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The reaction 58Ni + 238U is investigated within the framework of dinuclear system model. The incident energy
effects on production cross sections of actinide nuclei are studied. It is found that the optimal incident energies for
producing neutron-deficient isotopes are larger than those for production of neutron-rich ones, and for producing
neutron-deficient isotopes the optimal incident energies strongly depend on neutron richness of objective
products.
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I. INTRODUCTION

Due to the “curvature” of the stability line and lack of
sufficiently neutron-rich projectile-target combinations, it is
quite hard to produce new neutron-rich isotopes of heavy and
superheavy nuclei through fusion reactions. Alternatively, the
multinucleon transfer process, as has been pointed out, can be
used for production of exotic nuclei.

Many experiments about transfer reactions had been per-
formed in the 1970s up to the 1990s [1–5]. Several isotopes
of Fm and Md have been synthesized in the transfer reaction
238U + 248Cm. It is noticed that the cross section of 0.1 μb
has been reached. However, with increasing charge number
of survival products the production cross section decreases
strongly. Also, it is difficult to perform these experiments
because of the high radiation that might destroy the detectors
and problems with separating and detecting the heavy reaction
products. To better understand mechanisms of heavy elements
synthesis in the r process, the production of neutron-rich nuclei
along N = 126 through multinucleon transfer process has also
been studied [6–10]. These nuclei are presently produced
in fragmentation reactions at relativistic energies [11]. In
Ref. [8], in comparison to fragmentation reactions, the huge
advantages of using the multinucleon transfer process for
the production of very neutron-rich nuclei with N = 126
were noticed. It is also found that the advantages become
more and more striking when the atomic number is lower.
Multinucleon transfer process is also appropriate for producing
neutron-deficient isotopes with proton numbers reaching far
beyond uranium [12]. Five new neutron-deficient isotopes
216U, 219Np, 223Am, 229Am, and 233Bk were observed in the
reaction 48Ca + 248Cm [12].

The fundamental mechanisms of the multinucleon transfer
process were investigated many years ago [13,14]. Recently,
the low energy dissipative collisions of heavy ions were studied
by Zagrebaev and Greiner [15–17]. It is noticed that shell
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effects may significantly enhance the yield of neutron-
rich heavy nuclei for appropriate projectile-target combi-
nations [17,18]. The semiclassical model GRAZING [19],
time-dependent Hartree-Fock approach (TDHF) [20–22], mi-
croscopic constrained molecular dynamics model (CoMD)
[23–25], deep-inelastic transfer (DIT) model [24–26], and
improved quantum molecular dynamics model (ImQMD)
[27–29] are also used to investigate the mechanisms of deep
inelastic collisions of heavy ions. The dinuclear system (DNS)
model, which can treat the charge, mass, angular momentum,
and kinetic energy dissipation during heavy ion collisions, has
been successfully used in investigating the multinucleon trans-
fer reactions [30–35]. The production of neutron-rich isotopes
around N = 126 shell closure in radioactive beam induced
transfer reactions are investigated [33]. It is found that, based
on the target 208Pb, the radioactive beam 144Xe shows great
advantages for producing neutron-rich nuclei with N = 126
in comparison to the stable beam 136Xe and the advantages get
more obvious for producing nuclei with less charge number.

The production cross sections of exotic heavy nuclei
through transfer reactions strongly depend on the projectile-
target combination and the incident energy [36]. In Ref. [16],
it was pointed out that optimal beam energy for produc-
tion of neutron-rich nuclei in transfer reactions is about
20–30 MeV higher than the corresponding Coulomb barrier
in the entrance channel. For production of neutron-deficient
heavy nuclei the optimal incident energy (OPE) should be quite
different.

In this work, the transfer reaction 58Ni + 238U is investi-
gated within the framework of the DNS model. The influences
of incident energy on production cross sections of neutron-rich
and neutron-deficient actinide nuclei are studied. The OPEs
for producing some unknown actinide isotopes located at
the neutron-deficient side with Z = 93–97 in the reaction
58Ni + 238U are predicted.

The article is organized as follows. In Sec. II, we describe
the theoretical framework in detail. The results and discussion
are presented in Sec. III. Finally, we summarize the main
results in Sec. IV.
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II. THEORETICAL FRAMEWORK

The production cross sections of the final products in
transfer reactions can be written as

σER(Z1,N1 − x) = πh̄2

2μEc.m.

