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Extracting three-body breakup observables from continuum-discretized coupled-channels
calculations with core excitations
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Background: Core-excitation effects in the scattering of two-body halo nuclei have been investigated in previous
works. In particular, these effects have been found to affect in a significant way the breakup cross sections of
neutron-halo nuclei with a deformed core. To account for these effects, appropriate extensions of the continuum-
discretized coupled-channels (CDCC) method have been recently proposed.
Purpose: We aim to extend these studies to the case of breakup reactions measured under complete kinematics
or semi-inclusive reactions in which only the angular or energy distribution of one of the outgoing fragments is
measured.
Method: We use the standard CDCC method as well as its extended version with core excitations, assuming a
pseudostate basis for describing the projectile states. Two- and three-body observables are computed by projecting
the discrete two-body breakup amplitudes, obtained within these reaction frameworks, onto two-body scattering
states with definite relative momentum of the outgoing fragments and a definite state of the core nucleus.
Results: Our working example is the one-neutron halo 11Be. Breakup reactions on protons and 64Zn targets are
studied at 63.7 MeV/nucleon and 28.7 MeV, respectively. These energies, for which experimental data exist,
and the targets provide two different scenarios where the angular and energy distributions of the fragments are
computed. The importance of core dynamical effects is also compared for both cases.
Conclusions: The presented method provides a tool to compute double and triple differential cross sections
for outgoing fragments following the breakup of a two-body projectile and might be useful to analyze breakup
reactions with other deformed weakly bound nuclei, for which core excitations are expected to play a role. We
have found that, while dynamical core excitations are important for the proton target at intermediate energies,
they are very small for the Zn target at energies around the Coulomb barrier.
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I. INTRODUCTION

Recent experimental activities with nuclei in the proximity
of the driplines have increased the interest in this region of
the nuclear landscape. In particular, special attention has been
paid to halo nuclei, spatial extended quantum systems with
one or two loosely bound valence particles, for example, 11Be
or 11Li. Breakup reactions have shown to be a useful tool
for extracting information from these exotic structures [1].
Reliable and well-understood few-body reaction frameworks
to describe breakup reactions of exotic nuclei, such as haloes,
are therefore needed. Particularly, it is timely to estimate what
the relevant excitation mechanisms are for the reaction. In
the case of elastic breakup, which we address here, several
few-body formalisms have been developed to extract the
corresponding cross sections: continuum-discretized coupled-
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channels (CDCC) method [2,3], the adiabatic approximation
[4,5], the Alt, Grassberger, and Sandhas (AGS) version of
the Faddeev equations [6,7], and a variety of semiclassical
approximations [8–15]. The CDCC method is based on an
explicit discretization of all channels in the continuum and
requires the solution of an extensive set of coupling equations.
It has been applied at both low and intermediate energies.

The standard formulation of these approaches ignores the
possible excitations of the constituent fragments: The states
of the few-body system are usually described by pure single-
particle configurations, ignoring the admixtures of different
core states in the wave functions of the projectile. These
admixtures are known to be important, particularly in the case
of well-deformed nuclei, such as the 11Be halo nucleus [16]. In
addition, for such a two-body weakly bound system, dynamic
core-excitation effects in breakup have been recently studied
with an extension of the distorted-wave Born approximation
(DWBA) formalism within a no-recoil approximation [17–20]
and found to be important. This method is based in the
Born approximation and ignores higher-order effects (such
as continuum-continuum couplings). A recent attempt to
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incorporate core excitation effects within a coupled-channels
calculation was done in Ref. [21], using an extended version
of the CDCC formalism [22], hereafter referred to as XCDCC.
The different calculations have shown that, for light targets,
dynamic core excitations give rise to sizable changes in the
magnitude of the breakup cross sections. Additionally, these
excitations have been found to be dominant in the resonant
breakup of 19C on a proton target [23]. These effects have also
been studied within the Faddeev-AGS approach in the analysis
of breakup and transfer reactions [17,24,25].

Within the CDCC and XCDCC reaction formalisms, the
breakup is treated as an excitation of the projectile to the
continuum, so the theoretical cross sections are described
in terms of the center-of-mass (c.m.) scattering angle of
the projectile and the relative energy of the constituents,
using two-body kinematics. Because of this, experimental
data should be transformed to the c.m. frame for comparison,
but this process is ambiguous in the case of inclusive data.
This is a common situation, for example, in the case of
reactions involving neutron-halo nuclei in which very often
only the charged fragments are detected. Furthermore, even
in exclusive breakup experiments under complete kinematics,
in which this transformation is feasible, the possibility of
comparing the calculated and experimental cross sections for
different configurations (angular and energy) of the outgoing
fragments provides a much deeper insight of the underlying
processes, as demonstrated by previous analyses performed
by exclusive breakup measurements with stable nuclei [26].
The continuous developments at the radioactive beam facilities
opens the exciting possibility of extending these studies to
unstable nuclei. This will require improvements and extensions
of existing formalisms to provide these observables.

In the case of the CDCC framework, fivefold fully exclusive
cross sections were already derived in Ref. [27]. In the present
work we extend this framework to the XCDCC formalism
and we provide more insight into the contribution of core
admixtures (CAs) and dynamic core excitation (DCE) in
the collision process. A proper inclusion of core-excitation
effects in the description of kinematically fully exclusive
observables in the laboratory frame is the primary motivation
of this paper with the aim of pinning down the effect of
this degree of freedom in angular and energy distributions.
Additionally, this makes it possible to compute breakup
observables for specific states of the core nucleus, which could
be of utility in experiments using γ -ray coincidences. The
calculations are carried out within the combined XCDCC plus
the transformed harmonic oscillator (THO) framework [21] for
breakup reactions of 11Be on protons and 64Zn targets with full
three-body kinematics. The formalism is applied to investigate
the angular and energy distributions of the 10Be fragments
resulting from the breakup, for which new measurements have
been made [28].

