe 2+

1 excited, mutual
2+

1 excited (J = 0,2,4) channels] and full-CC results with the MPa
interaction, respectively.

The CC effect for the MPa interaction is seen in the elastic
differential cross sections as a decrease of the cross section
at large scattering angles. The dashed curve is obtained by a
2-ch calculation, which includes the ground and excited (2+

1 )
states. The effect of coupling on the higher excited states is
smaller, as shown by the dot-dashed line. The change in the
cross section is largest from ESC to MPa and is much larger
than the changes due to the CC effect. Therefore, the 3BF
effect is the most important factor for reproducing the elastic
cross section.

Figure 14 presents the results of the 2-ch calculation,
including the ground and the 2+

1 excited states, the 5-ch
calculation, including the ground state, 2+

1 excitation and the
mutual 2+

1 excitation (J = 0,2,4), and the full-CC calculation.
The inelastic scattering is better reproduced with the inclusion
of the CC effect. However, here also the 3BF effect is larger
than the CC effect. The effects of the excitations on higher
excited states, such as the 0+

2 , 2+
2 , and 2+

3 states, were
also estimated. The effects of those states was found to be
negligibly small and thus are not shown in the figure. For the
inelastic cross section, the 3BF effect is also clearly seen to
be important. However, including only the 3BF effect does
not satisfactorily reproduce the data. The calculated result
reproduces well the data up to backward angles only when the
CC effects are included. The mutual 2+

1 excited (J = 0,2,4)
channels substantially contribute to the inelastic cross section
as shown in Fig. 14. However, the 0+

2 , 2+
2 and 2+

3 states
contribute very weakly and the effects are not shown in the
figure. Here, we note that the calculated result of the ESC
(2-ch) does not reproduce the elastic cross section. However,
the 3BF effect on the inelastic cross section is not revealed in
this stage. A detailed analysis for the 3BF effect on the inelastic
cross section is performed with the elastic cross section in the
next section.
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FIG. 15. Elastic and inelastic cross sections for 12C + 12C at
E/A = 100 MeV. The dotted and dot-dot-dashed curves are the
results with the ESC and MPa interactions, respectively. The
meanings of the curves are described in the text.

D. Role of 3BF effect on diagonal and transition potentials

Finally, we investigate the 3BF effect on the elastic and
inelastic cross sections in detail, as shown in Fig. 15. To
identify the crucial potential in the MCC calculation with the
3BF effect on the inelastic cross section, we switch on and
off on the diagonal (α = β) or transition (α �= β) potentials
derived from the ESC and MPa interactions. We perform four
types of the tests of the potentials, as follows:

(Test 1) The solid curves in Fig. 15 are based on the MPa
interaction. However, the 3BF effect on the diago-
nal potentials for the elastic [12C(g.s.)+12C(g.s.)]
and single excited [12C(2+

1 ) +12C(g.s.)] channels
is switched off.

(Test 2) The short dashed curves are based on the ESC in-
teraction. The 3BF effect on the diagonal potential
for the elastic channel is switched on.

(Test 3) The dot-dashed curves are based on the MPa in-
teraction. The 3BF effect on the diagonal potential
for the elastic channel is switched off.

(Test 4) The dashed curves are based on the MPa interac-
tion. However, the 3BF effect on all the transition
potentials is switched off.

By comparing the results for MPa (dot-dot-dashed) and
Test 4 (dashed), the 3BF effect on the transition potential
can be seen for the elastic and inelastic cross sections. Test
4 shows that the 3BF effect plays an unimportant role in
the transition potential for the inelastic cross section. On the
other hand, the 3BF effect on the transition potentials appears
slight in the elastic cross section for the backward angles
by the CC effect. It can be clearly seen that the diagonal
potential for the elastic channel plays an important role in
correcting the elastic and inelastic cross sections based on

the results of Test 2 (short dashed) and Test 3 (dot-dashed).
The calculated elastic cross sections for Test 2 and Test 3
agree with those for MPa and ESC, respectively. Namely, the
3BF effect on the elastic channel potential almost corrects the
elastic cross section. The calculated inelastic cross sections
for Test 2 and Test 3 are located halfway between the results
for MPa and ESC. This implies that the 3BF effect of the
diagonal potential for the elastic channel also affects the
inelastic cross section. By comparing the results for MPa,
Test 3, Test 1 (solid), and ESC, the important role of the 3BF
of the diagonal potentials for the single excited (2+

1 ) channel
is clear for the inelastic cross section. The MPa result well
reproduces the data up to backward angles. The calculated
inelastic cross section overshoots the data when the 3BF effect
on the diagonal potential for the elastic channel is switched off
(Test 3). Furthermore, the calculated inelastic cross section
is consistent with the ESC result when the 3BF effect on
both the diagonal potentials is switched off (Test 1). The
important role of the 3BF effect on the diagonal potentials for
the entrance and exit channels is clearly seen in the inelastic
cross section. Consequently, the 3BF effect for the diagonal
potentials is the most important factor for reproducing both
the elastic and the inelastic cross sections. This conclusion is
consistent with the well-known sense of the distorted wave
Born approximation [53].

