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Chemical potential and symmetry energy for intermediate-mass fragment production
in heavy ion reactions near the Fermi energy
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Ratios of differential chemical potential values relative to the temperature, (μn − μp)/T , extracted from isotope
yields of 13 reaction systems at 40 MeV/nucleon are compared to those of a quantum statistical model to determine
the temperature and symmetry energy values of the fragmenting system. The experimental (μn − μp)/T values
are extracted based on the modified Fisher model. Using the density value of ρ/ρ0 = 0.56 from the previous
analysis, the temperature and symmetry energy values of T = 4.6 ± 0.4 MeV and asym = 23.6 ± 2.1 MeV are
extracted in a framework of a quantum statistical model. These values agree well with those of the previous
work, in which a self-consistent method was utilized with antisymmetrized molecular dynamics simulations. The
extracted temperature and symmetry energies are discussed together with other experimental values published in
literature.
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I. INTRODUCTION

The symmetry energy of nuclear matter is a fundamental in-
gredient in the investigation of nuclear and astrophysical phe-
nomena [1,2]. In violent collisions of heavy ion reactions near
the Fermi energy, different sizes of clusters, from deuterons
to intermediate mass fragments (IMFs) with 3 � Z < 20, are
copiously produced. The experimentally observed multiplicity
distribution of isotopes for a given Z shows a quasi-Gaussian
shape with a peak near N = Z as a function of mass [3]. This
suggests that the production of these isotopes is closely related
to the symmetry energy, since the symmetry energy term is in
proportional to (N − Z)2 in the Weizsäcker-Bethe semiclas-
sical mass formula [4,5]. However the production mechanism
of these clusters is still debated. Global characteristic features
of the experimental observables, such as multiplicity, mass
or charge distributions and energy spectra, are investigated
both by statistical multifragmentation models [6,7] and by
transport models [8–15], although they are based on quite dif-
ferent assumptions. The former employs a freezeout concept,
under which the multifragmentation process takes place in
equilibrated nuclear matter described by parameters such as
size, neutron/proton ratio, density and temperature. Piantelli
et al. analyzed the multifragmentation events of 129Xe +nat Sn
at 30 to 50 MeV/nucleon, based on a statistical model, i.e.,
a microcanonical multifragmentation model (MMM) [16]. By
optimizing parameters, they could reproduce the experimental
results very well. Fragment excitation energies of 3.0 to
3.5 MeV/nucleon and an emission volume of 3.9 to 5.7 V0,
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where V0 is the volume of the composite system at normal
density, were extracted as the freezeout properties of the mul-
tifragmenting system. On the other hand, Zbiri et al. analyzed
the events from Au +Au at 60 and 150 MeV/nucleon using
a quantum molecular dynamics transport model (QMD) [17],
in which nucleon propagation in a mean field and nucleon-
nucleon collisions under Pauli blocking are two main physical
ingredients. They also reproduced the global features of the
experimental results and concluded that the dynamical pro-
cesses play a significant role in the multifragmentation. In our
previous works, similar results were also obtained in reactions,
64Zn + 58Ni, 92Mo, 197Au between 35 to 79 MeV/nucleon,
where the antisymmetrized molecular dynamics (AMD) code
of Ono et al. [14,18–21] was employed [22,23]. In our recent
work of Ref. [24], we suggested that a freezeout occurs in
AMD simulations. This conclusion was reached by studying
the density and temperature of the fragmenting source as
a function of the incident energy, utilizing a self-consistent
method [25,26] for 40Ca + 40Ca at 35 to 300 MeV/nucleon.
This result provides a bridge between the statistical multifrag-
mentation models and the transport models.