The paper is organized as follows. In Sec. II we briefly
discuss the structure approach to describe two-body loosely
bound systems with core excitation. In Sec. III, the expression
of the scattering wave functions is derived. The three-body
breakup amplitudes are shown in Sec. IV, and the related most
exclusive observables are presented in Sec. V. In Sec. VI,
we show some working examples. We study 11Be + p and

11Be + 64Zn reactions at low energies, and we calculate the
angular and energy distributions of the 10Be fragments after
the breakup. In Sec. VII, the main results and remarks of this
work are collected.

II. THE STRUCTURE FORMALISM

In this paper, the composite projectile is assumed to be well
described by a valence nucleon coupled to a core nucleus, and
the projectile states are described in the weak-coupling limit.
Thus, these states are expanded as a superposition of products
of single-particle configurations and core states. The energies
and wave functions of the projectile are calculated using the
pseudostate (PS) method [29], that is, diagonalizing the model
Hamiltonian in a basis of square-integrable functions. For the
relative motion between the valence particle and the core, we
use a recently proposed extension of the analytical transformed
harmonic oscillator (THO) basis [16], which incorporates
the possible excitations of the constituents of the composite
system. This approach differs from the binning procedure
[27], where the continuum spectrum is represented by a set
of wave packets, constructed as a superposition of scattering
states calculated by direct integration of the multichannel
Schrödinger equation. The main advantage of the PS method
relies on the fact that it provides a suitable representation of the
continuum spectrum with a reduced number of functions and,
as we will see below, it is particularly convenient to describe
narrow resonances.

We briefly review the features of the PS basis used in
this work to describe the states of the two-body composite
projectile. The full Hamiltonian, under the weak-coupling
limit, would be written as

H = T̂r + Vcv(r,ξ ) + Hcore(ξ ), (1)

where T̂r (kinetic energy) and Vcv(r,ξ ) (effective potential)
describe the relative motion between the core and the valence
while Hcore(ξ ) is the intrinsic Hamiltonian of the core,
whose internal degrees of freedom are described through the
coordinate ξ . The eigenstates of Hcore(ξ ) corresponding to
energies εI (defined by the intrinsic spin of the core, I ) will
be denoted by φI and, additional quantum numbers, required
to fully specify the core states, will be given below.

The core-valence interaction is assumed to contain a
noncentral part, responsible for the CAs in the projectile states.
In general, this potential can be expanded into multipoles:

Vcv(r,ξ ) =
∑
λμ

Vλμ(r,ξ )Yλμ(r̂). (2)

In this work the projectile is treated within the particle-rotor
model [30] with a permanent core deformation (assumed to be
axially symmetric). Thus, in the body-fixed frame, the surface
radius is parametrized in terms of the deformation parameter,
β2, as R(ξ̂ ) = R0[1 + β2 Y20(ξ̂ )], with R0 an average radius.
The full valence-core interaction is obtained by deforming a
central potential V (0)

cv (r) as

Vcv(r,ξ̂ ) = V (0)
cv [r − δ2Y20(ξ̂ )], (3)

where δ2 = β2R0 is the so-called deformation length. The
transformation to the space-fixed reference frame is made
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through the rotation matrices Dλ
μ0(α,β,γ ) (depending on the

Euler angles {α,β,γ }). After expanding in spherical harmonics
(see, e.g., Ref. [31]), the potential in Eq. (3) reads

Vcv(r,ξ̂ ) =
√

4π
∑
λμ

Vλ
cv(r)Dλ

μ0(α,β,γ )Yλμ(r̂), (4)

with the radial form factors (u = cos θ ′):

Vλ
cv(r) =

√
2λ + 1

2

∫ 1

−1
Vcv[r − δ2Y20(θ ′,0)]Pλ(u)du. (5)

In comparison with Eq. (2) we have for a particle-rotor model:

V rotor
λμ (r,ξ̂ ) =

√
4πVλ

cv(r)Dλ
μ0(α,β,γ ). (6)

The eigenstates of the Hamiltonian (1) will be a superpo-
sition of several valence configurations and core states α =
{�,s,j,I }, with �� (valence-core orbital angular momentum) and
�s (spin of the valence) both coupled to �j (total valence particle
angular momentum), for a given total angular momentum, J ,
projection, M , and energy, ε; i.e.,

ε,J,M (r,ξ ) =
nα∑
α

RJ
ε,α(r)

r
�α,J,M (r̂ ,ξv,ξc), (7)

where nα is the number of such channel configurations and the
set of functions

�α,J,M (r̂ ,ξv,ξc) ≡ [Y�sj (r̂) ⊗ φI (ξ )]JM (8)

is the so-called spin-orbit basis.
The functions RJ

ε,α(r) are here obtained by diagonalizing
the Hamiltonian in a basis of square-integrable states, such as
the THO basis. For each channel α, we consider a set of N
functions RTHO

n,α (r) (with n = 1, . . . ,N). The eigenvectors of
the Hamiltonian will be of the form


(N)
i,J,M (r,ξ ) =

nα∑
α

N∑
n=1

ci
n,α,J

RTHO
n,α (r)

r
�α,J,M (r̂ ,ξv,ξc), (9)

where i is an index that identifies each eigenstate and ci
n,α,J

are the corresponding expansion coefficients in the truncated
basis, obtained by diagonalization of the full Hamiltonian (1).

