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Within the framework of the dynamical cluster-decay model (DCM), we have studied the nuclear system with
Z = 122 and mass number A = 306 formed via two “hot” fusion reactions 58Fe + 248Cm and 64Ni + 242Pu. The
up-to-date measured data are available only for the first reaction, and for fusion-fission cross section σff and
quasifission cross section σqf , only at one compound nucleus (CN) excitation energy E∗ = 33 MeV. In this study,
we have included the deformation effects up to quadrupole deformations β2i and with “optimum” orientations θ

opt.
i

for coplanar (� = 00) configurations. The only parameter of the model is the neck-length parameter �R whose
value, for the nuclear proximity potential used here, remains within its range of validity (∼2 fm). Using the best
fitted �R’s to the observed data for σff , calculated for mass region A/2 ± 20, and σqf for the incoming channel of
Fe-induced reaction at E∗ = 33 MeV, we have extended the DCM calculations to the other Ni-induced reaction,
and to E∗’s in the energy range 25–68 MeV. The interesting result is that the predicted evaporation residue cross
section σER for 1–4 neutrons is largest for 4n decay at E∗ = 45 MeV, having the value σER ≡ σ4n ∼ 10−5 pb for
both reactions, and that the �R’s for the three processes (ER, ff, and qf) are different, i.e., they belong to different
time scales where ff occurs first, then qf and the ER at the end. Other results of interest are the predictions
of the magic N = 82 136Xe fragment in the ff region of mass A/2 ± 20, and the doubly magic 208Pb in the qf
region, in near close agreement with observed data (the observed fission fragment is of mass 132, instead of
the predicted mass 136). The role of the weakly bound neutron-rich intermediate mass fragments and of the
nucleus in the neighborhood of deformed magic Z = 108 are also indicated in the DCM calculations, which need
experimental verification. For the predicted σER, the largest value of CN fusion probability PCN = 0.2, and its
survival probability against fission Psurv → 0. Further experiments are called for.

DOI: 10.1103/PhysRevC.95.044603

I. INTRODUCTION

The Z = 122 superheavy nucleus (SHN) has been of some
interest both experimentally [1,2] and theoretically [3–5]. In
the early experiment [2] of 238U-induced reaction on the natZn
target at bombarding energies of 5.4, 6.7, and 7.5 MeV/nucleon
(compound nucleus excitation energy E∗ = 27, 93, and
133 MeV, respectively), leading to a “very hot” fusion reaction,
both the fusion-fission (ff) and quasifission (qf) processes were
identified in the superheavy 302122 nucleus. More recently
[1], the same two processes are observed in “hot” fusion re-
actions 58Fe + 248Cm → 306122∗ and 64Ni + 242Pu → 306122∗

at one E∗ = 33 MeV. This latter data, available only for the
58Fe + 248Cm reaction at E∗ = 33 MeV, is analyzed here
in this paper on the basis of the dynamical cluster-decay
model (DCM) of Gupta and collaborators, which has been
successfully applied to many light-, medium-, heavy-, and
superheavy-mass compound systems with Z = 10–118 (see
the reviews in Refs. [6–11] and recent publications in
Refs. [12–26]). In addition to the observed ff and qf cross
sections, σff and σqf , the so-far unobserved evaporation residue
[(ER); the light particles, in the present case x neutrons,
x = 1–4] cross sections σER = ∑4

1 σxn are also estimated.
Interestingly, for a best fit to observed σff and σqf data at
E∗ = 33 MeV in the 58Fe(248Cm, xn)306−x122 reaction, the
4n-decay cross section σ4n (≡σER) is predicted to be the largest
of ∼1.7×10−5 pb at E∗ = 45 MeV, with each decay process
(ER, ff and qf) occurring in a different time scale (different
neck-length parameter �R values, the only parameter of the

DCM). Then, for the same �R values, the DCM predictions
are made at energies both below and above the experimental
E∗ = 33 MeV, and for the other 64Ni + 242Pu reaction.

The earlier theoretical studies of σER for Z = 122 refer
to cold, near-symmetric reaction 154Sm(150Nd, 1n)303122
[3,4], and both cold (90Zr + 208Pb → 298−x122 + xn) and
above noted [1] hot (58Fe + 248Cm → 306−x122 + xn and
64Ni + 244Pu → 308−x122 + xn) asymmetric reactions [5].
For the cold (1n) near-symmetric reaction 154Sm(150Nd,
1n)303122, using the fusion-by-diffusion (FBD) model of
Swiatecki et al. [27–29], some of these authors [3] predict for
303122 the 1n decay cross section σ1n ∼ 10−11 pb, whereas
some other authors [4] had predicted the same to be ∼1 pb,
an incredible 11 orders of magnitude higher, for their use
of an old variant of the FBD model [27] with strongly
differing model parameters. Note, however, that the work of
the authors of Ref. [3] is based on the set of parameters well
tested for superheavy nuclei, both for cold fusion and hot
fusion reactions with Z = 104–113 [28] and 114–118 [29],
respectively, and hence could be trusted more, as compared
to the other work of Ref. [4]. In another study [5], within
the dynamical multidimensional stochastic (DMS) approach,
based on Langevin equations for shape degrees of freedom
of colliding nuclei and the compound system, the largest
predicted evaporation residue cross section σER = 23 fb at
E∗ = 53 MeV for the 58Fe + 248Cm → 306−x122 + xn hot
fusion reaction, and the same for the (Pb-based) cold fusion
reaction being 9–10 orders of magnitude smaller. Interestingly,
our DCM predictions (mentioned above) are lower, within
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∼3 orders of magnitude, than the Langevin approach. The
study of Z = 122 SHE is important because according
to microscopic relativistic mean-field theory calculations
[30–33], the not-yet observed, magic SHN could be Z = 120,
N = 172 or 184, and the production cross section for a magic
SHN is expected to be larger than its neighboring nuclei.
The heaviest element observed so far is Z = 118, Oganesson
(Og), with largest σ2n � 0.9 pb at E∗ = 34.4 MeV in the
48Ca + 249Cf reaction [34,35].