VI. SUMMARY

In summary, the elastic and inelastic differential cross
sections for 12C + 12C scattering at an incident energy of
100A MeV were determined by using the ring cyclotron of
the Research Center for Nuclear Physics, Osaka University.
The differential cross sections for the ground state (0+

1 ),
4.44 MeV (2+

1 ) state, and the sum of the 7.65 MeV (0+
2 )

state, the 9.64 MeV (3−
1 ) state and the simultaneous excitation

to 4.44 MeV, were precisely obtained. The experimental data
were investigated by using three different G-matrix interaction
models: the ESC model based on the two-body force only, the
CEG07b model with the addition of an induced three-body
force, and the MPa model with three-body repulsion modeled
by multi-Pomeron-exchange potential (MPP). The imaginary
part of the folding potential was multiplied by a renormal-
ization factor NW for all interaction models to reproduce the
experimental reaction cross sections. In addition, microscopic
coupled-channel (MCC) calculations are performed for all
three interaction models. The ESC model, which does not
include the 3BF effect, failed to reproduce the measured
cross sections for both the elastic and inelastic scattering.
The calculations including the 3BF effect reproduced the
experimental cross section better than the single-channel
calculation. Among the two different models including the
3BF, the MPa model reproduced the data better than the
CEG07b model. A detailed analysis of the 3BF effect on
the coupled-channel potentials showed that the 3BF effect on
the elastic channel potential was the most important factor
for modeling the experimental data. The MPa model also
demonstrated the importance of measuring the excited state in
addition to the elastic scattering. The present results provide
clear evidence of the important roles of the repulsive 3BF
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and the CC effect in high-energy heavy-ion collisions. Further
experiments at higher energies are expected to provide less
model-dependent information on the repulsive nature of the
3BF.
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SUPPLEMENTARY INFORMATION

TABLE I. Differential cross sections for 12C + 12C scattering at an incident energy of 100A MeV. These cross sections include transitions
to the ground state (0+

1 ) and to the first-excited 4.44 MeV state (2+
1 ) and the sum of the 7.65 MeV (0+

2 ) state, the 9.64 MeV (3−
1 ) state, the

10.30 MeV state and the simultaneous (projectile and target) excitations of the 4.44 MeV (2+
1 ) state.

Angle Cross section Angle Cross section Angle Cross section
(degree) (mb/sr) (degree) (mb/sr) (degree) (mb/sr)
c.m. Ground statea c.m. 4.44 MeVb c.m. Sum of 4 states