For numerical applications, the sum over the index of the
THO basis can be actually performed to get


(N)
i,J,M (r,ξv,ξc) =

∑
α

gJ
i,α(r)

r
�α,J,M (r̂ ,ξv,ξc), (10)

where the radial function is

gJ
i,α(r) =

N∑
n=1

ci
n,α,J RTHO

n,α (r). (11)

The negative eigenvalues of the Hamiltonian (1) are
identified with the energies of bound states, whereas the
positive ones correspond to a discrete representation of the
continuum spectrum.

III. SCATTERING WAVE FUNCTIONS

For the calculation of the three-body scattering observables
(see Sec. IV) we need also the exact scattering states of

the valence + core system for a given asymptotic relative
wave vector kI , and given spins of the core (I ) and valence
particle (s), as well as their respective projections (μ and
σ , respectively), which will be denoted as φ

(+)
kI ;Iμ;sσ (r,ξv,ξc).

These states can be written as a linear combination of the
continuum states with good angular momentum J,M , which
are of the form


(+)
α,J,M (kI ,r,ξv,ξc) =

∑
α′

f J
α:α′ (kI ,r)

r
�α′,J,M (r̂ ,ξv,ξc), (12)

where the radial functions f J
α:α′ (kI ,r) are the solutions of the

coupled differential equations,
[
Eα′ − Tr�′ − V J

α′:α′
]
f J

α:α′ (kI ,r) =
∑

α′′ �=α′
V J

α′:α′′f
J
α:α′′ (kI ,r),

(13)

where Eα′ = Eα − εI ′ + εI , as a consequence of the energy
conservation in the nucleon-core system when the latter is in
the state I or I ′, Tr�′ is the relative kinetic energy operator, and
V J

α′:α′′ are the coupling potentials given by

V J
α′:α′′ (r) = 〈α′JM|Vvc|α′′JM〉, (14)

with |α′JM〉 denoting the spin-basis defined in Eq. (8).
These radial functions behave asymptotically as a plane

wave in a given incoming channel α and outgoing waves in all
channels, i.e.,

f J
α:α′ (kI ,r) → eiσ�

[
F�(kI r)δ�,�′ + T J

α,α′H
(+)
�′ (kI r)

]
, (15)

where σ� are the Coulomb phase shifts, F�(kI r) the regular
Coulomb function, and T J

α,α′ the T matrix, which is directly
related to the S matrix according to

SJ
α,α′ = δα,α′ + 2iT J

α,α′ . (16)

In terms of these good-angular momentum states, the scatter-
ing states result (see Appendix A),

φ
(+)
kI ;Iμ;sσ (r,ξv,ξc)

= 4π

kI r

∑
�,j,J,M

i�Y ∗
�m(k̂I )〈�msσ |jmj 〉

× 〈jmjIμ|JM〉
∑
α′

f J
α:α′ (kI ,r)�α′,J,M (r̂ ,ξv,ξc), (17)

where mj = M − μ and m = mj − σ .

IV. BREAKUP AMPLITUDES

The scattering problem can be described by means of
the breakup transition amplitude T

Is;J0
μσ ;M0

(kI ,K ) connecting an
initial state |J0M0〉 with a three-body final state composed of
the target (assumed to be structureless), the valence particle
and the core, whose motion is described in terms of the relative
momentum, kI , and a c.m. wave vector, K , which differs from
the initial momentum, K 0, in |J0M0〉.

We proceed to relate T
Is;J0
μσ ;M0

with the discrete XCDCC

two-body inelastic amplitudes T
i,J0,J

′
M0,M ′ (θi,Ki), obtained after

solving the coupled equations in the XCDCC method and
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evaluated on the discrete values of K , given by the {K i} =
{θi,Ki} grid. To obtain this relationship, we replace the exact
three-body wave function with its XCDCC approximation in
the exact (prior form) breakup transition amplitude. That is,
we take J0,M0 (K 0) � XCD

J0,M0
(K 0) and therefore we can write

T
Is;J0
μσ ;M0

(kI ,K ) � 〈
φ

(−)
kI ;Iμ;sσ eiK·R∣∣U ∣∣XCD

J0,M0
(K 0)

〉
, (18)

with the interaction U between the projectile and the target
described by a complex potential expressed as

U = Uct(r,R,ξ ) + Uvt(r,R), (19)

where, in addition to the projectile coordinates r and ξ , we
have the relative coordinate R between the projectile center of
mass and the target. Furthermore, the core-target interaction
(Uct) contains a noncentral part, responsible for the dynamic
core excitation and deexcitation mechanism, while the valence
particle-target interaction (Uvt) is assumed to be central. The
scattering wave functions φ

(−)
kI ;Iμ;sσ are just the time reversal

of those defined in Eq. (17) and whose explicit expression is
given in Appendix A.

Next, assuming the validity of the completeness relation in
the truncated basis, we get

T
Is;J0
μσ ;M0

(kI ,K ) �
∑

i,J ′,M ′

〈
φ

(−)
kI ;Iμ;sσ

∣∣(N)
i,J ′,M ′

〉

× 〈


(N)
i,J ′,M ′e

iK·R∣∣U ∣∣XCD
J0,M0

(K 0)
〉

=
∑

i,J ′,M ′

〈
φ

(−)
kI ;Iμ;sσ

∣∣(N)
i,J ′,M ′

〉
T

i,J0,J
′

M0,M ′ (K ), (20)

where the transition matrix elements T
i,J0,J

′
M0,M ′ (K ) are to be

interpolated from the discrete ones T
i,J0,J

′
M0,M ′ (θi,Ki). The interpo-

lation method follows closely the procedure of Ref. [27], with
the difference that in this reference the continuum states of the
projectile are described through a set of single-channel bins.

