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We study phenomenologically the production of the neutron-rich hypernucleus 6
�H in the 6Li(π−, K+) reaction

at 1.2 GeV/c, using a distorted-wave impulse approximation in a one-step mechanism, π−p → K+�− via �−

doorways caused by �−p ↔ �n coupling. The production cross section of 6
�H(1+

exc.) is evaluated by a coupled
(5H-�) + (5He-�−) model with a spreading potential, in comparison with the data of the missing mass spectrum at
the J-PARC E10 experiment. The result indicates that the �− mixing probabilities in 6

�H(1+
exc.) are P�− <∼ 0.2%

both for s� state and for p� state in order to reproduce no significant peak in the � production data, so that the
cross section of 6

�H is less than on the order of 0.4 nb/sr. The sensitivity of the �� coupling and � potentials to the
near-�-threshold spectrum is discussed. The shape and magnitude of the spectrum provide valuable information
on the �� coupling in the production mechanism and also the nuclear structure of 6

�H(1+
exc.).
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I. INTRODUCTION

Recently, the J-PARC E10 collaboration [1,2] performed
experimental measurements of the double-charge-exchange
(DCX) reaction (π−,K+) on a 6Li target at pπ− = 1.2 GeV/c
in order to confirm a neutron-rich hypernucleus 6

�H in which
an unbound 5H nuclear core with neutron-proton excess
ratio (N − Z)/(N + Z) = 0.6 is expected to be stable by �
stabilization or glue [3,4]. No significant peak structure below
and near the 4

�H + 2n threshold was observed in missing mass
spectra with K+ forward-direction angles of θlab = 2◦–14◦.
This is inconsistent with the observation by the 6Li(K−

stop, π
+)

reaction in FINUDA experiments [5] which indicated evidence
of 6

�H with a binding energy of B�(6
�H) = 4.5 ± 1.2 MeV with

respect to the 5H + � threshold.
Dalitz and Levi–Setti [3] first discussed the � stabilization

of the neutron-rich 6
�H hypernucleus with the particle-unstable

5H nuclear core beyond the neutron-drip line. Akaishi and
Myint [6] paid attention to 6

�H as a test ground for an attractive
three-body �NN force caused by the �N–�N coupling
which may be more coherently enhanced in such neutron-
excess environments [7,8]. Thus the 0+ ground state of 6

�H
was predicted to have a large binding energy of B�(6

�H) = 5.8
MeV with respect to the 5H + � threshold due to rather large
contribution of 1.4 MeV by the coherent �� mixing [6]. Gal
and Millener [9] showed that recent shell-model calculations
including the �� coupling give B�(6

�H) = 3.8 ± 0.2 MeV
which seems to be in good agreement with B�(6

�H) = 4.5 ±
1.2 MeV reported in the FINUDA experiments [5,9]. Hiyama
et al. [10] suggested a less binding energy of B�(6

�H) =
2.47 MeV corresponding to an unbound state with respect
to the 4

�H + 2n threshold in tnn� four-body cluster-model
calculations. The value of B�(6

�H) is often calculated by the
�-nucleus potential which strongly depends on the structure
of the nuclear core as well as �N interaction involving the
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�� coupling. Therefore, it is very important to clarify the
production and structure of 6

�H which is strongly related to the
structure of 5H in nuclear physics.

The DCX (π−,K+) reaction is one of the most promising
ways of searching for a bound state of the neutron-rich �
hypernuclei with stabilized effects by � added. Indeed, Saha
et al. [11] performed the first measurement of a significant
yield for the 10

� Li hypernucleus in (π−,K+) reactions on a 10B
target, whereas no clear peak has been observed with the lack
of the experimental statistics. The data show that the absolute
cross section for 10

� Li at 1.20 GeV/c (dσ/d� ∼ 11 nb/sr)
is twice larger than that at 1.05 GeV/c (dσ/d� ∼ 6 nb/sr).
This incident-momentum dependence of dσ/d� exhibits a
trend in the opposite direction for the theoretical prediction by
Tretyakova and Lanskoy [12]. This might imply that the one-
step mechanism, π−p → K+�− via �− doorways caused by
the �−p ↔ �n coupling [13] is rather favored over the two-
step mechanism, π−p → π0n followed by π0p → K+� (or
π−p → K0� followed by K0p → K+n) in the production of
neutron-rich � hypernuclear states, as pointed out in Ref. [11].

In this paper, we study phenomenologically the pro-
duction of the neutron-rich 6

�H hypernuclear states in the
6Li(π−,K+) reaction at 1.2 GeV/c. We demonstrate the cal-
culated spectrum near the � threshold within a distorted-wave
impulse approximation (DWIA) by using a coupled (5H-�) +
(5He-�−) model with a spreading potential [14]. Comparing
the spectrum with the data of the J-PARC E10 experiment
[1,2], we discuss the strengths of the �� couplings related
to the �-mixing probabilities and the strengths of the �-5H
potentials which depend on the structure of the 5H nuclear core
in 6

�H.

II. CALCULATIONS

A. Distorted wave impulse approximation

The inclusive K+ double-differential laboratory cross sec-
tion of � production on a nuclear target in the DCX (π−,K+)
reaction [15] is calculated by the Green’s function method
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FIG. 1. Diagrams of a one-step mechanism, π−p → K+�− via
�− doorways caused by the �−p ↔ �n coupling, for production of
� hypernuclear states by the DCX nuclear (π−, K+) reactions.