1.96 (7.15 ± 0.12) × 104 1.96 (1.51 ± 0.32) × 103 1.97 (2.35 ± 1.60) × 102

2.16 (4.94 ± 0.08) × 104 2.16 (1.70 ± 0.36) × 103 2.16 (2.84 ± 1.35) × 102

2.35 (2.86 ± 0.05) × 104 2.35 (1.84 ± 0.38) × 103 2.36 (2.95 ± 1.05) × 102

2.55 (1.40 ± 0.02) × 104 2.55 (1.76 ± 0.38) × 103 2.55 (3.35 ± 0.86) × 102

2.74 (5.55 ± 0.10) × 103 2.75 (1.59 ± 0.33) × 103 3.14 (4.80 ± 0.42) × 102

2.94 (1.85 ± 0.04) × 103 2.94 (1.27 ± 0.26) × 103 3.34 (3.18 ± 0.41) × 102

3.13 (1.04 ± 0.02) × 103 3.14 (9.59 ± 2.00) × 102 3.53 (2.29 ± 0.39) × 102

3.33 (1.80 ± 0.04) × 103 3.33 (6.73 ± 1.50) × 102 3.73 (1.73 ± 0.29) × 102

3.52 (3.04 ± 0.06) × 103 3.53 (4.40 ± 0.97) × 102 3.92 (1.28 ± 0.32) × 102

3.72 (4.10 ± 0.08) × 103 3.72 (2.55 ± 0.57) × 102 4.12 (9.19 ± 2.72) × 101

3.91 (4.69 ± 0.09) × 103 3.92 (1.47 ± 0.36) × 102 4.32 (7.64 ± 2.04) × 101

4.11 (4.68 ± 0.09) × 103 4.11 (1.25 ± 0.29) × 102 4.51 (7.17 ± 1.99) × 101

4.30 (4.35 ± 0.08) × 103 4.31 (1.55 ± 0.36) × 102 4.71 (6.29 ± 1.66) × 101

4.50 (3.59 ± 0.07) × 103 4.50 (2.14 ± 0.49) × 102 4.90 (6.33 ± 1.28) × 101

4.69 (2.78 ± 0.05) × 103 4.70 (2.80 ± 0.62) × 102 5.10 (7.32 ± 1.18) × 101

4.89 (1.99 ± 0.04) × 103 4.89 (3.29 ± 0.72) × 102 5.29 (6.21 ± 1.09) × 101

5.08 (1.36 ± 0.03) × 103 5.09 (3.34 ± 0.76) × 102 5.49 (6.60 ± 0.99) × 101

5.28 (9.06 ± 0.21) × 102 5.29 (3.41 ± 0.75) × 102 5.69 (6.06 ± 0.97) × 101

5.47 (6.05 ± 0.16) × 102 3.19 (8.44 ± 1.69) × 102 3.19 (3.12 ± 0.22) × 102

5.67 (4.25 ± 0.13) × 102 3.38 (6.01 ± 1.20) × 102 3.39 (2.61 ± 0.24) × 102

5.86 (3.56 ± 0.11) × 102 3.58 (3.85 ± 0.79) × 102 3.58 (2.15 ± 0.28) × 102

3.18 (1.14 ± 0.01) × 103 3.77 (2.33 ± 0.48) × 102 3.78 (1.65 ± 0.22) × 102

3.38 (2.08 ± 0.02) × 103 4.36 (1.74 ± 0.36) × 102 3.98 (1.21 ± 0.20) × 102

3.57 (3.29 ± 0.03) × 103 4.56 (2.29 ± 0.48) × 102 4.17 (9.01 ± 1.63) × 101

3.77 (4.25 ± 0.04) × 103 4.75 (2.95 ± 0.63) × 102 4.37 (7.46 ± 1.49) × 101

3.96 (4.70 ± 0.05) × 103 4.95 (3.26 ± 0.67) × 102 4.56 (6.81 ± 1.27) × 101

4.16 (4.63 ± 0.05) × 103 5.14 (3.48 ± 0.72) × 102 4.76 (6.42 ± 1.02) × 101

4.35 (4.13 ± 0.04) × 103 5.34 (3.39 ± 0.70) × 102 4.95 (6.67 ± 0.92) × 101

4.55 (3.40 ± 0.03) × 103 5.53 (3.01 ± 0.62) × 102 5.15 (6.70 ± 0.81) × 101

4.74 (2.59 ± 0.03) × 103 5.73 (2.57 ± 0.53) × 102 5.35 (6.87 ± 0.66) × 101

4.94 (1.84 ± 0.02) × 103 5.92 (2.06 ± 0.43) × 102 5.54 (6.95 ± 0.66) × 101

5.13 (1.24 ± 0.01) × 103 6.12 (1.55 ± 0.32) × 102 5.74 (6.28 ± 0.52) × 101

5.33 (8.04 ± 0.09) × 102 6.31 (1.13 ± 0.24) × 102 5.93 (5.87 ± 0.48) × 101

5.52 (5.50 ± 0.07) × 102 6.51 (8.32 ± 1.79) × 101 6.13 (5.18 ± 0.47) × 101

5.72 (4.10 ± 0.05) × 102 6.70 (6.85 ± 1.48) × 101 6.32 (4.39 ± 0.41) × 101

5.91 (3.72 ± 0.05) × 102 6.90 (6.10 ± 1.27) × 101 6.52 (4.00 ± 0.37) × 101
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TABLE I. (Continued.)

Angle Cross section Angle Cross section Angle Cross section
(degree) (mb/sr) (degree) (mb/sr) (degree) (mb/sr)
c.m. Ground statea c.m. 4.44 MeVb c.m. Sum of 4 states