The overlaps between the final scattering states and the
pseudostates are explicitly given in Appendix B, so Eq. (20)
yields a transition amplitude,

T
Is;J0
μσ ;M0

(kI ,K ) � 4π

kI

∑
J ′

∑
�,m,j

(−i)�Y�m(k̂I )〈�msσ |jmj 〉

× 〈jmjIμ|J ′M ′〉
∑

i

Gi,J ′
α (kI )T i,J0,J

′
M0,M ′ (K ),

(21)

where

Gi,J ′
α (kI ) =

∑
α′

∫
f J

α:α′ (kI ,r)gJ
i,α′(r)dr (22)

are the overlaps between the radial parts of the scattering-state
and pseudostate wave functions. Notice that these overlaps
are not analytical and they must be calculated at the energies
given by the relative momentum kI . In practice, we compute
the term involving the summation over i in the right-hand side
of Eq. (21) on a uniform momentum mesh, and interpolate this
sum at the required kI values when combining them with the
scattering amplitudes. In fact, Eq. (20) is formally equivalent
to the relation appearing in Ref. [27], and the main difference

concerns the calculation of the overlaps. Moreover, the above
expressions can be used within the standard CDCC method
(i.e., without core excitations), in which case the core internal
degrees of freedom (ξ ) are omitted.

V. TWO- AND THREE-BODY OBSERVABLES

The transition amplitudes in Eq. (21), T
Is;J0
μσ ;M0

(kI ,K ) (with
the relative momentum kI and the c.m. wave vector K ), contain
the dynamics of the process for the coordinates describing the
relative and center-of-mass motion of the core and the valence
particle. From these amplitudes we can derive the two-body
observables for a fixed spin of the core, I , the solid angles
describing the orientations of kI (�k) and K (�K ), as well
as the relative energy between the valence and the core, Erel.
These observables factorize into the transition matrix elements
and a kinematical factor,

d3σ (I )

d�kd�KdErel
= μcvkI

(2π )5h̄6

K

K0

μ2
pt

2J0 + 1

×
∑

μ,σ,M0

∣∣T Is;J0
μσ ;M0

(kI ,K )
∣∣2

, (23)

where μcv and μpt are the valence-core and projectile-target
reduced masses. The integration over the angular part of
kI can be analytically done giving rise to the following
expression for the two-body relative energy-angular cross
section distributions:

d2σ (I )

d�KdErel
= 1

2π3h̄6

K

K0

μ2
ptμcv

2J0 + 1

1

kI

×
∑

J ′,M ′,M0

∑
�,j

∣∣∣∣
∑

i

Gi,J ′
α (kI )T i,J0,J

′
M0,M ′ (K )

∣∣∣∣
2

.

(24)

This expression provides angular and energy distributions
as a function of the continuous relative energy Erel from
the discrete (pseudostate) amplitudes. As shown in the next
section, this representation is particularly useful to describe
narrow resonances in the continuum even with a small number
of pseudostates.

The three-body observables, assuming the energy of the
core is measured, are given by [27]

d3σ (I )

d�cd�vdEc

= 2πμpt

h̄2K0

1

2J0 + 1

×
∑

μ,σ,M0

∣∣T Is;J0
μσ ;M0

(kI ,K )
∣∣2

ρ(�c,�v,Ec),

(25)

where the phase space term ρ(�c,�v,Ec), i.e., the number of
states per unit core energy interval at solid angles �c and �v ,
takes the form [32]

ρ(�c,�v,Ec)

= mcmvh̄kch̄kv

(2πh̄)6

[
mt

mv + mt + mv(kc − K tot) · kv/k2
v

]
.

(26)
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Here, the particle masses are given by mc (core), mv

(valence), and mt (target), while h̄kc and h̄kv are the core
and valence particle momenta in the final state. The total
momentum of the system corresponds to h̄K tot and the
connection with the momenta in Eq. (21) is made through

K = kc + kv − mp

Mtot
K tot, kI = mc

mp

kv − mv

mp

kc, (27)

with mp = mc + mv and Mtot = mc + mv + mt the total
masses of the projectile and the three-body system,
respectively.

VI. APPLICATION TO 11Be REACTIONS

As an illustration of the formalism we evaluate several
angular and energy distributions after a proper integration
of the two- and three-body observables presented in the
preceding section. In particular, we consider the scattering
of the halo nucleus 11Be on 1H and 64Zn targets, comparing
with data when available. The bound and unbound states of the
11Be nucleus are known to contain significant admixtures of
core-excited components [33–35], and, hence, core excitation
effects are expected to be important.

As in previous works [17,21,36], the 11Be structure is
described with the Hamiltonian of Ref. [37] (model Be12-b),
which consists of a Woods-Saxon central part (R = 2.483
fm, a = 0.65 fm) and a parity-dependent strength (Vc =
−54.24 MeV for positive-parity states and Vc = −49.67 MeV
for negative-parity ones). The potential contains also a spin-
orbit term, whose radial dependence is given by 4/r times the
derivative of the central Woods-Saxon part and strength Vso =
8.5 MeV. For the 10Be core, this model assumes a permanent
quadrupole deformation β2 = 0.67 (i.e., δ2 = 1.664 fm). Only
the ground state (0+) and the first excited state (2+, Ex =
3.368 MeV) are included in the model space.