Jmax∑
J=0

(2J + 1)Ttrans(J )

×P (Z1,N1,t = τint)Wsur(xn), (1)

where the interaction time τint, which is determined by deflec-
tion function method [37], is strongly affected by interaction
potential at the contact configuration, incident energy, and
entrance angular momentum J . Because of the incident energy
dissipation, the primary fragments are excited. Therefore, the
survival probability Wsur(xn) is considered. x is the number of
neutrons evaporated from the excited primary fragments.

Ttrans is the Coulomb barrier transmission probability, which
can be calculated as

Ttrans(Ec.m.,J ) = 1

1 + exp
{− 2π

h̄ω(J )

[
Ec.m. − B − h̄2

2μR2
B(J )

]} .

(2)

Here, Ec.m. is the incident energy at the center of mass frame.
h̄ω(J ) is the width of the parabolic barrier, RB(J ) defines a
position of the barrier. B is the height of Coulomb barrier. For
multinucleon transfer reactions in collisions of heavy nuclei
with no potential pocket and the incident energies are above
the interaction potentials at the contact configurations (there
are no ordinary barriers: the potential energies of these nuclei
are everywhere repulsive), it is reasonable to take the value of
Ttrans as 1.

P (Z1,N1,t) is the distribution probability for fragment with
proton number Z1 and neutron number N1 at time t , which can
be calculated by solving the master equation:

dP (Z1,N1,t)

dt
=

∑
Z

′
1

WZ1,N1;Z
′
1,N1

(t)
[
dZ1,N1P (Z

′
1,N1,t)

− dZ
′
1,N1

P (Z1,N1,t)
]

+
∑
N

′
1

WZ1,N1;Z1,N
′
1
(t)

[
dZ1,N1P (Z1,N

′
1,t)

− dZ1,N
′
1
P (Z1,N1,t)

]
− [�qf(�(t))]P (Z1,N1,t). (3)

Here, WZ1,N1;Z
′
1,N1

(WZ1,N1;Z1,N
′
1
) denotes the mean transition

probability from the channel (Z1, N1) to (Z
′
1, N1) [or (Z1,

N1) to (Z1, N
′
1)], and dZ1,N1 is the microscopic dimension

corresponding to the macroscopic state (Z1, N1). In the DNS
model, we consider the process of only one nucleon transfer.
The sum is taken over all possible proton and neutron numbers
that fragment 1 may take. �qf is the quasifission (QF) rate,
which describes the evolution of DNS system along relative
distance R, which can be treated with the one-dimensional

Kramers rate [38]:

�qf(�(t)) = ω

2πωBqf

⎡
⎣

√(
�

2h̄

)2

+ (ωBqf )2 − �

2h̄

⎤
⎦

× exp

[
−Bqf(Z1,N1)

�(t)

]
. (4)

The QF rate exponentially depends on the QF barrier Bqf.
The local temperature �(t) is calculated by using Fermi-gas
expression � = √

ε∗/a with the local excitation energy ε∗ and
the level-density parameter a = A/12 MeV−1. The frequency
ωBqf of the inverted harmonic oscillator approximates the
potential V in R at the top of the quasifission barrier, and
ω is the frequency of the harmonic oscillator approximating
the potential in R around the bottom of the pocket. The
� determines the friction coefficients. Here, � = 2.8 MeV,
h̄ωBqf = 2.0 MeV, and h̄ω = 3.0 MeV. The local excitation
energy is defined as

ε∗ = Ediss−[U (Z1,N1) − U (Zp,Np)]. (5)

Here, Ediss is the energy dissipated into the initial composite
system from the incident energy, which depends on entrance
angular momentum J . During the diffusion process, the
relative kinetic energy will dissipate into the DNS system.
The potential energy surface (PES) in collisions of actinide
nuclei can be written as

U (Z1,N1,Rcont) = B(Z1,N1) + B(Z2,N2)

+V (Z1,N1,Rcont). (6)

Here, B(Zi,Ni) (i = 1, 2) is the ground state binding energy
of the fragment i. The effective nucleus-nucleus interaction
potential V (Z1,N1,Rcont) is calculated at the contact point of
two fragments and can be written as

V (Z1,N1,Rcont) = VN(Z1,N1,Rcont) + VC(Z1,N1,Rcont),

(7)

where Rcont = R1(1 + β1Y20(θ1)) + R2(1 + β2Y20(θ2)) +
0.7 fm. Here, R1,2 = 1.16A

1/3
1,2 . β1,2 is the quadrupole

deformation parameter of the fragments and is taken from
Ref. [39]. θi is the angle between the symmetry axis of the ith
nucleus and the collision axis. We take θi equals 0 for tip-tip
collisions. Figure 1 shows the PES as a function of charge
asymmetry for the reaction 58Ni + 238U. If the excitation
energy of DNS is not high enough, the DNS may easily decay
into two fragments after multinucleon transfer from a heavy
fragment into a light one.