[16], assuming only the one-step mechanism, π−p → K+�−
via �− doorways caused by the �−p → �n conversion
within the DWIA [13]. Figure 1 illustrates diagrams for the
one-step mechanism, π−p → K+�− via �− doorways in
the nuclear (π−,K+) reaction. The inclusive K+ double-
differential laboratory cross section on the nuclear target with
a spin JA and its z component MA [15] is given by

d2σ

d�dE
= 1

[JA]

∑
MA

S(EB), (1)

with [JA] = 2JA + 1, and the strength function S(EB) is
written by

S(EB) = − 1

π
Im

∑
αα′

∫
d rd r ′Fα†

� (r)Gαα′
� (EB ; r,r ′)Fα′

� (r ′)

(2)

as a function of the energy EB for hypernuclear final states,
where Fα

� is the � production amplitude defined by

Fα
� = β

1
2 f π−p→K+�−χ (−)∗

pK
χ (+)

pπ
〈α|ψ̂p|�A〉, (3)

and 〈α|ψ̂p|�A〉 is a hole-state wave function for a struck proton
in the target; α denotes the complete set of eigenstates for the
system. The energy and momentum transfer is ω = EK − Eπ

and q = pK − pπ . The kinematical factor β denotes the
translation from a two-body π−-p laboratory system to
a π−-6Li laboratory system. f π−p→K+�− is a Fermi-
averaged amplitude for the π−p → K+�− reaction in nuclear
medium [17].

Distorted waves for outgoing K+ and incoming π− mesons,
χ

(−)
pK

and χ
(+)
pπ

, are estimated with the help of the eikonal
approximation in which total cross sections of σπ = 32 mb
for π−N and σK = 12 mb for K+N , and απ = αK = 0 are
used as distortion parameters [17]. The recoil effects are
taken into account in our calculations because an effective
momentum transfer becomes qeff 
 (1 − 1/A)q 
 0.83q for
the light nuclear system with A = 6 due to large momentum
transfer q = 320–600 MeV/c in the (π−,K+) reaction.

Although the 1+ ground state of 6Li is well described
as α + d clusters [18], wave functions for the 6Li target
are used in the single-particle (s.p.) description for simplic-
ity. This s.p. description has also been used to study the
�-nucleus potential for A = 6 by the missing-mass
6Li(π−,K+) spectrum at the J-PARC E10 experiment [19].

Thus the s.p. wave functions for the proton in 1p3/2 and
1s1/2 are calculated by the Woods–Saxon (WS) potential with
a = 0.67 fm, R = 1.27A1/3 = 2.31 fm [20]. The strength
parameter of the potential is adjusted to be V N

0 = −55.5 MeV
(−58.0 MeV) for the proton in the p3/2 (s1/2) state, and
V N

so = −0.44V N
0 , in order to reproduce the data of proton s.p.

energies in 6Li(p,2p) reactions [21,22]. Thus the s.p. energies
for 1p3/2 and 1s1/2 amount to −4.61 MeV and −21.48 MeV,
respectively. The charge radius for 6Li(1+

g.s.) becomes 2.48 fm
of which value is slightly smaller than that of 2.56 ± 0.05 fm
in electron elastic scatterings [23] due to the s.p. description.
If we replace the s.p. wave function for the 1p3/2 (1s1/2) state
by a spectroscopic amplitude describing a p3/2 (s1/s) proton
removal from 6Li(1+

g.s.) within the α + d cluster model [24], we
recognize that the calculated cross sections decrease by about
5%, in comparison with the results which will be discussed in
Sec. III B. Thus our conclusion obtained in the s.p. description
would be reliable.

B. Wave functions for 6
�H

To fully describe the one-step process, as shown in Fig. 1
and to estimate the production cross section of 6

�H, we perform
�-� coupled-channel calculations [14] which reproduce the
shape and magnitude of the data of the J-PARC E10 experiment
in the � and �− quasifree (QF) regions [19]. Here we employ
a multichannel coupled wave function of the �-� nuclear state
for a total spin JB within a weak-coupling basis. It is written as∣∣ΨJB

(
6
Y H

)〉 =
∑

JJ ′′jnj�

[
�J ′′ (5H),ϕ(�)

j�
(r�)

]
JB

+
∑

JJ ′jpj�

[
�J ′ (5He),ϕ(�−)

j�
(r�)

]
JB

, (4)

with

�J ′′ (5H) = A[
�J (s3p),ϕ(n)

jn
(rn)

](5H)
J ′′ ,

�J ′ (5He) = A[
�J (s3p),ϕ(p)

jp
(rp)

](5He)
J ′ , (5)

where �J (s3p) is a wave function of the s3p configuration
state,A is the antisymmetrized operator for nucleons, and ϕ

(�)
j�

,

ϕ
(�−)
j�

, and ϕ
(n,p)
jn,p

describe the relative wave functions of shell
model states (that occupy j�, j� , and jn,p orbits) for the �, �−,
and neutron (proton), respectively; rn (rp) denotes the relative
coordinate between the s3p nucleus and the neutron or proton,
and r� (r�) denotes the relative coordinate between the center
of mass of the 5H (5He) subsystem and the � (�−). We take
the 5H core-nucleus state with Jπ = 1/2+[ground state (g.s.)],
and the 5He core-nucleus states with Jπ = 3/2− (g.s.), 1/2−,
3/2+, and 1/2+ that are given in (1+ ⊗ p−1

3/2,1/2) 3
2

−
, 1

2
− and

(1+ ⊗ s−1
1/2) 3

2
+
, 1

2
+ configurations formed by a proton-hole state

on 6Li(1+
g.s.). If the � component is dominant in a bound or res-

onant state, we can identify it as a state of the � hypernucleus
6
�H, in which the �−-mixing probability can be estimated by

P�− =
∑
j�

∫ ∞

0
ρj�

(r)r2dr, (6)
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FIG. 2. Energy spectrum and decay threshold of the 6
�H hyper-

nucleus. Binding energies of B�(6
�H) and B2n(6

�H) are defined with
respect to 5H + � and 4

�H(1+) + 2n thresholds, respectively. The
threshold-energy difference between 5H(1/2+

g.s.) and the 3H + 2n

threshold is assumed to be 4.0 MeV.

where ρj�
(r) = [ϕ(�−)

j�
(r)]2 denotes a �− density distribution

with the j� shell under the normalization of

∑
j�

∫ ∞

0
ρj�

(r)r2dr +
∑
j�

∫ ∞

0
ρj�

(r)r2dr = 1,

together with the � density distribution ρj�
(r) with j�.

