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Background: The effect of core excitations in transfer reactions of the form A(d, p) B has been reexamined by
some recent works by using the Faddeev—Alt—Grassberger—Sandhas reaction formalism. The effect was found to
affect significantly the calculated cross sections and to depend strongly and nonlinearly on the incident deuteron
energy.

Purpose: Our goal is to investigate these effects within a coupled-channel formulation of the scattering problem
which, in addition to being computationally less demanding than the Faddeev counterpart, may help shed some
light onto the physical interpretation of the cited effects.

Method: We use an extended version of the continuum-discretized coupled-channel (CDCC) method with
explicit inclusion of target excitations within a coupled-channel Born approximation (CDCC-BA) formulation
of the transfer transition amplitude. We compare the calculated transfer cross sections with those obtained with
an analogous calculation omitting the effect of target excitation. We consider also an adiabatic coupled-channel
(ACC) method. Our working example is the OBe(d, p)''Be reaction.

Results: We find that the two considered methods (CDCC-BA and ACC) reproduce fairly well the reported
energy dependence of the core excitation effect. The main deviation from the pure three-body model calculation
(i.e., omitting core excitations) is found to mostly originate from the destructive interference of the direct one-step
transfer and the two-step transfer following target excitation.

Conclusions: The proposed method; namely, the combination of the CDCC method and the CCBA formalism,
provides a useful and accurate tool to analyze transfer reactions including explicitly, when needed, the effect
of target excitations and projectile breakup. The method could be useful for other transfer reactions induced by

weakly bound projectiles, including halo nuclei.

DOI: 10.1103/PhysRevC.95.044612

I. INTRODUCTION

Transfer reactions have been used over the years as spectro-
scopic tools for extracting spin-parity assignments for nuclear
states, spectroscopic strengths of single-particle configura-
tions, and asymptotic normalization coefficients characterizing
the tail of overlap functions. Many analyses of transfer
reactions resort to the distorted-wave Born approximation
(DWBA) method, which can be regarded as the leading term
of the Born expansion in terms of a transition potential and
assumes that the reaction is dominated by the elastic channel.
The effect of nonelastic channels is assumed to be effectively
taken into account by the entrance channel optical model
potential describing elastic scattering. Furthermore, very often,
this optical potential, which would be angular-momentum
dependent and nonlocal, is represented through a simple
potential parametrization; for instance, of Woods—Saxon form,
containing central and possibly, spin-orbit terms. This ap-
proach was early recognized to have severe limitations. First,
it is not obvious that the effect of nonelastic channels on the
calculated transfer cross sections is properly taken into account
by the entrance channel optical potential. Furthermore, it is
well known that elastic scattering between heavy ions is mostly
sensitive to the nuclear surface, whereas the transfer process is
sensitive to small separations between the transferred particle
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and the respective cores to which it is initially or finally
bound. Thus, the approximated three-body wave function used
in DWBA, consisting of a product of the elastic-scattering
optical potential wave function times the projectile and target
ground-state wave functions, is not necessarily accurate for
the transfer process.

To overcome these shortcomings, appropriate extensions
and alternative models have been proposed and applied.
These extensions tend to emphasize specific aspects of the
reaction dynamics. For example, when collective excitations
are relevant, these can be included by means of a coupled-
channel description of the entrance and/or exit channels.
This is the coupled-channel Born approximation (CCBA)
[1-4]. For reactions induced by weakly bound nuclei, such
as deuterons, breakup channels are known to be important and
must therefore be taken into account. This has been done in
a number of ways. One of the most widespread approaches is
the adiabatic distorted wave approximation (ADWA) method
first proposed by Johnson and Soper [5] and later improved
by these and other authors [6,7]. The ADWA transition
amplitude is formally identical to that appearing in DWBA,
allowing its implementation in standard DWBA codes. The
adiabatic model frequently provides significant improvements
over DWBA for A(d, p)B reactions. A more elaborated way
of including the effect of the breakup channels is by means of
a continuum-discretized coupled-channel (CDCC) expansion
of the d + A three-body wave function [8-11].