The paper is organized as follows: Section II gives a
brief description of the dynamical cluster-decay model. Our
calculations for ff, qf, and the ER cross sections, first for
the 58Fe + 248Cm reaction at E∗ = 33 MeV, and then for
64Ni + 242Pu reaction, and at other E∗ values, using the same
�R as obtained for the first reaction on the basis of DCM,
are given in Sec. III. Here, we first extend the calculations of
temperature-dependent binding energies (B.E.) up to Z = 122,
because the available binding energies to date were up to Z =
118. This is done by using Seeger’s mass formula [36], with
temperature dependence introduced by Davidson et al. [37].
Note that the above two reactions form the same compound
nucleus (CN) 306122, and the same E∗ means the same
temperature T (in MeV) [E∗ = ACN

11 T 2 − T ], but different
center-of-mass energy Ec.m. [E∗ = Ec.m. + Qin] because the
Qin values are different in two cases [Qin = Bt + Bp − BCN].
In other words, the entrance-channel target-projectile (t-p)
effects enter via the Q value. Note that 306122 is a strongly
neutron-rich nucleus, and hence its decay and synthesis within
the DCM would also involve neutron-rich fragments, whose
effect on decay cross sections is also estimated here. Finally,
a summary of our results and conclusions are presented in
Sec. IV. A brief report of this work was presented at the 2016
Chandigarh Science Congress (CHASCON2016) [38].

II. THE DYNAMICAL CLUSTER-DECAY MODEL

The dynamical cluster-decay model of Gupta and collabo-
rators (see, e.g., Ref. [7]) is based on the dynamical or quantum
mechanical fragmentation theory (QMFT) [39,40], using the
two-center shell model (TCSM) as an average two-body
potential in the Strutinsky macro-microscopic method. The
theory is based on the collective coordinates of mass (and
charge) asymmetries η (and ηZ) [η = (A1 − A2)/(A1 + A2),
ηZ = (Z1 − Z2)/(Z1 + Z2)], and relative separation R, with
multipole deformations up to hexadecupole βλi (λ = 2,3,4;
i = 1,2) and orientations θi . In terms of these coordinates, we
define the compound nucleus decay or fragment’s formation
cross section, for 	 partial waves, as

σ(A1,A2) = π

k2

	max∑
	=0

(2	 + 1)P0P ; k =
√

2μEc.m.

h̄2 , (1)

where P0 is the fragment’s preformation probability, referring
to η motion at fixed R value, and P the barrier penetrability,
referring to R motion for each η value, both dependent on T
and 	. The reduced mass μ = mA1A2/(A1 + A2) with m as
the nucleon mass. 	max is the maximum angular momentum,
defined for the light-particle evaporation residue cross section
σER → 0, owing to P0 → 0, or for ff, the P0 approaching a

(nearly) constant maximum value (refer to Fig. 4). Then, it
follows from Eq. (1) that

σER =
4or5∑
A2=1

σ(A1,A2) or =
4or5∑
x=1

σxn, (2)

and

σff = 2
A/2∑

A2=5or6

σ(A1,A2). (3)

The same equation (1) is also applicable to the qf decay
process, where P0 = 1 for the incoming channel because the
target and projectile nuclei can be considered to have not yet
lost their identity. Then, for P calculated for the incoming
channel ηic,

σqf = π

k2

	max∑
	=0

(2	 + 1)Pηic . (4)

Noting that Eq. (1) is defined for each exit or decay channel,
i.e., both the formation P0 and then their emission via barrier
penetration P are calculated for each decay channel (A1,
A2), then, using Eq. (1) in Eqs. (2), (3), and (4), the DCM
predicts not only the total fusion cross section σfusion, but
also its constituents, the cross sections σER, σff , and σqf

(σfusion = σER + σff + σqf).
In Eq. (1) above, apparently, η and R motions are taken as

decoupled, although in general they are coupled, as justified in
Refs. [39–42], such that the stationary Schrödinger equation
for the coupled η and R coordinates (with ηZ coordinate
minimized, and hence kept fixed) is given by

H (η,R)ψ(η,R) = Eψ(η,R), (5)

with the Hamiltonian constructed as

H (η,R) = K(η) + K(R) + K(η,R)

+V (η) + V (R) + V (η,R). (6)

Here, K refers to the kinetic energy (expressed in terms of
mass parameters Bij ; i,j = R,η [43–45]) and V (η,R,T ), the
T-dependent collective potential energy, calculated as per the
Strutinsky renormalization procedure (BE = VLDM + δU ),
using the T-dependent liquid drop model energy VLDM(T )
of Davidson et al. [37] with its constants at T = 0 refitted
by some of us [46–48] to give the experimental binding
energies (BE) of Audi et al. [49] or the calculated ones
of Möller et al. [50] wherever the same were not available
in [49], and δU are the “empirical” shell corrections of
Myers and Swiatecki [51] for spherical nuclei, also made T
dependent to vanish exponentially. Thus, in fact, we are using
the experimental binding energies, split into VLDM and δU
components. Note, however, that the shell corrections derived
from single particle potential calculations, like the one in [50],
or from the asymmetric two-center shell model (ATCSM)
by Maruhn and Greiner [52] and its improved version by
Gherghescu [53,54], are likely to differ from the results of
the “empirical” formula used here, and may thus in the future
be of interest to look into. Similar remarks apply to the
kinetic energy part of the Hamiltonian via the mass parameters
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FIG. 1. Schematic configuration of two equal or unequal axially
symmetric deformed, oriented nuclei, lying in the same plane
(azimuthal angle � = 00) for various θ1 and θ2 values in the range
00–1800. The θi are measured anticlockwise from the colliding axis
and angle αi in clockwise from the symmetry axis.

(see below). To this is added the T-dependent nuclear prox-
imity VP , Coulomb VC , and 	-dependent potential V	 for
deformed, oriented nuclei, in the same plane (illustrated in
Fig. 1). For VP , we use the pocket formula of Blocki et al. [55],
and in V	(T ) (= h̄2	(	 + 1)/2I (T )), the moment of inertia I
is taken in the complete sticking limit I = IS(T ) = μR2 +
2
5A1mR2

1(α1,T ) + 2
5A2mR2

2(α2,T ). The angles αi , i = 1,2,
used here to define the radius vectors Ri of deformed nuclei
[see Eq. (9) below], are measured in clockwise direction from
the symmetry axis (see Fig. 1).

For the kinetic energy part, the mass parameters Bηη used
are the smooth classical hydrodynamical masses [43] though,
in principle, the shell corrected masses, like the cranking
masses which depend on the underlying shell model basis
[44,45], should be used. The cranking masses Bηη are known
to be about one order of magnitude smaller than the classical
hydrodynamical masses (compare, e.g., the scale of Fig. 3 in
[56] with that of Fig. 12 in [57]), but the oscillations (shell
effects) in cranking masses Bηη(η) are shown to be even more
important than their average magnitude [58]. Thus, for the
single particle potential used for shell corrections, it is relevant
to use the corresponding shell corrected cranking masses (not
done here).