Because we assume the �− doorways states that are selectively
produced by non-spin-flip processes in the π−p → K+�−
reaction, we consider positive-parity (negative-parity) states
with Jπ

B = 1+, 2+, 3+, . . . , (Jπ
B = 0−, 1−, 2−, 3−, . . . ) for

final states, which are populated on the nuclear 6Li(1+
g.s.)

targets; the 0+ ground state of 6
�H(0+

g.s.) is forbidden.
Several theoretical calculations [22,25] predicted the

5H ground state with Jπ = 1/2+ (g.s.), T = 3/2 as a contin-
uum or unbound state, Er 
 1.6–3.0 MeV, � 
 1.5–4.0 MeV
with respect to the 3H + 2n threshold in 3H + n + n three-
body calculations [25] and Er 
 3.0–4.5 MeV in standard
shell-model calculation with spsd space [26,27]. Since the
structure of 5H is still uncertain experimentally [10,22,28],
we assume that the 5H(1/2+

g.s.) nuclear core is a resonant
state with Er = 4.0 MeV [25] in the viewpoint of shell-model
calculations, rather than that with Er = 1.7 MeV in Ref. [29].
Thus the energy difference between 5He + �− and 5H +
� channels is �M = M(5He) + m�− − M(5H) − m� = 57.6
MeV, where M(5He), M(5H), m�− , and m� are masses of 5He,
5H, �− and �, respectively. Figure 2 illustrates the energy
spectrum and decay threshold for the 6

�H hypernucleus, where
B�(6

�H) and B2n(6
�H) denote the binding energies with respect

to 5H + � and 4
�H(1+) + 2n thresholds, respectively.

C. Multichannel Green’s functions

The Green’s function method is one of the most powerful
treatments in calculations for the spectrum [16]. The complete
Green’s function G(E) describes all information concern-
ing (5H ⊗ �) + (5He ⊗ �−) coupled-channel dynamics. We
obtain it by solving the following equation with the hyperon-

nucleus potential U numerically:

G(E) = G(0)(E) + G(0)(E)U G(E), (7)

where

G(E) =
(

G�(E) GX(E)
GX(E) G�(E)

)
, U =

(
U� UX

UX U�

)
, (8)

and the free Green’s function G(0)(E). The diagonal parts U�

(U�) for U are the �-nucleus (�-nucleus) potentials, and the
off-diagonal parts UX are the �� coupling potentials. Thus
the inclusive � spectrum in Eq. (2) can be decomposed into
different physical processes [14,16] by using the identity

Im(F †
�G�(E)F�) = F

†
��(−)†(ImG

(0)
� (E)

)
�(−)F�

+F
†
�G

†
X(E)(ImU�)GX(E)F�

+F
†
�G

†
�(E)(ImU�)G�(E)F�, (9)

where �(−) is the Möller wave operator and F� is the
production amplitude for �−. The remarkable production of
6
�H arises from the term of F

†
�G

†
X(ImU�)GXF� .

The Y -nucleus (optical) potentials for Y = � or �− are
given by the Woods–Saxon (WS) form:

UY (r) = [VY + iWY g(E�)]fY (r), (10)

where fY (r) = {1 + exp [(r − R)/a]}−1. For the 5H-� chan-
nel, we use a = 0.60 fm, r0 = 1.080 + 0.395A−2/3 fm and
R = r0A

1/3
core = 2.05 fm [30]. Considering that the 5H nuclear

core may be an unbound state or a broad resonant state [10],
the strength parameters of V� should be adjusted appropriately
to reproduce the experimental data. The spreading imaginary
potential, Im UY , can represent complicated excited states for
6
�H∗; g(E�) is assumed to be an energy-dependent function
which linearly increases from 0 at E� = 0 MeV to 1 at E� =
60 MeV with respect to the 5H + � threshold, as often used in
nuclear optical models. For the 5He-�− potential, we use the
WS potential with R = 1.1A

1/3
core = 1.88 fm and a = 0.67 fm,

in comparison with the data of the J-PARC E10 experiment [2].
We take the strengths of (V�,W�) = (+20 MeV,−20 MeV)
which can fully reproduce the data in �− region, leading to
the reduced χ2 value of χ2/N 
 0.97 [19]. The spreading
potential W� expresses nuclear core breakup processes caused
by the �−p → �n conversion in the 5He nucleus, and its
effect is not involved in UX which we will mention below.

D. �� coupling potentials

The �� coupling potential UX in off-diagonal parts
of U can be obtained by a two-body �N–�N poten-
tial vS

�N,�N (r ′,r) with the spin S = 1, 0 isospin I = 1/2
state. Here we use a zero-range interaction vS

�N,�N (r ′,r) =
ṽS

�N,�Nδ(r ′ − r) in a real potential for simplicity, where
ṽS

�N,�N is the strength parameter that should be connected
with volume integral

∫
vS

�N,�N (r)d r = ṽS
�N,�N . Thus the

matrix elements can be easily estimated by use of Racah
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algebra [31,32]:

UX(r) = 〈[
�J ′ (5He) ⊗ Y (�−)

j ′�′s ′ (r̂)
]
JB

∣∣
× 1√

3

∑
i

vS
�N,�N (r ′

i ,r)τ j · φ

× ∣∣[�J ′ (5H) ⊗ Y (�)
j�s (r̂)

]
JB

〉
=

∑
LSK

ṽS
�N,�NC

JB

LSK (J ′J ′′)FJ ′J ′′
LSK (r), (11)

where τ j denotes the j th nucleon isospin operator and φ

is defined as |�〉 = φ|�〉 in isospin space [33], and Yj�s =
[Y� ⊗ X 1

2
]j is a spin-orbit function and C

JB

LSK (J ′J ′′) is a

purely geometrical factor [31]; FJ ′J ′′
LSK (r) is the nuclear form

factor including a one-body transition density for the A = 5
shell model [26] and the center-of-mass correction of a factor√