The nuclear potential can be written as [40]

VN(r,θ ) = C0

{
Fin − Fex

ρ0

[ ∫
ρ2

1 (r)ρ2(r − R)dr

+
∫

ρ1(r)ρ2
2 (r − R)dr

]

+Fex

∫
ρ1(r)ρ2(r − R)dr

}
(8)

with

Fin,ex = fin,ex + f ′
in,ex

N1 − Z1

A1

N2 − Z2

A2
. (9)
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FIG. 1. The PES for the reaction 58Ni + 238U as a function of
charge asymmetry [ηZ = (Z1 − Z2)/(Z1 + Z2)]. The arrow indicates
the entrance channel.

Here, C0 = 300 MeV, fin = 0.09, fex = −2.59, f ′
in = 0.42,

and f ′
ex = 0.54. Z1 (N1) and Z2 (N2) are the charge (neutron)

number of light and heavy fragments, respectively. The density
distributions of two nuclei are expressed as Woods-Saxon
distribution as

ρ1(r) = ρ0

1 + exp[(r − �1(θ1))/a1]
(10)

and

ρ2(r-R) = ρ0

1 + exp[(|r − R| − �2(θ2))/a2]
. (11)

Here, ρ0 = 0.16 fm−3. �i = Ri[1 + βiY20(θi)] is the surface
radii of the collision nuclei. βi and Ri are quadrupole defor-
mation parameter and the spherical radius of the ith nucleus,
respectively. The diffuseness parameter equals 0.56–0.58 fm,
which depends on the mass number. R is the distance between
the centers of two fragments.

The Coulomb potential is taken as the form in Ref. [41]

VC(r,θi) = Z1Z2e
2

r
+

(
9

20π

)1/2(
Z1Z2e

2

r3

)

×
2∑

i=1

R2
i β

(i)
2 P2(cosθi)

+
(

3

7π

)(
Z1Z2e

2

r3

) 2∑
i=1

R2
i

[
β

(i)
2 P2(cosθi)

]2
. (12)

The survival probability of the excited fragments in the
process of its cooling by means of neutron evaporation in the
competition with fission and emission of light charged particles
(C → B + xn) is estimated usually within the statistical
model of atomic nuclei and can be written as

Wsur(E
∗,xn) =P (E∗,xn) ×

xn∏
i=1

[
�n(E∗

i )

�tot(E∗
i )

]
, (13)

where E∗ is the excitation energy of one primary fragment.
E∗

i is the excitation energy before evaporation of the ith
neutron, which can be calculated from the equation E∗

i+1 =
E∗

i − Bi
n − 2Ti . Bi is the separation energy of ith neutron.

Ti is nuclear temperature before evaporating the ith neutron
and obtained from E∗

i = aT 2
i − Ti . The realization probability

P (E∗,xn) can be seen in Refs. [42,43]. �tot = �n + �f +
�p + �α + �d . The partial decay widths of the compound
nucleus for the evaporation of the light particle a = (n,p,α,d)
can be estimated using the Weisskopf-Ewing theory [44,45]

�C→B+a(E∗
i ,J ) = 2sa + 1

2πρC(E∗
i ,J )

2maR
2

h̄2

∫ E∗
i −Bi

a−δ

0

× εTa(ε)ρB

(
E∗

i − Bi
a − ε,J

)
dε. (14)

Here, sa , R, and ma are the spin of evaporated light particle,
radius of the daughter nucleus B, and mass of light particle.
Ta = {1 + exp[− 2π

h̄ωB
(ε − Va)]}−1 is the penetration probabil-

ity of the Coulomb barrier. Ra = 1.16 × (A1/3
B + A

1/3
a ).

On the other hand, the fission decay width is usually
calculated within the Bohr-Wheeler (BW) transition-state
method [46]:

�f(E
∗
i ,J ) = 1

2πρC(E∗
i ,J )

∫ E∗
i −Bi

f

0

× ρC

(
E∗

i − Bi
f − δ

)
1 + exp

[
2π

(
ε + Bi

f − E∗
i

)
/h̄ω

] . (15)

In this work, the fission barrier is obtained by Bf(E∗) =
Bmac

f − �Eshelle
−E∗/Ed . �Eshell is shell correction to the

nucleus ground state. The macroscopic part of the fission
barrier Bmac

f is calculated using the liquid drop model. The
damping parameter Ed = 18.5 MeV.