For (d, p) reactions on deformed targets, one may anticipate
that both projectile breakup and target excitation can play arole
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and may require their explicit inclusion. This is not possible
in the standard formulations of the aforementioned CCBA
and ADWA methods, which tend to emphasize one of the
two mechanisms. An exception is provided by the Faddeev
formalism, which has been recently extended to include
collective excitations of the fragments (globally referred
to as core excitations) [12,13]. The core excitation effect
was found to affect the calculated transfer cross sections
beyond the expected scaling of the cross section due to the
corresponding spectroscopic factors. The problem has been
further investigated in a recent work [14] for the '°Be(d, p)!'Be
case, and the effect was found to strongly depend on the
deuteron incident energy as well as on the separation energy
of the residual nucleus.

Since the analysis of transfer reactions is usually performed
within the DWBA, ADWA, and extended versions of them
(such as CCBA), an important question that arises is whether
these effects found in Faddeev calculations can be also
described within the former approaches or are genuine to
the Faddeev formulation. The clarification of this question
is one of the purposes of the present work. For that, one
must first notice that, within a coupled-channel formulation
of the transfer process, one may distinguish several sources
of core excitation. First, the deformation on the n-A potential,
which gives rise to core-excited admixtures in the states of
the composite nucleus B. This is a structure effect, not related
to the reaction mechanism, and can be properly described
through spectroscopic factors obtained from a structure model
including core excitation. Second, excitations of A (B) taking
place in the entrance (exit) channel, which are associated with
the coupled-channel effects described above. Finally, the effect
of the deformation of the proton-target potential appearing in
the so-called remnant term of the DWBA or CCBA transition
operator. This latter effect was already studied within an
extended DWBA method [15] and found to be very small
for the '°Be(d, p)'' Be reaction. Thus, this term does not seem
to be responsible for the strong dynamical effects observed in
the Faddeev calculations.

In the present work, we aim at investigating the other two
effects within a unified framework. An essential ingredient
of the present formalism is the use of an extended CDCC
method, recently revisited in Ref. [16], which provides a
description of the d + A channel including simultaneously
the effect of deuteron breakup and target excitation. This
extended CDCC wave function is used within a CCBA-like
framework to calculate the A(d, p)B stripping cross sections.
The formalism will be applied to the reaction '°Be(d, p)'!Be,
at different deuteron energies, and the results compared with
those from Ref. [14].

The paper is organized as follows: In Sec. II we outline
the formal aspects of the proposed method. In Sec. III, the
formalism is applied to the reaction '°Be(d, p)'' Be, comparing
with the same observables studied in Ref. [14] with the
Faddeev formalism, and with emphasis on the role of target
excitations. In Sec. IV, these same observables are compared
with the much simpler adiabatic approximation. In Sec. V
we compare the three models; namely, Faddeev, CCBA, and
adiabatic, for the absolute transfer cross sections. Finally, in
Sec. VI we summarize the main results of this work.

PHYSICAL REVIEW C 95, 044612 (2017)

II. THEORETICAL FRAMEWORK

Using the post form representation, the transition matrix for
the process A(d, p)B can be written as

Tip = (X @5V + Upa — Upp | ¥57), (1)

where V,,, U,4 are the proton-neutron and proton-target
interactions, U, is an auxiliary (and, in principle, arbitrary)
potential for the p-B system, @ is the internal wave function
of the residual nucleus B, x;‘) is the wave function for the

outgoing proton, distorted by potential Uz, and lllc(f) is the
total wave function corresponding to an incident deuteron
beam of kinetic energy E, and binding energy ¢, and satisfies

[E +ie — HIWDF R.E) = iegy( e F, )

with E = E; — g4, € — 07, & the internal coordinates of A
and H the effective Hamiltonian

H = 7A—‘r + Vpn + HA(&) + fR + UpA(?pAvé) + UnA(;:nAaE)a
3)

with 7, and T% being the kinetic-energy operators associated
with the proton-neutron and deuteron-target relative motions.

Ignoring antisymmetrization for clarity of the notation,
the wave function ®p for a total angular momentum J and
projection M can be expanded in A states by using the usual
parentage decomposition

QM (Fan8) =Y [dy(Fan) ® O4E)],,. @

Llj

where [ is the spin of A, / and j are the orbital and total (f =
| + s) angular momentum of the valence particle, and ¢1_,~(7n 4)
is a function describing the neutron-core relative motion. The
normalization

S = f |1 (Fan)|*dFn ©))

can belt regarded as a spectroscopic factor for the configuration
{L,j}.