A/(A − 1) [34].
Three parameters, ṽ1

�N,�N , ṽ0
�N,�N , and V�, are very

important for determining the �−-mixing probability in 6
�H

and the production cross section of 6
�H within the one-step

mechanism [13]. These parameters are strongly connected
each other for the shape of the spectrum and its magnitude.
The effects of the �N–�N coupling can be evaluated
by the volume integrals for �N–�N g matrices based
on Nijmegen potentials [35–38], in which these values are
model dependent; for example, −216.3, −351.0, −478.3, and
−826.6 MeV fm3 for S = 1 in ESC08c, ESC08a, ESC08b,
and ESC08a′′ potentials with kF = 1.0 fm−1, respectively
[38]. Here we use the volume integrals calculated by the g
matrix based on the D2′ potential (D2′g) which can reproduce
the binding energies of 3

�H, 4
�He, 4

�He∗, and 5
�He [39], and

we assume ṽ1
�N,�N = −900 MeV (ṽ0

�N,�N = 500 MeV) as
a standard, which corresponds to ṽ1

�N,�N = −941.2 MeV
(ṽ0

�N,�N = 513.6 MeV) obtained by D2′g with kF = 1.05
fm−1. To see the dependence of the spectrum on the �N–�N
coupling strength, we choose typical values of ṽ1

�N,�N =
−450, −900, −1350, and −1800 MeV (ṽ0

�N,�N = 250, 500,
750, and 1000 MeV). Thus we attempt to determine important
parameters of ṽS

�N,�N and V�, demonstrating the calculated
spectrum in comparison with the shape and magnitude of
the experimental data, whereas no significant peak structure
was observed near the 4

�H + 2n threshold in the J-PARC E10
experiment.

III. RESULTS

Now let us examine the dependence of the shape and
magnitude of the spectrum on ṽS

�N,�N and V�, comparing
the calculated inclusive � spectrum for 6

�H with the data of
the 6Li(π−,K+) reaction at the J-PARC E10 experiment. In
our calculation, we also took the energy-dependent Fermi-
averaged t matrix for the π−p → K+�− reaction which is
essential to explain the �− QF spectra of the (π−,K+) data
on nuclear targets [17]. Therefore, it should be noticed that the
following calculated spectra have reproduced the data in the
�− and � QF regions [19].

FIG. 3. Schematic illustration of shell-model configurations for
(a) pps�− → pns� transitions from s−1

p s� components, and (b)
spp�− → pns� transitions from p−1

p p� components in 6
�H(1+

exc.).

A. �− doorways

The nuclear (π−,K+) reaction can predominantly populate
spin-stretched states of 5He ⊗ �− doorways with T = 3/2
because the momentum transfer is very large (q 
 359 MeV/c
around the � threshold) in the π−p → K+�− reaction at
1.20 GeV/c [40]. It is also considered that non-spin-flip
processes are dominant near the forward direction in this
reaction [41]. Thus the 0+ ground state of 6

�H(0+
g.s.) that is

expected to have a large contribution by the coherent ��
mixing [6] is forbidden by spin-parity conservation when
choosing 6Li(1+

g.s.) as a target, whereas the 1+ excited state

of 6
�H(1+

exc.) can be produced in the reaction. For 6
�H(1+

exc.) in
the one-step mechanism via �− doorways, we have

6Li(1+
g.s.; T = 0)

sp→s�−−−→
�L=0

[5He(3/2+
exc.,1/2+

exc.; Tc = 1/2) ⊗ (s1/2)�−]1+

� [5H(1/2+
g.s.; Tc = 3/2) ⊗ (s1/2)�]1+ (12)

in the s−1
p s� configuration formed by the π−p → K+�−

reaction, and
6Li(1+

g.s.; T = 0)

pp→p�−−−−→
�L=0,2

[5He(3/2−
g.s.,1/2−

exc.; Tc = 1/2) ⊗ (p3/2,1/2)�−]1+

� [5H(1/2+
g.s.; Tc = 3/2) ⊗ (s1/2)�]1+ (13)

in the p−1
p p� configuration. Figure 3 illustrates these shell-

model configurations in 6
�H(1+

exc.) schematically. The former
process indicates the coherent �� coupling with the pps�− →
pns� transition [7]. The latter process also contributes to
6
�H(1+

exc.) due to the spp�− → pns� transition which induces
nucleon-hole states with nuclear core-excitation in the �
hypernucleus, as discussed in ab initio calculations for
5
�He(1/2+

g.s.) by Nemura et al. [42]. The type of this coupling is
called as “incoherent” �� coupling. We used single-particle
wave functions for a proton in 6Li(1+

g.s.), reproducing the s-hole
and p-hole energies in 6Li(p, 2p) reactions [21].

B. 6
�H(1+

exc)

Let us consider the �� coupling potentials which deter-
mine the �− mixing probabilities related to the production
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TABLE I. Configurations for 6
�H(1+

exc.).