III. RESULTS AND DISCUSSION

Figure 2(a) shows the cross sections for formation of
Neptunium isotopes (Z = 93) in collisions 58Ni + 238U at
different incident energies. It is clearly shown that the yields
of primary fragments increase strongly with the increasing
incident energy. However, due to incident energy dissipation,
the increasing incident energy increases the excitation energy
of these fragments and thus decreases their survival probabil-
ity. It is noticed that the yield distribution of final fragments
increases at first and then decreases with the increasing
incident energy. This is mainly due to the competition between
incident energy effects of primary fragments yields and their
survival probabilities. The production cross sections of Ec.m. =
380 MeV, in comparison with those of Ec.m. = 290 MeV,
are strongly depressed at the region with A > 225. However,
for production of very neutron-deficient isotopes (A < 220),
the cross sections of Ec.m. = 380 MeV are larger. This is
because more neutrons can be evaporated in competition with
fission for higher incident energy and enhance the yields of
neutron-deficient isotopes. Hence, the OPEs for producing
neutron-deficient isotopes should be larger than those for
neutron-rich isotopes.
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FIG. 2. (a) Cross sections for formation of neptunium isotopes
(Z = 93) in collisions 58Ni + 238U at different incident energies. The
thin and thick lines denote distribution of primary and surviving
fragments, respectively. (b) Cross sections as a function of beam
energy for production of neutron-deficient nucleus 219Np and neutron-
rich nuclei 236,240Np in the reaction 58Ni + 238U. (c) The OPEs for
producing different neptunium isotopes (Z = 93) in the reaction
58Ni + 238U. The energy is discretized by 10 MeV.

In order to see the difference of OPEs between production
of neutron-deficient and neutron-rich nuclei, we show in
Fig. 2(b) the incident energy dependence of cross sections for
production of 219Np and 236,240Np nuclei. We notice that for
these nuclei the cross sections increase first and then decrease
with the increasing incident energy. It can be seen clearly that

FIG. 3. The predicted OPEs for producing unknown isotopes
located at the neutron-deficient side with Z = 94–97 in the transfer
reaction 58Ni + 238U. The energy is discretized by 10 MeV. The lines
are used to guide the eye.

the incident energy for maximal production cross section of
240Np is 290 MeV. However, the OPE for producing 219Np
isotope is 340 MeV, which is much larger than those for
producing 236,240Np.

In Fig. 2(c), the OPEs E
opt
c.m. for producing different

neptunium isotopes in the reaction 58Ni + 238U are shown.
For production of 216Np, the calculated OPE is 400 MeV. We
can see that the OPE increases strongly with the decreasing
mass number for A � 222, and the curve is almost flat in
neutron-rich region. The Coulomb barrier of the reaction
58Ni + 238U is 249 MeV. For production of neutron-rich
isotopes the OPEs are close to 1.1 times the Coulomb barrier.
However, for producing 216Np, the OPE is almost 1.6 times
the Coulomb barrier. With the increasing incident energy,
the excitation energies of primary fragments increase. Hence,
more neutrons can be evaporated, which will contribute to the
yields of more neutron-deficient isotopes. However, this kind
of contribution to yields of neutron-rich isotopes is slight.
Therefore, the OPEs are close in neutron-rich region.

In order to produce more unknown neutron-deficient
actinide isotopes, we predict OPEs for producing unknown iso-
topes located at the neutron-deficient side with Z = 94–97 in
the transfer reaction 58Ni + 238U and show in Fig. 3. The trend
can be seen that for each element the OPE increases strongly
with decreasing mass number. For producing unknown nuclei
222Pu, 225Am, 228Cm, and 231Bk in the reaction 58Ni + 238U,
the OPE is close 1.4 times the Coulomb barrier.

IV. CONCLUSIONS

Within the framework of DNS model, the transfer reaction
58Ni + 238U for production of actinide nuclei is investigated.
The incident energy dependence of production cross sections
of neutron-rich and neutron-deficient isotopes is studied. It is
found that the OPEs for producing neutron-deficient isotopes
are larger that those for production of neutron-rich ones. Also,
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for producing neutron-deficient isotopes the optimal incident
energies strongly depend on neutron richness of objective
products. For producing neutron-rich isotopes, the OPEs are
very close. We also predict the OPEs for producing some
unknown neutron-deficient actinide nuclei with Z = 94–97
in the reaction 58Ni + 238U. It is found that for producing
unknown neutron-deficient nuclei 222Pu, 225Am, 228Cm, and
231Bk in the reaction 58Ni + 238U, the OPE is close 1.4 times
the Coulomb barrier.
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