We note that our starting point differs from previous few-
body approaches [5,7,9,10] in which possible excitations of
the target nucleus are only effectively taken into account by
means of the effective potentials U,4 and U, 4. In the present
work, the effective Hamiltonian (3) retains the dependence on
the target degrees of freedom and hence its many-body nature.

To solve Eq. (2) we use the method recently followed in our
previous work [16], in which \IJ;” is approximated by a CDCC
wave function and, as such, expanded in a basis of projectile
(deuteron) and target (A) states. To make the calculation
numerically tractable, the deuteron continuum is truncated
in energy and angular momentum and further discretized in
energy bins and the target states are restricted to the ground
state and the first-excited state (assumed to have spins I = 0

!Strictly, the functions ¢;; and the spectroscopic factors S;; depend
in general on the core state / but, in the present case, this quantum
number can be readily inferred from the [, j values, so it is omitted
for brevity.
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and I = 2, respectively). For clarity, we use an abbreviated
notation omitting angular-momentum couplings. We refer the
reader to Ref. [16] for further details. This expansion reads

WO, R,E) = ga (DS (E)xS 0 (R)
+ Ga(PPLEASH(R)

+ 3 4L, O E KSR
+3 6L, OPAEOLT®).  (©)

where {¢>d,qb;m} denote the deuteron ground state and (dis-

cretized) continuum states, and { Xi(j) (ﬁ)} denote the functions

describing the projectile-target relative motion with the target
in either its ground state (/ = 0) or in the excited state (I = 2),
respectively. Therefore, the first two terms of Eq. (6) describe,
respectively, elastic and inelastic scattering with the deuteron
remaining in its ground state. The third and fourth terms
describe deuteron breakup with respect to the target in its
ground state or first-excited state, respectively. When inserted
into Eq. (1) this gives rise also to four terms,

7:z'p — 7:1’;1 4 /2:;;61 4 %eplbu 4 ﬂ;bu, (7)

which may be interpreted as (I) elastic transfer, i.e., direct
transfer from the deuteron ground state leaving the target in
its ground state, (I) inelastic transfer, i.e., target excitation
followed by one-neutron transfer, (II) elastic breakup transfer,
i.e., deuteron breakup followed by transfer, leaving the target
in the ground state, and (IV) inelastic breakup transfer,
i.e., deuteron breakup, accompanied by target excitation and
followed by neutron transfer.

Note that these four terms are to be added coherently,
giving rise to interference effects, as discussed below. Note
also that, in DWBA, only the first term (elastic transfer) is
explicitly taken into account. One of our goals here is to study
the contribution of the other terms. The resultant transition
amplitude obtained by inserting the CDCC expansion into
Eq. (1) will be referred to as the CDCC-BA approximation.
We note that a similar approach has been recently used to study
the (d, p) reaction on >*Cr [11].

III. RESULTS

In this section we apply the aforementioned formalism to
the '°Be(d, p)!'Be reaction at various deuteron energies. For
our calculations, we follow a prescription as close as possible
to that of Ref. [14], using the CH89 parametrization [17] for
the potentials U, g, and U 0., evaluated at a neutron energy
of E;/2 and a proton energy corresponding to the exit energy
of the proton.

In principle, the potential U, 4 appearing in the transition
operator of the transfer amplitude (1) should retain its depen-
dence on the £ coordinates and would be noncentral, thereby
permitting transitions between different core (A) states, not
present in the standard DWBA and CCBA implementations.
However, in our previous work [15] we studied the effect of
this core excitation mechanism for the '’Be(d, p)''Be reaction
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and it was found to be very small, so we will omit it in the
calculations presented in this work to avoid the formal and
numerical complications that it introduces.

The interaction V), has been chosen as a Gaussian shape
as in Ref. [18], while in Ref. [14], a CD Bonn potential [19]
is used. However, in Ref. [14] it is mentioned that the use of
the Gaussian potential leads to differences within 2%, so we
expect this difference in potentials to be of little relevance. The
interaction U ,u g, is obtained from the CH89 parametrization
at the exit energy of the proton, while in the Faddeev—
Alt—Grassberger—Sandhas (Faddeev-AGS) calculation all the
dynamics is generated from the two-body interactions. Finally,
we must indicate that in Ref. [14] a subtraction technique is
applied to the n/p 4 '°Be interactions to preserve the elastic
nucleon-core cross section [13]. Since this technique results in
nonlocal potentials, we have not applied it to our calculations,
where nonlocal potentials cannot be used.