5H(T = 3/2) ⊗ � 5He(T = 1/2) ⊗ �−

J π
C (�j )� J π

C (�j )�−

1/2+ s1/2 3/2−, 1/2− p3/2, p1/2, f5/2

1/2+, 3/2+ s1/2, d5/2, d3/2

cross section for 6
�H(1+

exc.) in one-step mechanism. In Table I,
we show configurations of the [Jπ

C ⊗ (�j )Y ]1+ state in
6
�H(1+

exc.) composed by the A = 5 core nucleus with Jπ
C and

(�j )-shell hyperon. In Fig. 4, we display the calculated ��
coupling potentials UX(r) between [5He(Jπ

C ) ⊗ (�j )�−] and
[5H(1/2+

g.s.) ⊗ (s1/2)�] states in 6
�H(1+

exc.) as a function of a

relative distance between 5H (5He) and Y = � (�−), using
the �� coupling strengths of ṽ1

�N,�N = −900 MeV and
ṽ0

�N,�N = 500 MeV in Eq. (11); these coupling potentials
are classified by the orbital angular momentum transfers ��
to the hyperon in 6

�H(1+
exc.), where �� = |��− − ��|. We find

that the following coupling potentials are dominant:

Σ−

Σ−

Σ−

Σ−

Σ−

Σ−

Σ−

Σ−

Σ−

FIG. 4. Calculated �� coupling potentials UX(r) between
[5He(J π

C ) ⊗ (�j )�− ] and [5H(1/2+
g.s.) ⊗ (s1/2)�] with �� = |��− −

��| = 0, 1, 2 in 6
�H(1+

exc.) at E� = 0 MeV in Eq. (11), as a function of
the relative distance between 5H (5He) and � (�−). ṽ1

�N,�N = −900
MeV and ṽ0

�N,�N = 500 MeV are used. The dot-dashed curve denote
the 5H-� potential as a guide.

i. [1/2+ ⊗ (s1/2)�−]–[1/2+ ⊗ (s1/2)�] for �� = 0;
ii. [1/2− ⊗ (p1/2)�−]–[1/2+ ⊗ (s1/2)�] for �� = 1;

iii. [3/2− ⊗ (p3/2)�−]–[1/2+ ⊗ (s1/2)�] for �� = 1.

This nature may originate from the fact that a significant
π + ρ meson exchange related with the SU(3) coupling con-
stant generates a (σN · σ Y )(τN · φY ) component in �N–�N
potentials, and that the nuclear form factors FJ ′J ′′

LSK (r) in
Eq. (11) have the collectivity of nuclear core excitations in
microscopic A = 5 shell-model calculations. We recognize
that the spp�− → pns� transitions are significant to describe
�-� dynamics in 6

�H(1+
exc.) as well as the pps�− → pns�

transitions caused by coherent �� couplings, as discussed by
Akaishi et al. [7].

To see the dependence of the spectrum on ṽS
�N,�N , here

we take V� = −19 MeV for 6
�H(1+

exc.), whose potential gives
the binding energy of B�(6

�H) = 1.492 MeV when omitting
ṽS

�N,�N . This value of B� is moderately larger than that of
B�(4

�H) = 0.96 ± 0.04 MeV for the 4
�H(1+) subsystem in

6
�H. We consider single-particle wave functions for �, n
in 6

�H(1+
exc.) as well as those for 6

�H(0+
g.s.) in which the s�

state has the root-mean-square radius of 〈r2〉1/2 = 3.35 fm,
in comparison with 〈r2〉1/2 = 4.01 fm for valence neutrons
in 6

�H. Thus the �,n distributions in 6
�H simulate a similar

structure to the layer distributions of single-particle t, �, and
n densities obtained by the tnn� four-body calculations [10].

1. Binding energies and �−-mixing probabilities

In Table II, we show the results of the binding ener-
gies and �−-mixing probabilities in 6

�H(1+
exc.). When we

take ṽ1
�N,�N = −450, − 900, − 1350, and −1800 MeV

(ṽ0
�N,�N = 250, 500, 750, and 1000 MeV), we find the

�− mixing probabilities of P�− = 0.07%, 0.32%, 0.79%,
and 1.58%, respectively. We stress that there appear not only
s� components but also p� components in the �−-mixing
probabilities; the value of P�− (p�) = 0.04%–0.82% is larger
than that of P�− (s�) = 0.03%–0.68%. The d� components
are relatively small. The corresponding energy positions of
6
�H(1+

exc.) are shifted downward by the �� coupling. We obtain
the energy-level shift �E� caused by the pps�− ↔ pns�

coupling in Eq. (12), e.g., �E� 
 −148 keV when ṽ1
�N,�N =

−900 MeV and ṽ0
�N,�N = 500 MeV. This value is slightly

smaller than that of 9,10
�Li in several microscopic shell-model

calculations [43,44]. For �E� caused by the spp�− ↔ pns�

coupling in Eq. (13), we estimate �E� 
 −201 keV. This
effect may be often eliminated in the model space by g-matrix
description, and it is not taken into account explicitly in
standard calculations [43,44].

In Fig. 5, we display the density distribution of ραY
(r)

for Y = �,�− with α = {n�j} in 6
�H(1+

exc.) when we use
the �� coupling potential given in Fig. 4. Thus we have
P�− (s�) = 0.13% and P�− (p�) = 0.17%, as seen in Table II.
We find that the �− components are located near the center
of 6

�H(1+
exc.), e.g., the renormalized root-mean-square radius

of 〈r2〉1/2 = 1.47 (1.70) fm for s� (p�) states, respectively, in
comparison with those of 〈r2〉1/2 = 1.98 (3.03) fm for sp (pp)
states in 6Li(1+

g.s.). This compactness of these �− distributions

044610-5



TORU HARADA AND YOSHIHARU HIRABAYASHI PHYSICAL REVIEW C 95, 044610 (2017)

TABLE II. Calculated production cross sections of dσ/d� for 6
�H(1+

exc.) by one-step mechanism in the 6Li(π−, K+) reaction at 1.2 GeV/c

(7◦), depending on the �� coupling parameters of ṽS
�N,�N . P�− is the �−-mixing probability, and B�(6

�H) and B2n(6
�H) are binding energies

of � and 2n, respectively. V� = −19 MeV is used.