A. 11Be + p resonant breakup

We first perform a proof-of-principle calculation and apply
the method to the breakup of 11Be on a proton target at
63.7 MeV/nucleon. Previous work [18] showed that the
main contributions to the total energy distribution arises from
the single-particle excitation mechanism populating the 5/2+

1
resonance at Ex = 1.78 MeV [38] and the contribution from
the excitation of the 3/2+

1 resonance (Ex = 3.40 MeV, [38])
owing to the collective excitation of the 10Be core.

We repeat here the calculations of Ref. [18] for the angular
distribution using the XCDCC formalism for the reaction dy-
namics and the pseudostate basis for the structure of 11Be. Con-
tinuum states up to J = 5/2 (both parities) were found to be
enough for convergence of the calculated observables. These
states were generated diagonalizing the 11Be Hamiltonian in
a THO basis with N = 12 radial functions and valence-core
orbital angular momenta � � 5. For the interaction between the
projectile and the target [Eq. (19)], we used the approximate
proton-neutron Gaussian interaction as in Ref. [18]; the
central part of the core-target potential was calculated by a
folding procedure, using the Jeukenne, Lejeune, and Mahaux
(JLM) nucleon-nucleon effective interaction [39] and the
10Be ground-state density from a antisymmetrized molecular

0
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m
.  (

m
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10
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dσ
/d

Ω
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m
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m
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+
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+
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I=0
+
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+

(b) Erel=2.5-5 MeV

(a) Erel=0.0-2.5 MeV

FIG. 1. Differential breakup cross sections of 11Be on protons
at 63.7 MeV/nucleon, with respect to the outgoing 11Be∗ c.m.
scattering angle and the neutron-core relative energy intervals Erel =
0–2.5 MeV (top) and Erel = 2.5–5 MeV (bottom). The contributions
corresponding to the considered outgoing core states are also shown.
See text for details.

dynamics (AMD) calculation [40]. For the range of the JLM
interaction, we used the value prescribed in the original work,
t = 1.2 fm, and the imaginary part was renormalized by a factor
Ni = 0.8, obtained from the systematic study of Ref. [41]. This
potential was deformed with a deformation length of 1.9 fm
[21]. We note that the spin-orbit terms are not present in these
potentials. For the neutron-proton interaction, the different pa-
rameters were adjusted to best reproduce the breakup cross sec-
tion obtained within a Faddeev calculation using a realistic CD
Bonn proton-neutron potential [42], whereas, for the 10Be + p
potential, the interaction would be dominated by the central
part. In addition, even though the spin-orbit part could have an
effect, we believe that this will mostly affect polarization and
tensor analyzing powers, without largely modifying the cross
sections. The XCDCC coupled equations were integrated up
to 100 fm and for total angular momenta JT � 65.

In Fig. 1 we show the two-body breakup angular distri-
butions, as a function of the 11Be∗ c.m. scattering angle,
and we compare the total results with the experimental
data within the two available relative energy intervals [43],
Erel = 0–2.5 (top panel) and Erel = 2.5–5 (bottom panel). As
in previous calculations [17,21], the agreement with the data
is fairly reasonable with the exception of the first data point
in the higher-energy interval. The peak appearing at small
scattering angles for the lower energy interval is attributable
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FIG. 2. Differential energy distribution following the breakup
of 11Be on protons at 63.7 MeV/nucleon. Solid and dashed (red)
lines correspond to the full (0+ + 2+) and the 2+ contribution of
the XCDCC calculation, while the dot-dashed line (green) represents
the result without dynamic core excitation. The arrow indicates the
energy of the 10Be(2+) + n threshold.

to Coulomb breakup and it was not present in our previous
calculations owing to the smaller cutoff in the total angular
momentum. We show also the separate contribution for each
of the states of the core. We note that both contributions
include the core-excitation effect through the admixtures of
core-excited components in the projectile (structure effect) and
the core-target potential (dynamics). However, the production
of 10Be(2+) is only kinematically allowed when the excitation
energy is above the 10Be(2+) + n threshold, which lies at an
excitation energy of 3.87 MeV with respect to the 11Be(g.s.).
Consequently, for the lower-energy interval (top panel) the
system will necessarily decay into 10Be(g.s.) + n, irrespective
of the importance of the DCE mechanism. Notice that the
emitted 10Be(2+) fragments would be accompanied by the
emission of a γ ray with the energy corresponding to the
excitation energy of this state, thus allowing an unambiguous
separation of both contributions.

This is better seen in Fig. 2, where the differential
energy cross section is plotted after integration over the
angular variables �K in Eq. (24). The solid line is the full
XCDCC calculation, considering the core-excitation effects
in both the structure and the dynamics of the reaction, and
includes the two possible final states of the 10Be nucleus.
The 10Be(2+) contribution (red dashed line) only appears for
Erel > 3.4 MeV, corresponding to the 10Be(2+) + n threshold.
As already noted, above this energy, the 10Be fragments can
be produced in either the g.s. or the 2+ excited state. We
also show the calculation omitting the DCE mechanism (green
dot-dashed curve) and considering only the CA contributions
in the structure of the projectile. By comparing with the total
distribution, it becomes apparent that the DCE mechanism
is very important in this reaction. In particular, the energy
spectrum is dominated by two sharp peaks corresponding
to the 5/2+

1 and 3/2+
1 resonances, with the latter populated

mostly by a DCE mechanism [17]. Despite the relatively small
THO basis, the energy profile of these resonances is accurately
reproduced and this highlights the advantage of the pseudostate
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FIG. 3. Calculated laboratory-frame double differential cross
section for the 10Be fragments emitted in the process 11Be + p

at 63.7 MeV/nucleon when four different scattering angles are
considered. The blue solid and red dashed lines refer to the
contributions from the different core states.

method over the binning procedure when describing narrow
resonances. Finally, besides the resonant contribution, we also
note that there is a nonresonant background at low relative
energies and above the 10Be(2+) + n threshold.