The structure of the !'Be nucleus is treated within the
particle-rotor model of Ref. [20], which assumes a deformation
length of 8, = 1.664 fm for '’Be and includes the ground
state (0T) and first-excited state (27) of this nucleus. The
potential parameters are adjusted to give the experimental
neutron separation energy (S, = 0.5 MeV). In this model,
the '"Be ground-state wave function can be expressed as in
Eq. (4),

@3 Fa ) =[00.1 Gt ® $4©)]
623G ® DO,

+ [0 ) @ QAE)] 1y, B
with B and A denoting the B¢ and '°Be nuclei and ¢>lj(7,1 A)
denoting the overlap functions between them, with weights
S = 0.846, 0.130, and 0.023 for the sy, dsj», and d3;»
components, respectively.

It must be noted that, in our formalism, the potential for
n-1"Be is taken differently for the entrance and exit channels.
In the entrance channel, it is represented by a complex optical
potential (CH89) whereas in the exit channel it is represented
by a real potential used to generate the ''Be bound state.
By contrast, in the Faddeev formalism of Ref. [14], there is
no separation between entrance and exit Hamiltonians but this
interaction is taken to be / dependent; real for the partial waves
supporting the ' Be bound states, and complex (CH89) for the
other waves.

To compare with the results of Ref. [14] we have computed
the ratio R, defined as in that reference as

o k
1 (B )r ©
o \peak ’
SF (dd_Q)Eodef

R, =

where Sr is the spectroscopic factor associated with the
19Be(0) component in the structure model for >*Cr including
deformation (in our case, Sy = 50,%)’ while (do /dQ)Pe is

the differential cross section for '°Be(d, p)“Be transfer at its
peak for the calculations including deformation (as indicated
in the previous section) and excluding it, when corresponding.
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10Be(0)

10Be(2t) p+11Be(gs.)

FIG. 1. Pictorial representation of the '°Be(d,p)''Be reaction,
highlighting the different paths considered in this work. The initial
d + °Be system includes breakup of the deuteron and excitation
of 1°Be coupled to all orders. The transfer channel is then coupled
in first order to these channels, and four paths are distinguished: I
(elastic transfer), II (inelastic transfer), III (breakup transfer), and IV
(inelastic breakup transfer). See text for details.

In the absence of dynamical effects, R, is expected to be
unity.

The calculations have been performed discretizing the
deuteron continuum through a binning procedure [8] up to the
center-of-mass energy of the system, using 4—6 bins evenly
spaced in momentum space. Breakup states with / = 0,2 have
been considered, since the inclusion of [ = 1,3 led only to a
modest modification of the cross sections in test calculations
at E; = 20 and 60 MeV.

It has been found that the R, factors are rather insensitive to
the discretization used, as long as the same one is used in both
the calculation including deformation and that excluding it. We
also found that the R, factors achieved convergence within a
few percent by using broader meshes and lower maximum
deuteron excitation energies than those required for the actual
cross sections to converge.

In Fig. 2, the factors R, are presented as a function of the
deuteron laboratory energy. The green circles correspond to
the values obtained in Ref. [14] from the Faddeev calculations.
Three CDCC-BA calculations are presented. As indicated in
the previous section, in all of them all d + '°Be states are
coupled to all orders (a scheme of the process is depicted
in Fig. 1), and the difference between them lies on the
couplings included for the transfer process itself. The black
circles (calculation 1) correspond to the full calculation,
which includes the four terms in the transition matrix (7).
This calculation reproduces rather well the Faddeev results,
particularly at the lower deuteron energies, having a slight
underestimation at the larger deuteron energies.

As stated in the introduction, one of goals of this work is
to shed light on the origin of the deviation from unity of the
R, factor. For that, we have performed further calculations, in
which some of the transfer couplings are selectively omitted.
The results of these calculations are also shown in Fig. 2. The
red diamonds (calculation 2) correspond to the calculation
excluding transfer from states where both deuteron and '°Be
are excited (path IV in Fig. 1), so that the transition matrix for
the transfer process is

T =To + T + T (10)
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FIG. 2. R, factors (see text) for different deuteron energies.
The green circles correspond to the results from Faddeev-AGS
calculations [14]. In black circles the factors for the full CDCC-BA
calculations are presented, while the red diamonds correspond to
calculations where 7;;"“ (path IV from Fig. 1) is blocked and the blue
squares correspond to calculations where 7:};,‘“' and ’Z:};b“ are blocked
(Il and IV from Fig. 1). See text for details.