ṽS
�N,�N (MeV) B�

(
6
�H

)
B2n

(
6
�H

)
P�− (%) dσ/d� (nb/sr)

S = 1 S = 0 (MeV) (MeV) s� p� d� Total s−1
p p−1

p Total

0 0 1.492 −3.508 0.00 0.00 0.00 0.00 0.00 0.00 0.00
−450 250 1.576 −3.424 0.03 0.04 0.00 0.07 0.03 0.01 0.04
−900 500 1.841 −3.159 0.13 0.17 0.02 0.32 0.16 0.06 0.22

−1350 750 2.328 −2.672 0.34 0.41 0.04 0.79 0.44 0.15 0.59
−1800 1000 3.100 −1.900 0.68 0.82 0.08 1.58 1.00 0.32 1.32

may originate from the short-range nature of the �� coupling
potentials obtained in Eq. (11), and this nature is already seen
in the ab initio calculation by Ref. [42].

2. Inclusive � spectra and cross sections

In Fig. 6, we show the calculated inclusive � spectrum
of the 6Li(π−,K+) reaction at pπ− = 1.20 GeV/c and
θlab = 7◦, together with the data for the average cross
section σ̄2◦–14◦ , taken into account a detector resolution of 3.2
MeV FWHM. We find that the calculated spectrum below
the 5H + � threshold is rather sensitive to ṽS

�N,�N in the
one-step mechanism, where 6

�H(1+
exc.) is particle unstable

above the 4
�H + 2n threshold. The integrated cross sections

for 6
�H(1+

exc.) account for dσ/d� = 0.04–1.32 nb/sr for
ṽ1

�N,�N = (−450)–(−1800) MeV and ṽ0
�N,�N = 250–1000

MeV, as listed in Table II. We display the values of dσ/d�
for 6

�H(1+
exc.) as a bin with a finite width of 1 MeV for

particle decay channels at Mx 
 5806.16–5804.63 MeV/c2,
as also shown in Fig. 6. It is remarkable that the �
production spectra are composed of proton-hole states, s−1

p

and p−1
p , populated by the (π−,K+) reactions. The value of

Λ

Σ−

Σ−

Σ−

Σ−

Σ−

Σ−

Σ−

FIG. 5. Single-particle density distributions of � and �− in
6
�H(1+

exc.), ραY
(r) with α = {n�j} and Y = �, �−, as a function of the

relative distance between 5H (5He) and � (�−). The �� coupling
potentials given in Fig. 4 are used. Solid, dashed, and dotted curves
denote the components of the hyperon densities in (s1/2)Y , (p3/2,1/2)Y ,
and (d5/2)Y orbits, respectively.

dσ (p−1
p )/d� = 0.01–0.32 nb/sr is considerably smaller than

that of dσ (s−1
p )/d� = 0.03–1.00 nb/sr, whereas P�− (p�) =

0.04%–0.82% is larger than P�− (s�) = 0.03%–0.68%, as
mentioned above.

IV. DISCUSSION

A. s-hole proton vs p-hole proton

To see the feasibility of producing the neutron-rich �
hypernucleus in the one-step mechanism, we consider the
contribution of the inclusive spectra via �− doorways from
the proton p−1 (s−1) state on the 6Li target. The integrated
laboratory cross section may be roughly written as

dσ
(
j−1
p

)
d�L

≈ β|f̄π−p→K+�−|2

× Sp(jp)|F (jp→j� )
�L (q)|2P�− (j�), (14)

where Sp(jp) is a spectroscopic factor for jp-shell proton, and
f̄π−p→K+�− is a Fermi-averaged amplitude for the π−p →
K+�− reactions. Thus we recognize the behavior of the form
factor F

(jp→j� )
�L (q) for the jp → j� transition with angular-

momentum transfer �L, depending on the momentum transfer
q in the (π−,K+) reactions. Using a harmonic-oscillator
model in the plane-wave approximation [40], we can estimate

Sp(pp)|F (pp→p� )
�L=0, 2 (q)|2

Sp(sp)|F (sp→s� )
�L=0 (q)|2

≈ 1

2

[
1 − 1

3
(b̃q)2 + 7

180
(b̃q)4

]

 0.20

(15)

for q 
 360 MeV/c corresponding to the � threshold at 1.2
GeV/c. Here we adopted Sp(pp)/Sp(sp) 
 1/2 for 6Li and
the oscillator radius parameter b̃ = 1.38 fm. This b̃ value
indicates that the �− components are distributed near the
center of 6

�H(1+
exc.). As a result, we confirm that the value of

dσ (p−1
p )/d� is considerably smaller than that of dσ (s−1

p )/d�,
whereas P�− (p�) and P�− (s�) have almost the same value.

B. ṽS
�N,�N strengths

As far as ṽ1
�N,�N = (0.0)–(−900) MeV and ṽ0

�N,�N =
0.0–500 MeV leading to P�− (s�) = 0.0%–0.13% and
P�− (p�) = 0.0%–0.17%, therefore, the calculated spectra can
fairly explain the data of the J-PARC E10 experiment. No
peak structure of 6

�H originates from the small �� coupling
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FIG. 6. Calculated missing mass spectra of the 6Li(π−, K+) reactions near the � threshold at 1.2 GeV/c and θlab = 7◦, with a detector
resolution of 3.2 MeV FWHM. The �� coupling strengths of ṽ1

�N,�N = (a) −1800, (b) −1350, (c) −900, and (d) −450 MeV [ṽ0
�N,�N = (a)

1000, (b) 750, (c) 500, and (d) 250 MeV] are used, together with V� = −19 MeV for the �-5H potential. Solid, dashed and dot-dashed curves
denote contribution of total, p-hole, and s-hole spectra, respectively. The data are taken from Ref. [1]. The bins with a finite width of 1 MeV
denote the cross sections for 6

�H(1+
exc.) which is located in particle decay channels.

strength and also the loosely resonant � state in the 5H
nuclear core. Although the �−-mixing probabilities for 6

�H are
very small, the sensitivity of the spectrum below the 5H + �
threshold on ṽS

�N,�N indicates the possibility to extract the
precise �− components in wave functions for 6

�H in the
nuclear (π−,K+) reactions. We confirm that the �� coupling
potential plays an essential role in the formation of the �
hypernuclear state near the � threshold. Consequently, the
calculated spectrum seems to be in good agreement with
that of the 6Li(π−,K+) data when we use the �� coupling
strengths of ṽ1

�N,�N 
 −900 MeV and ṽ0
�N,�N 
 500 MeV,

whose values correspond to those of the volume integrals for
the D2′g potential [39].