For implementing the decoupled approximation in Eq. (5),
(i) the kinetic energy coupling term K(η,R) (∝ ∂2/∂η∂R)
is neglected because the coupled cranking masses BRη and
BRηZ

[44,45] are, in general, small, such that the relations
BRη � (BRRBηη)

1
2 and BRηZ

� (BRRBηZηZ
)

1
2 are a good

approximation [39,40]; (ii) the coupling term of the potential
V (η,R) is shown to be small [41,42] at least for fission charge
distributions [41] and α-particle transfer resonances [42], and
hence neglected. Then, the Hamiltonian (6), for each 	 value,
on using the Pauli-Podolsky prescription [59], takes the form,

H = − h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
− h̄2

2
√

BRR

∂

∂R

1√
BRR

∂

∂R

+V (η) + V (R), (7)

FIG. 2. Scattering potential V (R,	) for 306122 → 302122 + 4n at
E∗ = 33 MeV (T = 1.109 MeV), at two different 	 values (	 = 50 h̄

and 	max). The decay path at R = Ra , and definition of “bar-
rier lowering” �VB (	) = V (Ra,	) − VB (	) is also shown for the
	 = 187 h̄ case.

and the Schrödinger equation (5) becomes separable in η
and R coordinates, whose solutions |ψ(η)|2 and |ψ(R)|2,
respectively, give the probabilities P0 and P of Eq. (1). The
P0(Ai) is obtained at a fixed R = Ra , the first turning point(s)
of the penetration path(s) for different 	 values, and the
penetrability P , instead of solving the corresponding radial
Schrödinger equation in R, is given by the WKB integral,
which is solved analytically [60,61]. For more details, see
Refs. [16,19].

For Ra , the first turning point in the decay of a hot CN, we
use the postulate [47,48],

Ra(T ) = R1(α1,T ) + R2(α2,T ) + �R(η,T )

= Rt (α,η,T ) + �R(η,T ), (8)

with radius vectors,

Ri(αi,T ) = R0i(T )

[
1 +

∑
λ

βλiY
(0)
λ (αi)

]
, (9)

having temperature-dependent nuclear radii R0i(T ) for the
equivalent spherical nuclei [62],

R0i = [
1.28A

1/3
i − 0.76 + 0.8A

−1/3
i

]
(1 + 0.0007T 2). (10)

Thus, Ra introduces a T-dependent parameter �R(T), the
neck-length parameter, which assimilates the deformation and
neck formation effects between two nuclei [63–65]. We define
Ra the same for all 	 values (see Fig. 2) because we do not
know how to add the 	 effects in binding energies.

Note that the choice of parameter Ra in Fig. 2 [equivalently
�R in Eq. (8)] for a best fit to the data, allows us to relate in
a simple way the V (Ra,	) to the top of the barrier VB(	) for
each 	, by defining their difference �VB(	) as the effective
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“lowering of the barrier,”

�VB(	) = V (Ra,	) − VB(	). (11)

Here, �VB for each 	 is defined as a negative quantity because
the actually used barrier is effectively lowered. This in-built
property in DCM, of “barrier lowering,” is considered to be the
only acceptable explanation to the hindrance phenomenon in
heavy ion reactions at sub-barrier energies [7,66], not relevant
for the present work because only one data point is available.

For the calculated σfusion = σCN + σqf , where σCN = σER +
σff , we can define the CN fusion probability PCN [16] and CN
survival probability Psurv [19], respectively, as

PCN = σCN

σfusion
= 1 − σqf

σfusion
, (12)

and

Psurv = σER

σCN
= 1 − σff

σCN
, (13)

where σfusion is the (total) fusion cross section, the σCN as the
CN formation cross section, and σqf as the quasifission (qf)
cross section.

III. CALCULATIONS AND RESULTS

In this section, we first present the results of our DCM
calculations carried out for the 58Fe + 248Cm reaction, because
the experimental data on σff and σqf are available only for
this reaction, and only at one E∗ = 33 MeV. For a best fit
to the σff data, we require different neck-length parameters
�Rf̊ f and �RER (i.e., different reaction time scales) which
allows us to predict the evaporation residue (ER) cross section
σER (= ∑

σxn, x = 1–4) for the planning of new experiments
on the fusion cross section of Z = 122. The σff is obtained
for the measured range of fragments with mass numbers
A/2 ± 20. Similarly, �Rqf is obtained for a best fit to σqf

data. The DCM calculations are made for quadrupole (β2i)
deformed nuclei with “optimum” orientations (θopt.

i ) for “hot
compact” configurations [67], the case where the interaction
barrier is highest and the interaction radius is smallest (see
Fig. 3). Results of this calculation are given in Table I (second
row), and are extended to other excitation energies, both
below and above E∗ = 33 MeV, and to the other hot fusion
reaction 64Ni + 242Pu, using the same neck-length parameters
as obtained for the measured data. For “hot” fusion reactions,
we expect the 3n and/ or 4n decays to be predominant, as is
shown to be the case here for both the reactions. Note that
neck-length �R is the only parameter of the DCM and, for the
nuclear proximity potential of Blocki et al. used here, the fits
obtained for σff and σqf are almost exact, and the best fitted
�R values lie within the nuclear proximity limit of ∼2 fm.
The details of these calculations are as follows.