This calculation gives similar values of R, atthe lower incident
energies, and a moderate increase of R, at the largest energies
when compared with the full calculation, although a significant
reduction with respect to unity persists. This clearly indicates
that the transfer via the p 4+ n + '°Be* channels, while not
completely negligible, is not responsible for the behavior of
the R, factor.

Finally, the blue squares (calculation 3) correspond to a
calculation in which all states with '°Be in its excited state are
excluded from “feeding” the transfer channel (i.e., excluding
paths IT and IV in Fig. 1), leading to the transition matrix

Ty =T + T3 an

This calculation deviates significantly from the previous ones,
giving R, factors close to 1, specially at higher energies. This
may seem trivial, since blocking transfer from states with '°Be
in its excited state would be expected to give the same cross
section as the calculation without deformation. However it
must be noted that \I/L(f) is different in both calculations, since it
includes coupling to the excited state of '°Be in the calculation
with deformation but it excludes it in the calculation without
deformation. Therefore, the factor R, in calculation 3 would
be expected to be sensitive to the modifications in \IJ[(f) due to
deformation, at least in the region that is relevant for transfer.
The fact that it is close to 1 suggests that the effects of
deformation on it are small in this region. This interpretation
seems to be consistent with the fact that R, for this calculation
get closer to unity at higher energy, where coupling effects in
\IJC(;F) are expected to be smaller.

To further clarify the effects of inelastic and breakup
channels on transfer, we show in Fig. 3 the angular distribution
of the transfer cross section at two deuteron energies, E; =
20 MeV (top) and 60 MeV (bottom). In each panel, we show
the full calculation (thick solid black line) along with the
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[Rap— < d* 10 . . M
0 10° I d*+ ! OBe(g'S‘) FIG. 4. Ratio between cross sections at the peak as a function of
5 _7 IVidt b Ber the deuteron incident energy. For each energy the ratio is between the
é calculation where one of the transfer paths is selected (as in Fig. 3)
% and the full calculation. As can be seen, path II, corresponding to the
B inelastic excitation of '°Be, gains importance with increasing energy
= so that at the higher energies, where the R, factors are smaller, it is of
the same magnitude as path III, corresponding to deuteron breakup.

FIG. 3. Differential transfer cross section for E; =20 MeV
(top) and 60 MeV (bottom). All results correspond to full CDCC
calculations for the elastic channel, while the transfer channel has
been calculated through the Born approximation from all paths, and
paths I, II, III, and IV (see Fig. 1) for the black solid, red solid, blue
solid, red dashed, and blue dashed lines, respectively (see text).

calculations keeping only one of the terms in Eq. (7). The red
solid line corresponds to Td‘; (path I in Fig. 1), the blue solid

only to ’Tdi;e' (II), the red dashed only to ’]:fplb“ (III), and the blue

dashed only to Tdi;b“ (IV). As before, for the d + '°Be partition
all channels are coupled to all orders, while the transfer channel
is coupled to first order. It can be seen that for both energies
the main contributor is the elastic transfer 7:5}, while, at small
angles, for E; = 20 MeV the second main contributor is the
breakup of the deuteron, 7:;;“, whereas at 60 MeV it is the

excitation of '“Be, ’Z:};el. This seems to agree with the fact that

R, is smaller at higher energies, since a greater effect of '’Be
excitation should lead to a reduced R,.

To test this relation between R, and the importance of the
inelastic path, we plotin Fig. 4, as a function of incident energy,
the ratio of the cross section at the peak for the calculation
where one of the transfer paths was selected divided by the
cross section at the peak for the full calculation, containing
all transfer paths. As can be seen in the figure, path II,
corresponding to ’Z:};el gains relevance as energy increases,
and we note that the energies where its importance is higher
are those with lower R, so a relation can be established, albeit
qualitative, between the importance of the inelastic path and
the value of R,.

At both energies shown in Fig. 3, simultaneous excitation
(i.e., deuteron breakup concurrent with target excitation),
7;}[‘}“1, is the least important component. It must be noted
nevertheless that, due to the interference of the different
transfer paths, the relevance of each channel cannot be directly
inferred from the cross section shown in Fig. 3. If this were
the case, the small cross section of the concurrent excitation
’]2“"“ would lead to a R, factor for calculation 2 much closer
to that of the full calculation than what is actually obtained.
Therefore we may conclude that interference between the
different transfer paths is of relevance for these reduction
factors.