Regarding the three-body observables [Eq. (25)], we
present in Fig. 3 the energy distributions of the 10Be fragments
from the breakup process at four laboratory angles, plotting
separately the 0+ and 2+ contributions. We observe from
this plot the increasing relative importance of the 10Be(2+)
distribution with the angle. This is expected because larger
scattering angles of the core imply a stronger interaction with
the proton target. It is also apparent that this distribution is
shifted to lower energies with respect to the 10Be(g.s.) owing to
the higher excitation energy required to produce the 10Be(2+)
fragments. The angle-integrated contributions can be seen in
Fig. 4, where we note the dominance from the 0+ component
to the overall energy distribution, although the 2+ contribution
amounts to 13% of the total cross section at this energy.

B. 11Be + 64Zn breakup

We consider the 11Be + 64Zn reaction at 28.7 MeV for
which inclusive breakup data have been reported in Ref. [28]
and have been analyzed within the standard CDCC framework
in several works [44–46] and also within the XCDCC frame-
work [21]. The results presented here follow closely those
included in this latter reference, but with two main differences:
First, in that work the 10Be scattering angle was approximated
by the 11Be∗ angle, assuming two-body kinematics, whereas
the appropriate kinematical transformation is applied here;
second, the XCDCC calculations are performed here in an
augmented model space, including higher values of the relative
orbital angular momentum between the valence and core
particles. In addition, the former analysis is extended by
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FIG. 4. Calculated differential energy cross section, as a function
of the 10Be energy in the laboratory frame, for the reaction 11Be +
p at 63.7 MeV/nucleon. The solid (blue) and dashed (red) lines
describe those calculations when the I = 0 or I = 2 state of the core
is adopted.

studying the individual contributions of the 10Be 0+ and 2+
states when computing the two- and three-body observables.
For the sake of comparison, we also perform standard CDCC
calculations similar to those presented in Ref. [45] but using a
larger model space, as detailed below.

For the CDCC calculations, 11Be continuum states up
to J = 9/2 (both parities) and J = 11/2− were included
for maximum n-10Be relative energies and orbital angular
momenta Emax

rel = 12 MeV and �max = 5, respectively. A
THO basis with N = 30 was employed, and the involved
interactions (i.e., the n-10Be, 10Be-64Zn, and n-64Zn potentials)
were the same as in Ref. [45], except for that between the
neutron and 10Be. As in Ref. [45], we use for this potential
that from Ref. [14], but we slightly modify the depth for � = 2
to reproduce the energy of the 5/2+

1 resonance obtained with
the deformed model Be12-b. As for the XCDCC calculations,
the following continuum states were considered: for J � 5/2
(both parities), �max = 3, and Emax

rel = 12 MeV. For 5/2 < J �
11/2, we used �max = 5 and Emax

rel = 9 MeV. A THO basis with
N = 20 functions was used for all Jπ with the same potentials
between the projectile constituents and the target as those used
in Ref. [21]. The coupled equations were solved in this case
with the parallelized version of the FRESCO coupled-channels
code [47]. The inclusion of high-lying excited states produces
numerical instabilities in the solution of the coupled equations.
A stabilization procedure similar to that proposed in Ref. [48]
was used to get stable results.

In Fig. 5 we compare the data from Ref. [28] with the
present calculations. For the XCDCC calculations, the 0+ and
2+ contributions are shown separately as solid (blue) or dashed
(red) lines, although the latter is found to be negligible in this
case. The new CDCC calculation (green dot-dashed curve) ap-
pears to be closer to the results with core deformation, but both
of them clearly underestimate the experimental breakup cross
section, in accordance with previous results [21]. Nevertheless,
these former calculations were carried out within a reduced
model space and the proper kinematical transformation was
not applied. The remaining discrepancy with the data could
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FIG. 5. Differential cross section, as a function of the laboratory
angle, for the 10Be fragments resulting from the breakup of 11Be on
64Zn at Elab = 28.7 MeV. The solid line (blue) is the calculation when
the core ground state, I = 0, is selected in Eq. (25) after integration
over �v and Ec. The dashed line (red) refers to the 2+ contribution.
A single-particle calculation, omitting the core deformation, is also
shown as a dot-dashed curve (green). Experimental data are from
Ref. [28].

be attributable to the contribution of nonelastic breakup events
(neutron absorption or target excitation) in the data because
the neutrons were not detected in the experiment of Ref. [28].
In this regard, it is worth recalling that the CDCC method
provides only the so-called elastic breakup component, so the
target is left in the ground state.

The explicit inclusion of target excitations within CDCC
has been investigated by some groups [49–51], but the
simultaneous consideration of core and target excitations has
not been already accomplished. We note, however, that the
loss of flux owing to target excitation is effectively accounted
for in standard CDCC by means of the imaginary part of the
fragment-target optical potentials. Finally, we also remark that
the contribution to the breakup cross section from nonelastic
breakup components has recently been the subject of several
works [52–54], but these models rely on DWBA rather than on
CDCC. In any case, we emphasize that the aim of the present
work is the study of core-excitation effects in the double and
triple differential breakup cross sections computed with the
XCDCC framework.