Investigations of the symmetry energy, especially focussing
on its density dependence, have been conducted using many
observables such as isotopic ratios [27], isospin diffusion
[28], neutron-proton emission ratios [29], giant monopole
resonances [30], pygmy dipole resonances [31], giant dipole
resonances [32], collective flow [33], and isoscaling [34–36]
among others. Ono et al. introduced a generalized free energy,
K(N,Z), and extracted the symmetry energy coefficient rela-
tive to the temperature, asym/T , from quadratic distributions
of the IMF yields [37,38]. In our previous works, asym/T was
experimentally extracted using isobaric yield ratios [39,40]
and m-scaling [41] within the framework of the modified
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Fisher model (MFM) [42–45]. In Ref. [25], we proposed
a self-consistent method based on MFM to evaluate the
density, temperature and symmetry energy by comparing the
experimental asym/T values to those for the primary fragments
generated by AMD with three different density-dependent
symmetry energy interactions. Applying this method to the
experimentally reconstructed primary isotope yields from
the reaction of 40 MeV/nucleon 64Zn + 112Sn system [3],
we extracted ρ/ρ0 = 0.56 ± 0.02, T = 5.2 ± 0.6 MeV, and
asym = 20.8 ± 0.6 MeV for the fragmenting system [26].

In this work, the ratio of proton-neutron differential
chemical potential relative to the temperature, (μn − μp)/T
(hereafter denoted as �μ/T ), is extracted from the isotope
yields from 13 reaction systems. These results are compared
to those predicted by the quantum statistical model (QSM)
of Harn and Stöcker [46] to determine the temperature and
symmetry energy of the fragmenting systems. This article is
organized as follows. In Sec. II, we briefly summarize the
experiment. In Sec. III, the moving-source fit, the extraction
of the temperatures, and symmetry energies of the fragmenting
systems are described and the results are presented. In Sec. IV,
symmetry energy extraction at Fermi energies and symmetry
energy constraints at subsaturation densities are discussed. In
Sec. V, a summary is given.

II. EXPERIMENT

The experiment was performed at the K-500 superconduct-
ing cyclotron facility at Texas A&M University. 64,70Zn and
64Ni beams were used to irradiate 58,64Ni, 112,124Sn, 197Au,
and 232Th targets at 40 MeV/nucleon. 13 reaction systems
were analyzed for the present work. They are 64Zn + 112Sn,
70Zn, 64Ni on 112,124Sn, 58,64Ni, 197Au, 232Th. Intermediate
mass fragments (IMFs) were detected by a detector telescope
placed at 20◦. The telescope consisted of four Si detectors.
Each Si detector was 5 cm × 5 cm. The nominal thicknesses
were 129, 300, 1000, 1000 μm, respectively. All four Si
detectors were segmented into four sections and each quadrant
had a 5◦ opening in polar angle. Typically 6 ∼ 8 isotopes
for atomic numbers Z up to Z = 18 were clearly identified
with the energy threshold of 4 ∼ 10 MeV/nucleon, using the
�E − E technique for any two consecutive detectors. Mass
identification of the isotopes was made using a range-energy
table [47]. The yields of light charged particles (LCPs) in
coincidence with IMFs were also measured using 16 single-
crystal CsI(Tl) detectors of 3 cm length set around the target
at angles between θlab = 27◦ and θlab = 155◦. The light output
from each detector was read by a photomultiplier tube. The
pulse shape discrimination method was used to identify p,
d, t , 3He, and α particles. The energy calibrations for these
particles were performed using Si detectors (50 ∼ 300 μm)
in front of the CsI detectors in separate runs. For the neutron
detection, 16 detectors of the Belgian-French neutron detector
array DEMON (Detecteur Modulaire de Neutrons) [48] were
used. The detectors were distributed to achieve opening angles
between the telescope and the detector of 15◦ � θIMF−n �
160◦. Neutron/γ discrimination was obtained from a pulse
shape analysis, by comparing the slow component of the light
output to the total light output. The neutron detection efficiency

of the DEMON detector, averaged over the whole volume, was
calculated using the GEANT code [49].