C. V � strengths

On the other hand, another important parameter V� for
the 5H-� potential also affects the binding energies and the
production cross sections for 6

�H(1+
exc.). The energy position of

6
�H(1+

exc.) is shifted downward by the attraction of V�. We find
that, when ṽ1

�N,�N = −900 MeV and ṽ0
�N,�N = 500 MeV, the

binding energies are B�(6
�H) = 0.050, 1.841, 3.726 and 5.493

MeV for V� = −11, −19, −24, and −28 MeV, respectively,
so that the �−-mixing probabilities amount to P�− = 0.07%,
0.32%, 0.38%, and 0.40%. In Fig. 7, we show the dependence
of the inclusive � spectrum for the 6

�H(1+
exc.) production on

these values of V� when ṽ1
�N,�N = −900 MeV and ṽ0

�N,�N =

500 MeV. We show that the calculated spectrum for 6
�H(1+

exc.) is
considerably changed by the value of V�, where the integrated
cross sections of 6

�H(1+
exc.) become dσ/d� = 0.04, 0.22, 0.34

FIG. 7. Dependence of the calculated inclusive � spectrum in the
6Li(π−, K+) reaction at pπ− = 1.2 GeV/c (7◦) on various strengths
of V�, together with the experimental data [1]. Solid curves denote
the spectra by V� = −28, −24, −19, and −11 MeV when ṽ1

�N,�N =
−900 MeV and ṽ0

�N,�N = 500 MeV with a detector resolution of 3.2
MeV FWHM.
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and 0.41 nb/sr for V� = −11, −19, −24, and −28 MeV,
respectively. The calculated spectra with V� = (−24)–(−28)
MeV seem to disagree with the data of no peak structure
below the 5H + � threshold. This fact may indicate that the
5H-� potential is quite shallow in comparison with the �-
nucleus potentials which are well known as V� 
 −28 MeV
in ordinary nuclei [30], and the neutron-rich nuclear core 5H
should be an unbound or broad resonant state.

D. V� and W� strengths

As discussed above, we recognize that the calculated
spectrum is in good agreement with that of the 6Li(π−,K+)
data when we use the �� coupling strengths of ṽ1

�N,�N 

−900 MeV and ṽ0

�N,�N 
 500 MeV, together with V� 

(+20)–(+30) MeV and W� 
 −20 MeV for the 5He-�−
potential [19]. The nature of the repulsive component in this
potential is consistent with that in the �-nucleus potential
obtained on heavier targets [17]. The calculated spectrum fully
explains the data in the �− and � QF regions by the one-step
mechanism, π−p → K+�− via �− doorways caused by the
�−p ↔ �n coupling.

E. 5H(1/2+
g.s) resonant state

Current experiments have reported that the 5H ground state
is located at Er = 1.7 ± 0.3 MeV with � = 1.9 ± 0.4 MeV
above the 3H + 2n threshold [29], or at Er = 5.5 ± 0.2 MeV
with � = 5.4 ± 0.6 MeV [45]. The problem of whether the
5H(1/2+

g.s.) ground state exists as a narrow resonant state
with Er = 1.7 MeV and � = 1.9 MeV may still be unsettled
[22,28]. Several theoretical investigations [22,25] suggest
the energy of the 5H ground state with Er 
 1.6–3.0 MeV,
� 
 1.5–4.0 MeV in tnn three-body calculations [25] and
Er 
 3.0–4.5 MeV in the shell-model calculations with spsd
space [26,27]. It is expected that the �� coupling matrix
elements work reasonably within the shell-model description.
In the viewpoint of shell-model calculations, we assume that
the 5H(1/2+

g.s.) nuclear core is a resonant state with Er = 4.0
MeV, rather than that with Er = 1.7 MeV; if we have Er = 1.7
MeV in the shell models, we would need to artificially add an
extreme attraction to the 5H system, e.g., by three-nucleon
forces [10]. To see effects of the energy of the 5H + �
threshold on 6

�H(1+
exc.), we calculate the inclusive spectrum

near the � threshold, changing the energy of the 5H(1/2+
g.s.)

resonant state. In Fig. 8, we show the dependence of the
inclusive � spectrum for 6

�H(1+
exc.) near the � threshold, using

Er = 4.0 MeV and 1.7 MeV which determine the position
of the 5H + � threshold. We recognize that the shape of the
calculated spectrum for 6

�H(1+
exc.) is considerably changed by

the value of Er which depends on whether 5H is a narrow
resonant state. The structure of 5H may influence the scenario
of production of 6

�H at FINUDA [5]. Thus the spectrum near
the � threshold provides the ability to study the structure of
the 5H core nucleus in detailed comparison with the precise
data, as well as the structure of 6

�H(1+
exc.).

FIG. 8. Comparison between the calculated inclusive � spectrum
of Er = 4.0 MeV and that of Er = 1.7 MeV for the energy of
5H(1/2+

g.s.) in the 6Li(π−, K+) reaction at pπ− = 1.2 GeV/c (7◦).
V� = −19 MeV is used. See also the caption in Fig. 7.