In Fig. 6 we show the breakup cross section as a function of
the 11Be excitation energy, with respect to the 10Be(g.s.) + n
threshold. The solid (blue) and dashed (red) lines correspond
to the 10Be(g.s.) and 10Be(2+) contributions. Most of the
cross section is concentrated at low excitation energies, close
to the breakup threshold, being negligible for excitation
energies above the 10Be(2+) + n threshold. Consequently,
in this reaction the 10Be will be mostly produced in its
ground state. Moreover, it is remarkable the presence of
a prominent peak at energies around the low-lying 5/2+
resonance, where the dominant component corresponds to
the 10Be(0+) configuration. A second bump, corresponding
to the population of the 3/2+

1 resonance, can be barely seen.
This small contribution reflects the scarce relevance of the
DCE mechanism for this medium-mass target, as pointed
out in Ref. [21], but, contrary to the conclusions therein, the
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core-excitation effects in the structure of the 11Be are not so
large, and the assumption of a single-particle model for the pro-
jectile yields a similar breakup cross section (green dot-dashed
line). In addition, unlike the case of the proton target, a dom-
inant nonresonant breakup is found at low relative energies.

The different role of DCE for elastic breakup in the cases of
the proton and 64Zn targets can be ascribed to the dominance
of the dipole Coulomb couplings in the latter case, which
hinders the effect of the quadrupole couplings associated with
the excitation of the 10Be core. We expect that, for heavier
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The distribution computed with the standard CDCC method (no
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targets, this dominance is enhanced and therefore the effect of
the DCE mechanism will be further reduced.

Finally, a small core-excitation effect is also apparent
in Fig. 7, where we show the breakup energy distributions
of the 10Be emitted fragments within the standard CDCC
[only considering the 10Be(0+) state] or XCDCC (including
both 0+ or 2+ states in 10Be) reaction formalisms at four
laboratory angles. The relative importance of the 2+ state
increases with increasing angle, but its absolute magnitude
is negligible in all cases. An overall reduction of the mean
energy of the 2+ core state, as a consequence of the more
negative Q value, is also observed. The corresponding
angle-integrated energy distribution is shown in Fig. 8. As
expected, this distribution is completely dominated by the
10Be(g.s.) contribution, displaying an asymmetric shape with
a maximum around 26 MeV and a large low-energy tail
extending down to 15 MeV. For core energies above the peak,
the distribution exhibits a pronounced drop as a consequence
of the kinematical cutoff from the energy conservation
together with the interaction between the phase space factor
and the breakup amplitude in the semi-inclusive cross section.
Actually, the sharp falloff would be present unless the breakup
amplitude is very small around the maximum energy [55].

VII. SUMMARY AND CONCLUSIONS

In this paper we have presented a formalism for the
calculation of two- and three-body breakup observables from
XCDCC calculations. The method has been applied to the
case of the scattering of a two-body projectile consisting of a
core and a valence particle and taking explicitly into account
core excitations. The method is based on a convolution of
the discrete XCDCC scattering amplitudes with the exact
core + valence scattering states. The formalism is a natural
extension of that presented in Ref. [27] for the standard CDCC
method, the main difference being the multichannel character
of the projectile states in the present case. The convoluted
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transition amplitudes are then multiplied by the corresponding
phase-space factor to produce the desired (two- or three-body)
differential cross sections. The formalism provides the separate
cross section for specific states of the core nucleus, thus permit-
ting a more direct connection with experimental observables.

The method has been applied to the scattering of 11Be on
protons and 64Zn. The 11Be nucleus is described in a simple
particle-rotor model, in which the 10Be core is assumed to
have a permanent axial deformation [37]. The core-target
interaction is obtained by deforming a central phenomenolog-
ical potential. Within the developed approach the angular and
energy distributions of the 10Be fragments (with an intrinsic
spin, I ) following the breakup of 11Be have been calculated
and compared with experimental data, when available.

In the 11Be + p reaction, we find that a significant part
of the breakup cross section corresponds to the 10Be excited
state. Moreover, we have confirmed the importance of the DCE
mechanism, arising from the noncentral part of the core-target
interaction, for the excitation of the low-lying 5/2+ and 3/2+
resonances [18].

We have also studied the 11Be + 64Zn reaction at
28.7 MeV, extending the previous analysis performed in
Ref. [21]. Although in that reference a sizable difference
was observed between the calculations with and without
deformation, the present calculations suggest that this
difference is largely reduced if a sufficiently large model
space is employed for the XCDCC calculation. In view of
these new results, we may conclude that, unlike the proton
target case, the effect of core excitation is very small in this
reaction as far as the breakup cross sections are concerned. As
a consequence, the 10Be(2+) yield is found to be negligibly
small. We may anticipate that this conclusion will also hold
for other medium-mass or heavy systems. The qualitative
difference with respect to the proton case stems from the
larger importance of Coulomb couplings in the 64Zn case.