The event class identification in this experiment is crucial
for the following analysis. The events triggered by IMFs in
this experiment are “inclusive”, but they belong to a certain
class of events. In the experiment, the telescope at θ = 20◦
was used as the main trigger. The angle of the telescope was
optimized to be small enough so that sufficient IMF yields
were obtained above the detector energy threshold but large
enough so that the contribution from peripheral collisions was
negligible. In order to understand the event class taken in
this experiment, based on the analysis in Ref. [23], AMD
simulations [20] are used to evaluate the impact parameter
range in the present data set. According to the comparison
between the experiment and AMD simulations, it is found
that IMFs are generated copiously in a wide impact parameter
range more or less equally, that is, more than 80% of the
observed IMF yields originate from the impact parameter
range b � 8 fm. A detailed discussion is given in Ref. [50].

In order to further define the properties of fragmenting
source involved in the reaction products, a moving-source fit
technique is employed, which is described below.

III. RESULTS

A. Moving-source analysis

In order to characterize the fragmenting source, a moving-
source analysis is employed. A detail description of a moving-
source method is given in Ref. [51] and a partial analysis of
the moving-source fit performed for IMFs in this analysis has
been given in Refs. [40,50], and therefore, a brief description
for neutrons and light-charged particles (LCPs) is presented
here. Some of typical energy spectra of neutrons and LCPs in
coincidence with IMFs are shown in Fig. 1. No 3He spectra
are shown because of poor identification in CsI and/or poor
statistics. Since the measured angles are larger than θlab > 20o

where the projectile-like fragment (PLF) source component
has negligible contributions to these spectra, two sources,
a nucleon-nucleon (NN ) source and a target-like fragment
(TLF) source are used for the moving-source fit. The NN
source has a source velocity close to a half-beam velocity and
is described by a volume type Maxwellian, and the TLF source
has a small source velocity with a surface type Maxwellian
[51]. In order to optimize the four parameters in each source,
multiplicity, slope parameter, the Coulomb energy for LCPs,
and source velocity, Minuit in the Cern library has been used.
Typical fit results are shown by different (color) lines as
specified in the figure caption. As one can see, two source
components, NN and TLF, dominate in distinct two angular
ranges, that is, the NN source dominates in the top three to
four spectra and the TLF source dominates in the bottom three
to four spectra for all cases studied. Therefore four parameter
values for each source are essentially determined by the spectra
in these two distinct angular ranges. The extracted multiplicity
values of the NN source of neutrons, LCPs and IMFs for
all 13 reactions are given in Supplemental Material of this
article [52]. The errors given are estimated as follows. MINUIT

gives errors for each searched parameter. However in most
cases resultant errors for the multiplicities are in an order
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FIG. 1. Neutrons and light charged particle energy spectra at different θlab in coincidence with IMFs with Z � 3 for the 64Ni + 112Sn
reaction. The differential multiplicity is given in the absolute scale, but multiplied by a factor of 10n(n = 0–7) from the top to the bottom
spectra. For neutrons, θlab = 25◦,31◦,40◦,67◦,85◦,104◦,120◦,140◦ and for LCPs, θlab = 36◦,47◦,57◦,70◦,115◦,135◦,145◦,155◦ from top to
bottom. Red dashed lines represent the NN -source component, blue dotted lines for the TLF source component, and the black solid lines for
the summation of them.

of 1% or less, because there are many local minima for the
multiple parameter fits. In order to get more realistic errors for
the multiplicities, several different optimizations have been
performed, which includes different initial values, a fixed
source velocity or energy slope with an averaged values, fixed
parameter values in different angular ranges. The extracted
multiplicities within 10% from the minimum χ -square values
are plotted as a function of multiplicity. For LCPs and neutrons,
10% of the multiplicity values are estimated as the maximum
differences for different optimization conditions. For neutrons,
an additional 5% error is added from the neutron efficiency
calculation [49]. These values are set as the errors of the
multiplicities, if the error given by MINUIT is smaller. In a few
case the errors from the MINUIT is larger than this criterion and
the error is taken as in the table. For IMFs, two independent
data sets for 64Zn + 112Sn are analyzed independently and
the difference in multiplicity values are plotted as a function
of the multiplicity. The differences distribute around 5% for
M ∼ 0.3 to 50% for M � 0.001. These are generally much
larger than the errors given by MINUIT. The differences are fit

by a function f (M) to evaluate the maximum for a given M
value. Most of the differences are smaller than an empirical
function f (M) = 0.03M0.6 with an upper limit of 50%. This
function is used to estimate the errors for the IMFs multiplicity
in the Supplemental Material [52].