6.11 (3.73 ± 0.05) × 102 5.44 (3.14 ± 0.64) × 102 6.72 (3.21 ± 0.37) × 101

6.30 (3.97 ± 0.05) × 102 5.63 (2.82 ± 0.58) × 102 6.91 (2.62 ± 0.31) × 101

6.50 (3.97 ± 0.05) × 102 5.83 (2.35 ± 0.48) × 102 5.25 (5.39 ± 0.71) × 101

6.69 (3.94 ± 0.05) × 102 6.03 (1.86 ± 0.38) × 102 5.45 (6.35 ± 0.68) × 101

6.89 (3.63 ± 0.05) × 102 6.22 (1.40 ± 0.29) × 102 5.64 (5.59 ± 0.72) × 101

5.23 (9.75 ± 0.14) × 102 6.42 (1.00 ± 2.07) × 102 5.84 (5.96 ± 0.58) × 101

5.43 (6.61 ± 0.10) × 102 6.61 (7.55 ± 1.57) × 101 6.04 (4.86 ± 0.62) × 101

5.62 (4.65 ± 0.07) × 102 6.81 (6.17 ± 1.28) × 101 6.23 (4.79 ± 0.53) × 101

5.82 (3.79 ± 0.06) × 102 7.00 (5.70 ± 1.18) × 101 6.43 (4.45 ± 0.49) × 101

6.01 (3.59 ± 0.06) × 102 7.20 (5.86 ± 1.20) × 101 6.62 (3.58 ± 0.45) × 101

6.21 (3.72 ± 0.06) × 102 7.39 (6.13 ± 1.27) × 101 6.82 (3.28 ± 0.37) × 101

6.40 (3.90 ± 0.06) × 102 7.59 (6.49 ± 1.38) × 101 7.01 (2.56 ± 0.30) × 101

6.60 (4.02 ± 0.06) × 102 7.78 (6.72 ± 1.38) × 101 7.21 (2.37 ± 0.30) × 101

6.79 (3.85 ± 0.06) × 102 7.98 (6.73 ± 1.39) × 101 7.41 (1.87 ± 0.24) × 101

6.99 (3.51 ± 0.06) × 102 8.17 (6.22 ± 1.29) × 101 7.60 (1.72 ± 0.20) × 101

7.18 (3.13 ± 0.05) × 102 8.37 (5.59 ± 1.18) × 101 7.80 (1.53 ± 0.18) × 101

7.38 (2.53 ± 0.04) × 102 8.56 (4.68 ± 0.99) × 101 7.99 (1.38 ± 0.17) × 101

7.57 (2.07 ± 0.03) × 102 8.76 (3.84 ± 0.81) × 101 8.19 (1.27 ± 0.17) × 100

7.77 (1.57 ± 0.03) × 102 8.96 (3.09 ± 0.67) × 101 8.38 (1.24 ± 0.13) × 101

7.96 (1.18 ± 0.02) × 102 8.52 (4.76 ± 0.99) × 101 8.58 (9.99 ± 1.24) × 100

8.16 (8.98 ± 0.17) × 101 8.72 (4.04 ± 0.83) × 101 8.78 (1.02 ± 0.12) × 101

8.35 (6.60 ± 0.13) × 101 8.91 (3.36 ± 0.69) × 101 8.15 (1.17 ± 0.15) × 101

8.55 (5.35 ± 0.11) × 101 9.11 (2.62 ± 0.55) × 101 8.34 (1.32 ± 0.16) × 101

8.74 (4.44 ± 0.10) × 101 9.31 (2.16 ± 0.45) × 101 8.54 (1.32 ± 0.14) × 101

8.94 (3.93 ± 0.09) × 101 9.50 (1.77 ± 0.37) × 101 8.73 (1.18 ± 0.12) × 101

8.51 (5.59 ± 0.09) × 101 9.70 (1.44 ± 0.31) × 101 8.93 (1.07 ± 0.11) × 101

8.70 (4.69 ± 0.08) × 101 9.89 (1.31 ± 0.28) × 101 9.13 (9.73 ± 0.91) × 100

8.90 (4.07 ± 0.07) × 101 10.09 (1.12 ± 0.26) × 101 9.32 (9.28 ± 0.91) × 100

9.09 (3.69 ± 0.07) × 101 10.28 (1.09 ± 0.23) × 101 9.52 (8.23 ± 0.76) × 100

9.29 (3.31 ± 0.06) × 101 10.48 (9.76 ± 2.07) × 100 9.71 (7.64 ± 0.68) × 100

9.48 (3.15 ± 0.06) × 101 10.67 (9.14 ± 1.92) × 100 9.91 (6.34 ± 0.57) × 100

9.68 (2.78 ± 0.05) × 101 10.87 (8.80 ± 1.86) × 100 10.10 (5.46 ± 0.56) × 100

9.87 (2.46 ± 0.05) × 101 11.06 (8.01 ± 1.76) × 100 10.30 (4.91 ± 0.47) × 100

10.07 (2.03 ± 0.04) × 101 11.26 (7.20 ± 1.88) × 100 10.49 (4.11 ± 0.41) × 100

10.26 (1.69 ± 0.04) × 101 11.45 (5.84 ± 1.56) × 100 10.69 (3.69 ± 0.36) × 100