First of all, we discuss our choice of “optimum” orientations
(θopt.

i ) for “hot compact” configurations of quadrupole (β2i)
deformed nuclei in the 58Fe + 248Cm reaction. Here the heavy
target nucleus 248Cm is well deformed with a total spin and
parity 0+. Thus, in the laboratory frame, from spin 0, the target
nucleus is oriented with an equal probability in each direction.
As a consequence, the two colliding nuclei in the fusion
reaction will try all possible relative orientations. However,

FIG. 3. Scattering potentials V(R) for the 58Fe + 248Cm →
306122∗ reaction at various illustrative orientations, for quadrupole
(β2i) deformatted and spherical nuclei. The barrier positions Rmax

and Rmin referring, respectively, to the lowest (cold) and highest (hot)
barriers are also shown.

the calculations are always made in the center-of-mass (c.m.)
frame where one cannot distinguish between the target and the
projectile nucleus. Therefore, we make our calculations for all
possible combinations of θ1 and θ2, as illustrated in Fig. 3,
and define the so-called “hot compact” and “cold elongated”
configurations (curves 1 and 6) as the two limiting cases
[67], and the “optimum configuration” is taken as one which
matches the experimental data on fission mass distribution,
discussed below. As already defined above, the “hot compact”
configuration is the one with the highest interaction barrier
and the smallest interaction radius, and the “cold elongated”
configuration is the one with the lowest interaction barrier
and the largest interaction radius, namely 900, 900, and 00,
1800, respectively, i.e., curve 1 and 6 in Fig. 3; these are also
referred to as hot and cold fusion. We have also considered
the two nuclei as spheres (curve 7 in Fig. 3) whose barrier
characteristics lie in between the two extremes (cold and hot)
but much closer to the “hot compact” configuration. Note that
the spherical configuration gives an average behavior of all the
oriented configurations [20].

Figure 4(a) shows the mass fragmentation potential V (A2)
for the compound system 306122∗ formed in the 58Fe + 248Cm
reaction at E∗ = 33 MeV, for “hot compact” configurations,
and at 	 = 0 and 	max = 187 h̄ values, for �RER = 1.242 fm
for the, not-yet observed, light fragments mass region A2 =
1–4 and the best fitted �Rff = −0.1421 fm for the observed
fusion-fission region (A/2 ± 20) and the rest of the fragments.
The 	max values for the two processes (ER and ff) are,
respectively, fixed for P0 → 0 and becoming maximum with a
(nearly) constant value, as is illustrated in Fig. 5. Similarly,
	min is determined for P → 0, as shown in Fig. 6. We
notice from Figs. 5 and 6 that both the preformation and
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TABLE I. DCM calculated xn-channel cross sections σ Cal.
xn , x = 1–4, their sum σER (=∑4

1 σxn), the ff and qf cross sections σ Cal.
ff and σ Cal.

qf

for Fe- and Ni-induced reactions forming 306122 at the respective best fitted �R = 1.242, −0.1421, and 1.007 fm for E∗ = 33 MeV, compared
with available experimental σ

Expt.
ff and σ

Expt.
qf for 58Fe + 248Cm reaction at E∗ = 33 MeV. �R’s are taken the same at other energies ranging

from 25 to 68 MeV. The σ Cal.
ff is calculated for the fragment mass region A/2 ± 20 and σ Cal.

qf for the entrance channel alone. For ER cross
sections, only the 4n channel is found contributing. The CN formation probability PCN � 1 and survival probability Psurv → 0 because ER is
in pb and ff and qf are in mb.

Reaction E∗ 	max σ Cal.
xn (pb) σER ≡ σ4n σ Cal.

ff σ
Expt.
ff σ Cal.

qf σ
Expt.
qf PCN

(MeV) (h̄) 1n 2n 3n 4n (pb) (mb) (mb) (mb) (mb)

58Fe + 248Cm 25 185 1.20 × 10−37 1.68 × 10−37 1.93 × 10−40 1.37 × 10−11 1.37 × 10−11 1.46 8.42 0.148
33 187 7.01 × 10−30 1.63 × 10−28 2.92 × 10−27 2.8 × 10−7 2.8 × 10−7 1.616 1.616 22.60 22.603 0.067
38 195 7.24 × 10−27 7.15 × 10−25 4.15 × 10−23 2.65 × 10−6 2.65 × 10−6 5.24 70.8 0.069
45 200 3.74 × 10−25 7.67 × 10−23 8.49 × 10−21 1.69 × 10−5 1.69 × 10−5 8.70 35.7 0.196
51 202 6.66 × 10−14 1.95 × 10−22 3.03 × 10−20 4.29 × 10−12 4.29 × 10−12 2.67 41.1 0.115
53 203 7.19 × 10−14 3.91 × 10−22 7.05 × 10−20 5.26 × 10−12 5.26 × 10−12 4.82 33.5 0.126
60 206 1.43 × 10−13 3.15 × 10−21 7.77 × 10−19 1.45 × 10−11 1.45 × 10−11 2.31 38.2 0.108
68 197 2.52 × 10−13 1.37 × 10−20 3.97 × 10−18 2.85 × 10−11 2.85 × 10−11 0.49 47.3 0.010

64Ni + 242Pu 25 185 1.12 × 10−37 1.57 × 10−37 1.81 × 10−40 1.28 × 10−11 1.28 × 10−11 1.36 7.87 0.148
33 187 6.57 × 10−30 1.53 × 10−28 2.74 × 10−27 2.6 × 10−7 2.6 × 10−7 1.516 20.1 0.070
38 195 6.79 × 10−27 6.70 × 10−25 3.90 × 10−23 2.48 × 10−6 2.48 × 10−6 4.92 64.2 0.077
45 200 3.51 × 10−25 7.21 × 10−23 7.97 × 10−21 1.59 × 10−5 1.59 × 10−5 8.18 33.5 0.196
51 202 6.27 × 10−14 1.84 × 10−22 2.85 × 10−20 4.04 × 10−12 4.04 × 10−12 2.27 38.6 0.105
53 203 6.76 × 10−14 3.68 × 10−22 6.63 × 10−20 4.95 × 10−12 4.95 × 10−12 4.54 31.6 0.115
60 206 1.35 × 10−13 2.97 × 10−21 7.32 × 10−19 1.37 × 10−11 1.37 × 10−11 2.17 36.0 0.108
68 197 2.38 × 10−13 1.30 × 10−20 3.74 × 10−18 2.69 × 10−11 2.69 × 10−11 0.46 44.6 0.010

FIG. 4. (a) Fragmentation potential V (A2) for the compound system 306122 formed via 58Fe + 248Cm reaction at E∗ = 33 MeV for “hot
compact” configurations, using the best fitted �R’s, plotted for the extreme 	 values (	 = 0 and 	max = 187 h̄). For the light fragment
mass region (A2 = 1–4) �RER = 1.242 fm and for the fission region (A/2 ± 20 = 133–173) and the remaining fragments (A2 = 5–132)
�Rff = −0.1421 fm. Note that some charge minimized intermediate mass fragments are the very weakly bound neutron-rich nuclei, such
as 16−18C, 34Mg, 50−52Ar, 54K, etc., which enter the calculations because of their lower binding energies. (b) Same as above, but for “cold
elongated” configurations, and at 	 = 0 and 	max = 108 h̄ values fixed in the same way as for above, and (c) spherical considerations of nuclei,
for the same parameter set as above but 	max = 82 h̄.
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FIG. 5. Variation of P0 with angular momentum 	 for light
particles 1n-4n and ff decays of 306122, for the case of “hot compact”
configurations.