The fact that calculation 3 gives reduction factors R,
so close to unity suggests that the main responsible for
the reduction in the full calculation (calculation 1) is the
interference between the transfer via 10Be(0+), that is, ’]:f; and

’]:fp"’“, and that via the '°Be(21) components, ’]:;;el and ’Z:ii;b“. To

test this conclusion, we have reversed the sign of the 10Be(21)
components of the !'Be ground-state wave function (8) and
computed the reduction factors once again. The result of this
calculation is shown in Fig. 5 by the black solid triangles,
along with the result of the original full calculation, in black
solid circles, and that of calculation 3, which corresponds to
neglecting the '°Be(2*) components, in black solid squares.
We find that reversing the sign of the 'Be(2*) components
gives R, greater than unity, which show a reversed tendency
from that obtained for the original calculation. This confirms
that the origin of the reduction of the cross section lies in the
destructive interference of the transfer to components of !'Be
with '°Be in its ground or excited states, and that their relative
sign is critical to describe its behavior.

The fact that both Faddeev and CDCC-BA calculations
give similar results for R, suggests that these factors are not
very sensitive to the formalism used for the description of
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FIG. 5. R, ratio, as defined in Eq. (9). The black solid symbols
correspond to calculations using a CDCC-BA formalism while the
red empty symbols are obtained from a coupled-channel adiabatic
calculation (ACC). The circles, squares, and triangles refer to the full
calculations, the calculations where the transfer from '°Be(2%) has
been blocked, and the calculations where the sign of the overlaps
involving 1°Be(2") has been reversed, respectively (see text).

the reaction. Therefore, in the following section we apply a
simpler adiabatic formalism to the same reaction and analyze
the obtained reduction factors R,.

IV. COMPARISON WITH ADIABATIC MODEL

The results of the preceding section indicate that the
departure of the calculations with deformation from those
without it is mainly due to the inelastic transfer mechanism,
i.e., the two-step transfer taking place via the target excited
state (path II in Fig. 1). This does not mean that breakup
channels are not important, since they are essential to give
a correct description of the elastic scattering. This result
suggests that, insofar as the transfer cross section is concerned,
one might resort to a simpler procedure in which target
excitation is treated explicitly, whereas breakup channels are
accounted for effectively. This can be suitably done within the
adiabatic approximation. Although the original formulation of
this method [5-7], usually referred to as adiabatic distorted
wave approximation (ADWA), does not include explicitly
the effect of target excitation, the model can be generalized
to accommodate this effect. As in the extended CDCC
method, the extended adiabatic model can be derived from
the generalized Hamiltonian (3) using the same procedure of
Refs. [7,21]. The three-body wave function is then expanded
in a Weinberg basis [7,21] whose leading term gives rise to the
following approximate three-body wave function:

WP, R ) = ga([ DL ExeP(R) + P2 xP(R)],  (12)

where { X(?D(I%), XfD(ﬁ)} are solutions of a set of coupled
equations with a deformed adiabatic deuteron-target potential.
This has been done in the finite-range approximation [22] but
we resort here to the simpler zero-range approximation. In this
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limit, the deformed adiabatic potential results

dV{P(R)

UAP(R,E) = VIP(R) — 8,Y5.0(E)Yy.0(R) s

13)
with
VaP(R) = Upo(R) + Uy, (R), (14)

which is nothing but the generalization of the Johnson and
Soper prescription [5] for deformed nucleon-nucleus poten-
tials and where U,(;)(n) 4 indicate the central part of the proton
(neutron)-target potential. The method has been referred to
before as adiabatic coupled-channel (ACC) method [22].

‘We have computed the quantity R,, starting from the defini-
tion (9), but using now for the numerator and denominator the
ACC and ADWA methods, respectively. The results are shown
in Fig. 5 (open circles). The agreement with the CDCC-BA
results (solid circles) is remarkably good, confirming that core
excitation effects are well accounted for by the much simpler
adiabatic model. To further delineate the role played by the
target excited state in the stripping process, we include also the
calculations in which the transfer via the excited state (path II)
is omitted and those in which the sign of the / = 2 components
[qbz’% and ¢, 5 in Eq. (8)] are reversed (open squares and
open triangles, respectively). Again, the agreement with the
CDCC-BA results (solid symbols) is very good.