10.46 (1.41 ± 0.03) × 101 11.65 (5.10 ± 1.36) × 100 10.89 (3.06 ± 0.33) × 100

10.65 (1.11 ± 0.03) × 101 11.84 (4.21 ± 1.11) × 100 11.08 (2.76 ± 0.30) × 100

10.85 (8.92 ± 0.23) × 100 12.04 (3.26 ± 0.89) × 100 11.28 (2.17 ± 0.27) × 100

11.04 (6.92 ± 0.19) × 100 11.41 (6.05 ± 1.26) × 100 11.47 (1.94 ± 0.21) × 100

11.24 (5.37 ± 0.17) × 100 11.61 (5.51 ± 1.10) × 100 11.24 (2.65 ± 0.19) × 100

11.43 (4.16 ± 0.14) × 100 11.80 (4.67 ± 0.97) × 100 11.43 (2.60 ± 0.14) × 100

11.63 (3.48 ± 0.13) × 100 12.00 (3.86 ± 0.80) × 100 11.63 (2.44 ± 0.13) × 100

11.82 (2.81 ± 0.11) × 100 12.19 (3.19 ± 0.68) × 100 11.82 (2.27 ± 0.11) × 100

12.02 (2.33 ± 0.10) × 100 12.39 (2.65 ± 0.57) × 100 12.02 (2.00 ± 0.11) × 100

11.39 (4.28 ± 0.08) × 100 12.58 (2.17 ± 0.46) × 100 12.21 (1.89 ± 0.09) × 100

11.59 (3.52 ± 0.07) × 100 12.78 (1.78 ± 0.38) × 100 12.41 (1.69 ± 0.09) × 100

11.78 (2.89 ± 0.06) × 100 12.97 (1.49 ± 0.32) × 100 12.61 (1.57 ± 0.08) × 100

11.98 (2.39 ± 0.05) × 100 13.17 (1.28 ± 0.28 × 100 12.80 (1.38 ± 0.07) × 100

12.17 (2.03 ± 0.05) × 100 13.36 (1.14 ± 0.25) × 100 13.00 (1.16 ± 0.06) × 100

12.37 (1.72 ± 0.04) × 100 13.56 (9.92 ± 2.18) × 10−1 13.19 (1.01 ± 0.06) × 100

12.56 (1.50 ± 0.04) × 100 13.76 (8.94 ± 1.85) × 10−1 13.39 (8.43 ± 0.50) × 10−1

12.76 (1.25 ± 0.03) × 100 13.95 (7.60 ± 1.66) × 10−1 13.58 (7.26 ± 0.43) × 10−1

12.95 (1.06 ± 0.27) × 100 14.15 (6.43 ± 1.37) × 10−1 13.78 (6.27 ± 0.36) × 10−1

13.15 (9.19 ± 0.24) × 10−1 14.34 (5.41 ± 1.17) × 10−1 13.97 (5.60 ± 0.32) × 10−1

13.34 (7.71 ± 0.21) × 10−1 14.54 (4.56 ± 1.11) × 10−1 14.17 (4.29 ± 0.29) × 10−1
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TABLE I. (Continued.)

Angle Cross section Angle Cross section Angle Cross section
(degree) (mb/sr) (degree) (mb/sr) (degree) (mb/sr)
c.m. Ground statea c.m. 4.44 MeVb c.m. Sum of 4 states

13.54 (6.11 ± 0.18) × 10−1 14.73 (3.62 ± 1.07) × 10−1 14.37 (3.66 ± 0.27) × 10−1

13.73 (4.73 ± 0.16) × 10−1 14.93 (2.51 ± 0.91) × 10−1 14.56 (3.09 ± 0.24) × 10−1

13.93 (3.95 ± 0.14) × 10−1 14.76 (2.38 ± 0.24) × 10−1

14.12 (3.02 ± 0.12) × 10−1 14.95 (1.77 ± 0.22) × 10−1

14.32 (2.31 ± 0.10) × 10−1

14.51 (1.70 ± 0.09) × 10−1

14.71 (1.44 ± 0.08) × 10−1

14.90 (1.10 ± 0.08) × 10−1

15.10 (7.38 ± 0.58) × 10−2

a10% error has to be added in common scale of the cross section. This error comes from inconsistencies of the cross sections obtained from the
different spectrometer settings.
b20% errors has to be added in common scale of the cross section due to the uncertainty of the estimation of simultaneous excitations of the
projectile and the target to 4.44 MeV state.
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