penetration probabilities are largest for 4n decay; in fact, we
notice in Table I that only 4n decay contributes to the ER
cross section σER. We further note in Fig. 4(a) that lower 	
values are energetically more favorable (lower in energy) for
σER, and higher 	’s for σff . Similarly, Fig. 4(b) shows the
mass fragmentation potential V (A2) for the compound system
306122∗ formed in the same 58Fe + 248Cm reaction at the same
E∗ = 33 MeV, but for “cold elongated” configurations, and
at 	 = 0 and 	max = 108 h̄ values fixed in the same way as in

FIG. 6. Variation of P with angular momentum 	 for light
particles 1n-4n decays of 306122, for the case of “hot compact”
configurations.

Figs. 5 and 6, and for the same �RER and �Rff parameters as
for “hot compact” configurations. Interesting differences are
evident like, e.g., ff is favorable (lower in energy), compared to
ER, for both the lower and higher 	 values. On the other hand,
in Fig. 4(c) for the same set of parameters, a similar situation
is presented for spherical considerations as for “hot compact”
configurations in Fig. 4(a), i.e., 	 = 0 is energetically more
favorable (lower in energy) for σER, and 	max for σff .

The fragmentation potentials in Fig. 4 (equivalently, the
corresponding P0’s in Fig. 7) show that the mass distribution
is asymmetric for “hot fusion” configurations [Fig. 4(a) or 7(a)]
or spherical considerations [Fig. 4(c) or 7(c)] and symmetric
for “cold fusion” [Fig. 4(b) or 7(b)]. Because experiments
[1] strongly manifest asymmetric mass distribution, with light
fragment mass observed at about 132 and qf peaked at doubly
magic 208Pb, the “cold fusion” results in Fig. 4(b) or 7(b) do not
seem to be relevant for any further discussion. Furthermore,
we notice in Fig. 4(a) or 7(a) for the case of “hot fusion”
that the asymmetric fission minimum (or peaks) at the magic
N = 82, 136Xe (and 170Er), and the qf peaks at 98Zr (and doubly
magic 208Pb), both agree with experiments [1], and the other
intermediate mass fragments (IMFs) minima (peaks) at 18C
and 54K occur from their being weakly bound neutron-rich
light nuclei, and finally at 27Al (and 279Mt) possibly from it
being a neighboring nucleus to deformed magic Z = 108. It
may be remembered that best fit to σff is obtained for the
experimental fragment mass range A/2 ± 20 (equivalently,
Ai = 133–173, i = 1,2). The qf, however, being a competitive
process to CN decay (ER and ff), is calculated only for the
incoming channel [refer to Eq. (4)]. Finally, although no
attempt is made to fit the available data with the spherical case
of nuclei [Fig. 4(c) or 7(c)], the results of experiments [1] are
clearly given both in terms of asymmetric mass distribution,
and light fission-fragment mass peaked at magic N = 82,
136Xe and qf at doubly magic 208Pb.

Figure 8 (and Table I) shows the variation of DCM-
calculated σff , σqf , and σER with E∗ for the best fitted
experimental σff and σqf data at E∗ = 33 MeV in the reaction
58Fe + 248Cm → 306122∗, and for the same best fitted neck-
length parameters �R’s (�RER = 1.242, �Rff = −0.1421,
and �Rqf = 1.007 fm) for the other reaction 64Ni + 242Pu →
306122∗ and at other E∗’s in the range 25–68 MeV. We notice
in Fig. 8(a) that σER is nearly the same in two cases (Ni-
induced curve lying lower), and for the Fe-induced reaction
σER is maximum ∼1.7×10−5 pb at E∗ = 45 MeV (for the
Ni-induced case, the maximum lies at ∼1.6×10−5 pb). The
variations of σff and σqf with E∗ in Figs. 8(b) and 8(c) are
also almost identical, except that the maxima in the case of
σqf is shifted at E∗ = 38 MeV, instead of 45 MeV. Note
that, for each process (ER, ff, qf), all calculations are at one
fixed �R value, and no effect of its variation with E∗ or the
reaction itself is included in these calculations. We find that a
small change of, say, 10%, i.e., �Rff = −(0.1421 ± 0.0142),
results in σff = 4.82+1.36

−2.62 mb at E∗ = 53 MeV. Another point
to note in Fig. 8 is that, in agreement with earlier results for
lighter-Z superheavy nuclei [68,69], the neck-length parameter
increases systematically from ff to ER, i.e., �R is largest for
ER, smallest for the ff region, and lies in between for qf, which
means that, in the decay channel, the ff process occurs first,
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FIG. 7. (a) Preformation probability P0 as a function of fragment mass Ai , i = 1,2, for the fragmentation potential in Fig. 4(a), i.e., for the
case of “hot compact” configurations, and at only 	max = 187 h̄. (b) Same as above, but for the fragmentation potential in Fig. 4(b), i.e., for the
case of “cold elongated” configurations, and at only 	max = 108 h̄, and (c) same as above, but for spherical considerations of nuclei, i.e., for
the fragmentation potential in Fig. 4(c), at only 	max = 82 h̄.

then the qf process, and finally the light particle ER emission
takes place. Furthermore, the effect of predicted small σER (in
pb), compared to σqf and σff (in mb), is that the calculated CN
formation probability PCN is very small (see Table I), with a
maximum value of PCN = 0.2 at E∗ = 45 MeV, and that the
CN survival probability Psurv → 0.

FIG. 8. Variation of DCM-calculated σER, σff , and σqf with E∗

for best fitted σff and σqf cross sections measured at E∗ = 33 MeV
in the reaction 58Fe + 248Cm → 306122∗, and for the same best
fitted �RER = 1.242, �Rff = −0.1421, and �Rqf = 1.007 fm, for
the other reaction 64Ni + 242Pu → 306122∗ and at other E∗’s in the
range 25–68 MeV, using “hot compact” configurations.