V. COMPARISON OF ABSOLUTE CROSS SECTIONS

In the previous sections, we have found that both the CDCC-
BA and ACC methods successfully describe the behavior
of the R, ratio as a function of the deuteron energy, as
compared to the more sophisticated Faddeev-AGS calcula-
tions. Despite these encouraging results, previous benchmark
calculations have evidenced limitations of the CDCC and
adiabatic approaches in the reproduction of the Faddeev
absolute cross sections [18,23]. In particular, for transfer
reactions, it was found that the agreement tended to deteriorate
with increasing incident energies [18]. We compared these
three reaction models in presence of core excitations. This
comparison is shown in Fig. 6 for two deuteron energies, E; =
20 MeV (upper panel) and E; = 80 MeV (bottom panel).
At E; =20 MeV, both the CDCC-BA and ACC formalisms
reproduce very well the Faddeev result, with the CDCC-BA
model providing a somewhat better agreement close to zero
degrees. At E; = 80 MeV, the agreement is deteriorated, with
both the CDCC-BA and ACC overestimating the small-angle
cross sections. Furthermore, the ACC curve underpredicts the
maximum at 30°. Interestingly, these results are qualitatively
similar to those found in Ref. [18] for the undeformed case. In
particular, the agreement between the formalisms at smaller
deuteron energies is to be highlighted. In Ref. [24] it was found
that a similar disagreement between CDCC and Faddeev cal-
culations for breakup observables was substantially improved
when including closed channels in the CDCC calculation. Due
to computational difficulties, a similar study was not possible
in this work. However, since our main quantities of interest,
the reduction factors R,, give a good agreement for the three
considered formalisms and show reasonable convergence in
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FIG. 6. Differential cross-section angular distributions at E; =
20 MeV (top) and E,; = 80 MeV (bottom) for the '°Be(d, p)''Be
reaction calculated with the Faddeev-AGS [14], CDCC-BA and
ADWA formalisms.

the calculations performed, we consider these considerations
to be beyond the scope of this work.

VI. SUMMARY AND CONCLUSIONS

To summarize, we studied the role of target excitations in
A(d, p)B reactions, taking as a test case the 10Be(al,p)“Be
reaction. For that, we considered two different reaction
formalisms which incorporate the effect of deuteron breakup
and target excitation.

The first method (CDCC-BA), which has been devel-
oped in this work, describes the d + A system by using
a generalized CDCC wave function, which treats deuteron
breakup and target excitation to all orders and transfer in Born
approximation. The model includes, in addition to the direct

PHYSICAL REVIEW C 95, 044612 (2017)

transfer coming directly from the projectile and target ground
states, the multistep transfer through the deuteron continuum
states as well as from the target excited state, so it permits
the study of the role played by each of these paths in the
calculated stripping cross sections. The second method (ACC)
is a coupled-channel version of the zero-range adiabatic model
of Johnson and Soper [5]. It considers also explicitly the
transfer via the target ground and excited states, but it treats
the effect of breakup only effectively, within an adiabatic
approximation.

Following a previous work [14], we studied the ratio (R,)
of the calculated transfer cross sections evaluated with and
without deformation at the transfer peak. We found that both
the CDCC-BA and ACC methods are able to reproduce very
well this ratio and its energy dependence, when compared
with Faddeev-AGS calculations. The deviation of R, from
unity is found to stem mostly from the interference of the
elastic and inelastic transfer amplitudes. Moreover, this ratio
is weakly affected by the transfer via the deuteron breakup
states, so that their effect seems to be rather well simulated
by the adiabatic three-body wave function. At larger angles
and for high incident energies, the effect of breakup channels
becomes more significant.

The comparison of the absolute cross sections is qualita-
tively similar to that previously observed in previous bench-
mark calculations without core excitation; namely, at small
deuteron energies, both the CDCC-BA and ACC methods
reproduce rather well the Faddeev results, but the agreement
worsens at incident energies of several tens of MeV and above.
Theoretical works oriented to better understand the origin of
these limitations and envisage possible improvements, both
with and without core excitation effects, are of major relevance
to reliably apply these methods to the analysis of transfer
reactions.
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