F. Finite range

To clarify the one-step mechanism for production of the
neutron-rich � hypernucleus, we obtained the �� coupling
potential constructed by the zero-range two-body interaction
for simplicity, using the WS form for diagonal potentials
in 5H + � and 5He + �− channels. On the other hand, it
is known that a finite range of the two-body interaction
provides modified nuclear potentials [31]. To see effects
of the finite range of the interaction, we have a Gaus-
sian shape, vS

�N,�N (r ′,r) = vS
�N,�N (FR) exp (−|r ′ − r|2/β2),

where β is a range parameter. Here we choose v1
�N,�N (FR) =

−369.4 MeV and v0
�N,�N (FR) = 205.2 MeV for β = 0.8 fm;

these strength parameters correspond to a spin-averaged �N
strength of v̄�N (FR) = −105.9 MeV with β = 0.8 fm, which
reproduce the � binding energies for light p-shell nuclei. In
the folding potential model, we realize that the radial shape of
the �� coupling potential UX(r) is more smoothly behaved
and the range of UX(r) becomes slightly extended. Thus we
find that the �−-mixing probabilities for 6

�H(1+
exc.) account

for P�− (s�) = 0.13% and P�− (p�) = 0.11% in comparison
with 0.13% and 0.17% shown in Table II. The integrated
cross section for 6

�H(1+
exc.) is dσ/d� = 0.17 nb/sr and the

(π−,K+) spectrum is not so modified. It seems that a value of
P�− (p�) is relatively reduced whereas P�− (s�) is not changed.
This modification may depend on nuclear structures of the 5H
and 5He core states as well as properties of the two-body
�N, �N and �N–�N effective interactions. Therefore,
more investigation is needed to qualitatively clarify nuclear
dynamics by sophisticated microscopic calculations.

G. Two-step processes of π− p → K 0� followed by
K 0 p → K+n

Finally we discuss the integrated laboratory cross sec-
tions of dσ/d� for 6

�H(1+
exc.) by the two-step mechanism,

π−p → K0� followed by K0p → K+n or π−p → π0n
followed by π0p → K+� in the DCX 6Li(π−,K+) reaction
for production of the neutron-rich � hypernuclei [13]. We
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roughly estimate the contribution of the two-step processes for
π−p → K0n followed by K0p → K+�, which are expected
to be a main component, rather than those for π−p → π0n
followed by π0p → K+�. The sum of the cross sections by
a harmonic oscillator model [46] for 6Li targets at pπ− = 1.2
GeV/c (0◦) is given as

∑
f

(
dσ

(2)
f

d�L

)
0◦

≈ 2πξ

p2
K

〈
1

r2

〉(
α

dσ

d�L

)π−p→K0�

0◦

×
(

α
dσ

d�L

)K0p→K+n

0◦
N

pp
eff , (16)

where ξ = 0.0370 mb−1 is the factor integrated over angle

θ
(K0)
lab for π−p → K0� with −θ

(K+)
lab for K0p → K+n to

restore θlab = 0◦ in the angular distributions of the two
elementary processes, pK 
 0.842 GeV/c is the interme-
diate kaon momentum, and 〈1/r2〉 
 0.0280 mb−1 is the
mean inverse-square radial separation of the proton pair.
N

pp
eff 
 1 is the effective number of proton pairs including

the nuclear distortion effects. The elementary laboratory
cross section (αdσ/d�L)0◦ is estimated to be ∼0.35 mb/sr
for π−p → K0� or ∼1.96 mb/sr for K0p → K+n, de-
pending on the nuclear medium corrections. The results
show

∑
f (dσ

(2)
f /d�L)0◦ 
 1.4–1.9 μb/sr for π−p → K0n

followed by K0p → K+�, and also 0.20–0.34 μb/sr for
π−p → π0n followed by π0p → K+�. Considering the
large momentum transfer q 
 360 MeV/c in the (π−,K+)
reactions, we expect that the production probabilities for
loosely bound or resonant � states do not exceed 10−3% in
the quasielastic �n production, so that the cross section of 6

�H
in the two-step mechanism may be on the order of 10−2 nb/sr
at θlab = 7◦. This result suggests that the one-step mechanism,
π−p → K+�− via �− doorways caused by the �−p ↔ �n
coupling is rather favored than the two-step mechanism.

V. SUMMARY AND CONCLUSION

We studied phenomenologically the production of a
neutron-rich hypernucleus 6

�H in the 6Li(π−,K+) reaction at
1.2 GeV/c, considering the DWIA in the one-step mechanism,
π−p → K+�− via �− doorways caused by �−p ↔ �n
coupling. We evaluated the production cross section of
6
�H(1+

exc.) by using the coupled (5H-�) + (5He-�−) model

with a spreading potential and compared it with the data of
the missing mass spectrum at the J-PARC E10 experiment.
The results are summarized as follows:

(i) The �−-mixing probabilities in 6
�H(1+

exc.) are P�− �
0.2% both for s� state and for p� state in order to
reproduce no significant peak in the � production data,
so that the cross section of 6

�H is less than on the order
of 0.4 nb/sr.

(ii) The shape and magnitude of the near-�-threshold
spectrum significantly depend on the �� coupling
and � potentials.

(iii) The cross section of 6
�H(1+

exc.) is also sensitive to
the structure of the 5H core nucleus independent
of whether the 5H(1/2+

g.s.) ground state exists as a
resonant state bound with a narrow width.

(iv) The one-step mechanism via �− doorways seems
to be rather favored over the two-step mechanism
because the cross section of 6

�H in the two-step
mechanism may be on the order of 10−2 nb/sr at
θlab = 7◦ by the harmonic-oscillator model.

In conclusion, the calculated spectrum of the 6
�H hy-

pernucleus by the one-step mechanism via �− door-
ways can evaluate the near-�-threshold data of the DCX
6Li(π−,K+) reaction at 1.20 GeV/c. The result shows that the
�−-mixing probabilities in 6

�H(1+
exc.) are P�− � 0.2% both

for s� state and for p� state in order to explain no significant
peak in the � production spectrum obtained at the J-PARC
E10 experiment. The sensitivity to the potential parameters
implies that the nuclear (π−,K+) reactions with much less
background experimentally provide the high ability to study
precise wave functions for �,�− and the 5H nuclear core in
the neutron-rich � hypernucleus. Systematic analysis based on
microscopic calculations is required for the extended J-PARC
E10 experiment [47]. This investigation is in progress.
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