Finally, we have also investigated the role of weakly bound
neutron-rich fragments. Not allowing such fragments (refer
to Fig. 4 caption) in our analysis, for a best fit of �R’s to
measured σff and σqf at E∗ = 33 MeV, the predicted σER

at E∗ = 45 MeV is very small ∼6×10−28 pb, compared
to 1.7×10−5 pb with weakly bound neutron-rich fragments
allowed. Because 306122∗ is a very neutron-rich system, the
presence of neutron-rich fragments is somewhat natural, and
our results in Table I and Fig. 8 should be taken more seriously.

IV. SUMMARY AND CONCLUSIONS

Summarizing, in this paper, we have analyzed the only
available σff and σqf data for the “hot” fusion reaction
58Fe + 248Cm at E∗ = 33 MeV, for the synthesis of Z = 122
on the basis of the dynamical cluster-decay model of Gupta
and collaborators. The same two processes (ff and qf) are
observed in another “hot” fusion reaction 64Ni + 242Pu forming
the same compound system 306122∗ at the same one E∗ =
33 MeV, but with no published data. For a best fit to the
available data, the DCM calculations for quadrupole (β2i)
deformed nuclei with “optimum” orientations (θopt.

i ) for “hot
compact” configurations, are extended to other E∗ values
in the range 25–68 MeV, and for both the reactions. The
predicted evaporation residue cross section σER (= ∑4

1 σxn

for 1–4 neutrons emission), is largest for 4n decay, having
the value σER ≡ σ4n = 1.69×10−5 pb (1.59×10−5 pb for the
other Ni-based reaction) at E∗ = 45 MeV and that each of
the ER, ff, and qf decay processes occurs in a different
time scale (different neck-length parameter �R’s). �R is
the only parameter of the model, which is smallest for ff
(�Rff = −0.1421 fm) and largest for ER (�RER = 1.242 fm),
with �Rqf = 1.007 fm for the qf process lying in between.

Other interesting results of the DCM predictions are that, in
agreement with experiments, the asymmetric fission maxima
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(in the observed ff mass region of A/2 ± 20) lie at the magic
N = 82, 136Xe (and 170Er), and the qf peaks at 98Zr (and doubly
magic 208Pb). The other intermediate mass fragments (IMFs)
maxima from the weakly bound neutron-rich light fragments
are seen at 18C and 54K, and the possible role of a neighboring
nucleus 279

109Mt to deformed magic Z = 108 is present via
the 27Al (and 279Mt) fragments. The effect of neutron-rich
intermediate mass fragments is explicitly shown to increase the

σER cross section by an unexpected large order of magnitude
1023 pb. More experimental data are needed.
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[50] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Nucl.

Data Tables 59, 185 (1995).
[51] W. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966).
[52] J. Maruhn and W. Greiner, Z. Phys. 251, 431 (1972).
[53] R. A. Gherghescu, Phys. Rev. C 67, 014309 (2003),