Although all the calculations presented in this work have
been performed for the 11Be nucleus, we believe that the
results are extrapolable to other weakly bound nuclei and,
consequently, the effects discussed here should be taken in
consideration for an accurate description and interpretation of
the data. Finally, we notice that the semi-inclusive differential
cross sections presented in this paper can be used to produce
transverse and longitudinal momentum distributions, which
have been used to obtain spectroscopic information using both
light and proton targets.
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APPENDIX A: CALCULATION OF MULTICHANNEL
SCATTERING STATES

Here we derive the coefficients C�,j,J,M that relate the
scattering states with the solution of the Schrödinger equation
for good values of J,M according to the expansion

φ
(+)
kI ;Iμ;sσ (r,ξv,ξc) =

∑
�,j,J,M

C�,j,J,M
(+)
α,J,M (kI ,r,ξv,ξc). (A1)

The expansion coefficients are determined by replacing the
functions 

(+)
α,J,M (kI ,r,ξv,ξc) with their asymptotic behavior

[Eq. (15)],

φ
(+)
kI ;Iμ;sσ (r,ξv,ξc) →

∑
�,j,J,M

eiσ�C�,j,J,M

∑
α′

[
F�(kI r)

r
δ�,�′ + T J

α,α′
H

(+)
�′ (kI r)

r

]
�α′,J,M (r̂ ,ξv,ξc), (A2)

where, on the right-hand side of the equation, we have separated for convenience the part containing the regular Coulomb
function.

To compare this with the asymptotic behavior, we need the partial-wave decomposition of the plane wave:

eikI ·r = 4π

kI r

∑
�,m

i�(kI r)j�(kI r)Y ∗
�m(k̂I )Y�m(r̂). (A3)

More generally, in the presence of Coulomb, the expansion above becomes

χC(kI ,r) = 4π

kI r

∑
�,m

i�eiσ�F�(kI r)Y ∗
�m(k̂I )Y�m(r̂). (A4)

Using this result, the plane wave reads

χC(kI ,r)ϕ(v)
sσ (ξv)ϕ(c)

Iμ(ξc) = 4π

kI r

∑
�,m

i�eiσ�F�(kI r)Y ∗
�m(k̂I )Y�m(r̂)ϕ(v)

sσ (ξv)ϕ(c)
Iμ(ξc). (A5)

To express this state in terms of the basis (8), we use the following expansions:

Y�m(r̂)ϕ(v)
sσ (ξv) =

∑
j,mj

〈�msσ |jmj 〉Y(�s)jmj
(r̂ ,ξv), (A6)
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Y(�s)jmj
(r̂ ,ξv)ϕ(c)

Iμ(ξc) =
∑
JM

〈jmjIμ|JM〉�α,J,M (r̂ ,ξv,ξc). (A7)

So, collecting results,

χC(kI ,r)ϕ(v)
sσ (ξv)ϕ(c)

Iμ(ξc) = 4π

kI r

∑
�,m

Y ∗
�m(k̂I )i�eiσ�F�(kI r)

∑
j,mj

∑
J,M

〈�msσ |jmj 〉〈jmjIμ|JM〉�α,J,M (r̂ ,ξv,ξc). (A8)

The above expression gives the plane-wave part of Eq. (A2), so we get for the C coefficients:

C�,j,J,M = 4π

kI

∑
m,mj

i�Y ∗
�m(k̂I )〈�msσ |jmj 〉〈jmjIμ|JM〉. (A9)

Therefore, the scattering states φ
(+)
kI ;Iμ;sσ (r,ξv,ξc) are expressed as

φ
(+)
kI ;Iμ;sσ (r,ξv,ξc) = 4π

kI r

∑
�,j,J,M

i�Y ∗
�m(k̂I )〈�msσ |jmj 〉〈jmjIμ|JM〉

∑
α′

f J
α:α′ (kI ,r)�α′,J,M (r̂ ,ξv,ξc), (A10)

where mj = M − μ and m = mj − σ .
The scattering states appearing in the T -matrix amplitude [Eq. (18)] are [φ(−)

kI ;Iμ;sσ (r,ξv,ξc)]∗, which can be derived from

φ
(+)
kI ;Iμ;sσ (r,ξv,ξc) by application of the time-reversal operator, resulting in [56]

[
φ

(−)
kI ;Iμ;sσ (r,ξv,ξc)

]∗ = 4π

kI r

∑
l,j,J,M

i�Y�m(k̂I )〈�msσ |jmj 〉〈jmjIμ|JM〉
∑
α′

(−1)�
′+I+I ′

f J
α:α′ (kI ,r)�∗

α′,J,M (r̂ ,ξv,ξc). (A11)

APPENDIX B: OVERLAP FUNCTIONS

Starting from the states (A11), and writing the THO eigenstates for a given angular momentum and projection J ′,M ′ as


(N)
i,J ′,M ′ (r,ξv,ξc) =

∑
α′′

gJ ′
i,α′′ (r)

r
�α′′,J ′,M ′(r̂ ,ξv,ξc), (B1)

the overlap between them yields

〈
φ

(−)
kI ;Iμ;sσ

∣∣(N)
i,J ′,M ′

〉 = 4π

kI

∑
�,m,j

(−i)�Y�m(k̂I )〈�msσ |jmj 〉〈jmjIμ|J ′M ′〉Gi,J ′
α (kI ), (B2)

which, in addition to geometric coefficients, contains the function Gi,J ′
α (kI ) = ∑

α′(−1)�+�′+I+I ′Oi,J ′
α,α′ (kI ), with the OJ

α,α′ (kI )
representing the overlaps between the radial functions:

Oi,J
α,α′ (kI ) =

∫
f J

α:α′ (kI ,r)gJ
i,α′(r)dr. (B3)

We also note that the total parity of the pseudostates, (N)
i,J ′,M ′ (r,ξv,ξc), is given by the factor (−1)�+I and, consequently, the phase

appearing in the function Gi,J ′
α (kI ) is equal to one.
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