044603-8

https://doi.org/10.1016/j.nuclphysa.2004.01.022
https://doi.org/10.1016/j.nuclphysa.2004.01.022
https://doi.org/10.1016/j.nuclphysa.2004.01.022
https://doi.org/10.1016/j.nuclphysa.2004.01.022
https://doi.org/10.1103/PhysRevC.36.115
https://doi.org/10.1103/PhysRevC.36.115
https://doi.org/10.1103/PhysRevC.36.115
https://doi.org/10.1103/PhysRevC.36.115
https://doi.org/10.1016/j.physletb.2014.07.062
https://doi.org/10.1016/j.physletb.2014.07.062
https://doi.org/10.1016/j.physletb.2014.07.062
https://doi.org/10.1016/j.physletb.2014.07.062
https://doi.org/10.1016/j.physletb.2014.02.030
https://doi.org/10.1016/j.physletb.2014.02.030
https://doi.org/10.1016/j.physletb.2014.02.030
https://doi.org/10.1016/j.physletb.2014.02.030
https://doi.org/10.1103/PhysRevC.93.064606
https://doi.org/10.1103/PhysRevC.93.064606
https://doi.org/10.1103/PhysRevC.93.064606
https://doi.org/10.1103/PhysRevC.93.064606
https://doi.org/10.1103/PhysRevC.87.054610
https://doi.org/10.1103/PhysRevC.87.054610
https://doi.org/10.1103/PhysRevC.87.054610
https://doi.org/10.1103/PhysRevC.87.054610
https://doi.org/10.1103/PhysRevC.88.014615
https://doi.org/10.1103/PhysRevC.88.014615
https://doi.org/10.1103/PhysRevC.88.014615
https://doi.org/10.1103/PhysRevC.88.014615
https://doi.org/10.1103/PhysRevC.88.034603
https://doi.org/10.1103/PhysRevC.88.034603
https://doi.org/10.1103/PhysRevC.88.034603
https://doi.org/10.1103/PhysRevC.88.034603
https://doi.org/10.1103/PhysRevC.89.014603
https://doi.org/10.1103/PhysRevC.89.014603
https://doi.org/10.1103/PhysRevC.89.014603
https://doi.org/10.1103/PhysRevC.89.014603
https://doi.org/10.1103/PhysRevC.89.034602
https://doi.org/10.1103/PhysRevC.89.034602
https://doi.org/10.1103/PhysRevC.89.034602
https://doi.org/10.1103/PhysRevC.89.034602
https://doi.org/10.1103/PhysRevC.90.024619
https://doi.org/10.1103/PhysRevC.90.024619
https://doi.org/10.1103/PhysRevC.90.024619
https://doi.org/10.1103/PhysRevC.91.064601
https://doi.org/10.1103/PhysRevC.91.064601
https://doi.org/10.1103/PhysRevC.91.064601
https://doi.org/10.1103/PhysRevC.90.034610
https://doi.org/10.1103/PhysRevC.90.034610
https://doi.org/10.1103/PhysRevC.90.034610
https://doi.org/10.1103/PhysRevC.90.034610
https://doi.org/10.1140/epja/i2014-14155-1
https://doi.org/10.1140/epja/i2014-14155-1
https://doi.org/10.1140/epja/i2014-14155-1
https://doi.org/10.1140/epja/i2014-14155-1
https://doi.org/10.1103/PhysRevC.91.014602
https://doi.org/10.1103/PhysRevC.91.014602
https://doi.org/10.1103/PhysRevC.91.014602
https://doi.org/10.1103/PhysRevC.91.014602
https://doi.org/10.1103/PhysRevC.91.034613
https://doi.org/10.1103/PhysRevC.91.034613
https://doi.org/10.1103/PhysRevC.91.034613
https://doi.org/10.1016/j.nuclphysa.2015.02.009
https://doi.org/10.1016/j.nuclphysa.2015.02.009
https://doi.org/10.1016/j.nuclphysa.2015.02.009
https://doi.org/10.1016/j.nuclphysa.2015.02.009
https://doi.org/10.1103/PhysRevC.91.054606
https://doi.org/10.1103/PhysRevC.91.054606
https://doi.org/10.1103/PhysRevC.91.054606
https://doi.org/10.1103/PhysRevC.91.054606
https://doi.org/10.1103/PhysRevC.92.024623
https://doi.org/10.1103/PhysRevC.92.024623
https://doi.org/10.1103/PhysRevC.92.024623
https://doi.org/10.1103/PhysRevC.92.024623
https://doi.org/10.1103/PhysRevC.92.064303
https://doi.org/10.1103/PhysRevC.92.064303
https://doi.org/10.1103/PhysRevC.92.064303
https://doi.org/10.1103/PhysRevC.92.064303
https://doi.org/10.1103/PhysRevC.93.024603
https://doi.org/10.1103/PhysRevC.93.024603
https://doi.org/10.1103/PhysRevC.93.024603
https://doi.org/10.1103/PhysRevC.93.024603
https://doi.org/10.1103/PhysRevC.93.044604
https://doi.org/10.1103/PhysRevC.93.044604
https://doi.org/10.1103/PhysRevC.93.044604
https://doi.org/10.1103/PhysRevC.95.014609
https://doi.org/10.1103/PhysRevC.95.014609
https://doi.org/10.1103/PhysRevC.95.014609
https://doi.org/10.1103/PhysRevC.95.014609
https://doi.org/10.1103/PhysRevC.95.014611
https://doi.org/10.1103/PhysRevC.95.014611
https://doi.org/10.1103/PhysRevC.95.014611
https://doi.org/10.1103/PhysRevC.95.014611
https://doi.org/10.1103/PhysRevC.71.014602
https://doi.org/10.1103/PhysRevC.71.014602
https://doi.org/10.1103/PhysRevC.71.014602
https://doi.org/10.1103/PhysRevC.71.014602
https://doi.org/10.1103/PhysRevC.83.054602
https://doi.org/10.1103/PhysRevC.83.054602
https://doi.org/10.1103/PhysRevC.83.054602
https://doi.org/10.1103/PhysRevC.83.054602
https://doi.org/10.1103/PhysRevC.86.014611
https://doi.org/10.1103/PhysRevC.86.014611
https://doi.org/10.1103/PhysRevC.86.014611
https://doi.org/10.1103/PhysRevC.86.014611
https://doi.org/10.1103/PhysRevC.56.238
https://doi.org/10.1103/PhysRevC.56.238
https://doi.org/10.1103/PhysRevC.56.238
https://doi.org/10.1103/PhysRevC.56.238
https://doi.org/10.1103/PhysRevC.60.034304
https://doi.org/10.1103/PhysRevC.60.034304
https://doi.org/10.1103/PhysRevC.60.034304
https://doi.org/10.1103/PhysRevC.60.034304
https://doi.org/10.1142/S021773239700176X
https://doi.org/10.1142/S021773239700176X
https://doi.org/10.1142/S021773239700176X
https://doi.org/10.1142/S021773239700176X
https://doi.org/10.1016/S0375-9474(99)00129-3
https://doi.org/10.1016/S0375-9474(99)00129-3
https://doi.org/10.1016/S0375-9474(99)00129-3
https://doi.org/10.1016/S0375-9474(99)00129-3
http://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf
https://doi.org/10.1103/PhysRevC.74.044602
https://doi.org/10.1103/PhysRevC.74.044602
https://doi.org/10.1103/PhysRevC.74.044602
https://doi.org/10.1103/PhysRevC.74.044602
https://doi.org/10.1016/0029-5582(61)90147-X
https://doi.org/10.1016/0029-5582(61)90147-X
https://doi.org/10.1016/0029-5582(61)90147-X
https://doi.org/10.1016/0029-5582(61)90147-X
https://doi.org/10.1016/0375-9474(94)90269-0
https://doi.org/10.1016/0375-9474(94)90269-0
https://doi.org/10.1016/0375-9474(94)90269-0
https://doi.org/10.1016/0375-9474(94)90269-0
https://doi.org/10.1103/PhysRevLett.32.548
https://doi.org/10.1103/PhysRevLett.32.548
https://doi.org/10.1103/PhysRevLett.32.548
https://doi.org/10.1103/PhysRevLett.32.548
https://doi.org/10.1103/PhysRevLett.35.353
https://doi.org/10.1103/PhysRevLett.35.353
https://doi.org/10.1103/PhysRevLett.35.353
https://doi.org/10.1103/PhysRevLett.35.353
https://doi.org/10.1088/0305-4616/12/11/014
https://doi.org/10.1088/0305-4616/12/11/014
https://doi.org/10.1088/0305-4616/12/11/014
https://doi.org/10.1088/0305-4616/12/11/014
https://doi.org/10.1088/0305-4616/6/4/006
https://doi.org/10.1088/0305-4616/6/4/006
https://doi.org/10.1088/0305-4616/6/4/006
https://doi.org/10.1088/0305-4616/6/4/006
https://doi.org/10.1103/PhysRev.96.1059
https://doi.org/10.1103/PhysRev.96.1059
https://doi.org/10.1103/PhysRev.96.1059
https://doi.org/10.1103/PhysRev.96.1059
https://doi.org/10.1103/PhysRevC.77.054613
https://doi.org/10.1103/PhysRevC.77.054613
https://doi.org/10.1103/PhysRevC.77.054613
https://doi.org/10.1103/PhysRevC.77.054613
https://doi.org/10.1103/PhysRevC.68.014610
https://doi.org/10.1103/PhysRevC.68.014610
https://doi.org/10.1103/PhysRevC.68.014610
https://doi.org/10.1103/PhysRevC.68.014610
https://doi.org/10.1088/0954-3899/29/12/003
https://doi.org/10.1088/0954-3899/29/12/003
https://doi.org/10.1088/0954-3899/29/12/003
https://doi.org/10.1088/0954-3899/29/12/003
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1016/j.nuclphysa.2003.11.003
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1016/S0029-5582(66)80001-9
https://doi.org/10.1016/S0029-5582(66)80001-9
https://doi.org/10.1016/S0029-5582(66)80001-9
https://doi.org/10.1016/S0029-5582(66)80001-9
https://doi.org/10.1007/BF01391737
https://doi.org/10.1007/BF01391737
https://doi.org/10.1007/BF01391737
https://doi.org/10.1007/BF01391737
https://doi.org/10.1103/PhysRevC.67.014309
https://doi.org/10.1103/PhysRevC.67.014309
https://doi.org/10.1103/PhysRevC.67.014309
https://doi.org/10.1103/PhysRevC.67.014309


SYNTHESIS OF THE Z = 122 SUPERHEAVY NUCLEUS . . . PHYSICAL REVIEW C 95, 044603 (2017)

[54] R. A. Gherghescu, W. Greiner, and G. Münzenberg, Phys. Rev.
C 68, 054314 (2003).

[55] J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang,
Ann. Phys. (NY) 105, 427 (1977).

[56] S. Kumar, R. K. Gupta, and W. Scheid, Int. J. Mod. Phys. E 3,
195 (1994).

[57] R. K. Gupta and W. Greiner, Int. J. Mod. Phys. E 3, 335
(1994).

[58] S. S. Malik and R. K. Gupta, J. Phys. G: Nucl. Phys. 12, L161
(1986).

[59] W. Pauli, in Handbuck der Physik, Part I, edited by H. Geiger and
K. Sheel (Springer, Berlin, 1933), Vol. 24, p. 120; B. Padolsky,
Phys. Rev. 32, 812 (1928); J. Eisenberg and W. Greiner, Nuclear
Models (North Holland, Amsterdam, 1971).

[60] R. K. Gupta, in Proceedings of the 5th International Conference
on Nuclear Reaction Mechanisms, Varenna, Italy, edited by
E. Gadioli (Ricerca Scintifica Educazione Permanente, Italy,
1988), p. 416.

[61] S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992
(1989).

[62] G. Royer and J. Mignen, J. Phys. G: Nucl. Part. Phys. 18, 1781
(1992).

[63] H. S. Khosla, S. S. Malik, and R. K. Gupta, Nucl. Phys. A 513,
115 (1990).

[64] S. Kumar and R. K. Gupta, Phys. Rev. C 55, 218 (1997).
[65] R. K. Gupta, S. Kumar, and W. Scheid, Int. J. Mod. Phys. E 6,

259 (1997).
[66] S. K. Arun, R. Kumar, and R. K. Gupta, J. Phys. G: Nucl. Part.

Phys. 36, 085105 (2009).
[67] R. K. Gupta, M. Balasubramaniam, R. Kumar, N. Singh, N.

Manhas, and W. Greiner, J. Phys. G: Nucl. Part. Phys. 31, 631
(2005).

[68] Niyti, R. K. Gupta, and W. Greiner, J. Phys. G: Nucl. Part. Phys.
37, 115103 (2010).

[69] R. K. Gupta, Niyti, M. Manhas, S. Hofmann, and W. Greiner,
Int. J. Mod. Phys. E 18, 601 (2009).

044603-9

https://doi.org/10.1103/PhysRevC.68.054314
https://doi.org/10.1103/PhysRevC.68.054314
https://doi.org/10.1103/PhysRevC.68.054314
https://doi.org/10.1103/PhysRevC.68.054314
https://doi.org/10.1016/0003-4916(77)90249-4
https://doi.org/10.1016/0003-4916(77)90249-4
https://doi.org/10.1016/0003-4916(77)90249-4
https://doi.org/10.1016/0003-4916(77)90249-4
https://doi.org/10.1142/S0218301394000085
https://doi.org/10.1142/S0218301394000085
https://doi.org/10.1142/S0218301394000085
https://doi.org/10.1142/S0218301394000085
https://doi.org/10.1142/S0218301394000127
https://doi.org/10.1142/S0218301394000127
https://doi.org/10.1142/S0218301394000127
https://doi.org/10.1142/S0218301394000127
https://doi.org/10.1088/0305-4616/12/7/002
https://doi.org/10.1088/0305-4616/12/7/002
https://doi.org/10.1088/0305-4616/12/7/002
https://doi.org/10.1088/0305-4616/12/7/002
https://doi.org/10.1103/PhysRev.32.812
https://doi.org/10.1103/PhysRev.32.812
https://doi.org/10.1103/PhysRev.32.812
https://doi.org/10.1103/PhysRev.32.812
https://doi.org/10.1103/PhysRevC.39.1992
https://doi.org/10.1103/PhysRevC.39.1992
https://doi.org/10.1103/PhysRevC.39.1992
https://doi.org/10.1103/PhysRevC.39.1992
https://doi.org/10.1088/0954-3899/18/11/011
https://doi.org/10.1088/0954-3899/18/11/011
https://doi.org/10.1088/0954-3899/18/11/011
https://doi.org/10.1088/0954-3899/18/11/011
https://doi.org/10.1016/0375-9474(90)90345-M
https://doi.org/10.1016/0375-9474(90)90345-M
https://doi.org/10.1016/0375-9474(90)90345-M
https://doi.org/10.1016/0375-9474(90)90345-M
https://doi.org/10.1103/PhysRevC.55.218
https://doi.org/10.1103/PhysRevC.55.218
https://doi.org/10.1103/PhysRevC.55.218
https://doi.org/10.1103/PhysRevC.55.218
https://doi.org/10.1142/S0218301397000160
https://doi.org/10.1142/S0218301397000160
https://doi.org/10.1142/S0218301397000160
https://doi.org/10.1142/S0218301397000160
https://doi.org/10.1088/0954-3899/36/8/085105
https://doi.org/10.1088/0954-3899/36/8/085105
https://doi.org/10.1088/0954-3899/36/8/085105
https://doi.org/10.1088/0954-3899/36/8/085105
https://doi.org/10.1088/0954-3899/31/7/009
https://doi.org/10.1088/0954-3899/31/7/009
https://doi.org/10.1088/0954-3899/31/7/009
https://doi.org/10.1088/0954-3899/31/7/009
https://doi.org/10.1088/0954-3899/37/11/115103
https://doi.org/10.1088/0954-3899/37/11/115103
https://doi.org/10.1088/0954-3899/37/11/115103
https://doi.org/10.1088/0954-3899/37/11/115103
https://doi.org/10.1142/S0218301309012744
https://doi.org/10.1142/S0218301309012744
https://doi.org/10.1142/S0218301309012744
https://doi.org/10.1142/S0218301309012744