B. N N-source size and Z/A ratio

The size and Z/A ratio of the NN source [ANN and
(Z/A)NN ] are directly evaluated using the NN -source multi-
plicities (M) given in the Supplemental Material [52] as

ANN =
∑

i

AiMi, (1)

(Z/A)NN =
(∑

i

ZiMi

)/( ∑
i

AiMi

)
, (2)

where Ai and Zi are the mass and charge numbers of the ith
isotope and the summation is taken over all measured particles,
including neutrons, LCPs, and IMFs with Z up to 18. We have
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FIG. 2. NN -source size versus system size, where Asyst =
Aproj + Atarg. Data points are fit by a linear function and the parameters
are shown in the figure.

found that the contribution of the Z > 18 IMFs, which were
not isotropically identified in the experiment and are missing
in Eqs. (1) and (2), is less than 1%. In Figs. 2 and 3, the size and
Z/A ratio of the NN source are plotted as functions of those of
the system, respectively. As shown in Fig. 2, the NN -source
size varies from ∼40 to ∼90, which is much smaller than
the size of each reaction system studied (from 122 to 302).
This rather small size of the NN source indicates that the
particles are commonly produced by a multifragmentation of
a part of the projectile-target overlap region, and this similarity
of the production mechanism enables us to analyze the data
from quite different reaction systems on a common basis as
seen in our previous works [38–41]. Figure 3 indicates that
the Z/A ratios of the NN sources are distributed slightly
below the values of the 1 to 1 mixing of the projectile and the
target nucleons (dashed line), that is, the NN source is always
slightly more neutron-rich than those of the simple overlap
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/A

)

0.3

0.35

0.4

0.45

0.5

system
 = 0.931(Z/A)

NN
(Z/A)

FIG. 3. NN -source Z/A versus system Z/A, where (Z/A)syst =
(Zproj + Ztarg)/(Aproj + Atarg). Data points are fit by a linear function
(solid line) and the parameters are shown in the figure. Dashed line
indicates the values of 1 to 1 mixing between the projectile and target
for all 13 systems.

region of the projectile and target. This is an experimental
indication for the neutron migration from the cool projectile-
like and target-like zones to the hot overlap zone in the heavy
ion collisions at Fermi energies [34,36]. This phenomenon,
which is called isospin migration or isospin fractionation, has
been also predicted by model simulations of the semiperipheral
collisions at this energy region [10,53,54].

As shown in Figs. 2 and 3, both ANN vs Asyst and (Z/A)NN

vs (Z/A)syst plots show rather linear relations. The obtained
results are fit by linear functions, respectively, and the fitting
results are given by

ANN = 0.335Asyst, (3)

(Z/A)NN = 0.931(Z/A)syst. (4)

C. Differential chemical potential relative to temperature

The ratio of differential chemical potential relative to the
temperature, �μ/T , can be extracted from the isotopic yield
ratios, using the MFM [42]. The formulation of MFM is given
in the Appendix. In the framework of MFM, thermal and
chemical equilibriums are assumed, and the yield of an isotope
with mass A and I = N − Z (N neutrons and Z protons)
produced in a multifragmentation reaction, can be given as
[38–45,55]

Y (I,A) = Y0A
−τ exp

[
W (I,A) + μnN + μpZ

T
+ Smix

]
. (5)

A−τ represents the entropy of the fragment from T τ lnA in
Eq. (A6) in the Appendix and Smix is the mixing entropy
defined in Eq. (A12) in the Appendix. As noted in the Errata
in Refs. [26,59], the MFM formula in Refs. [43,44] has
an error in describing the mixing entropy as an opposite
sign. This has been corrected in the present work. τ is the
critical exponent. In the present work, the value of τ = 2.3 is
adopted from the previous studies [45]. Using the generalized
Weizsäcker-Bethe semiclassical mass formula [4,5], W (I,A)
can be approximated as

W (I,A) = avA − asA
2/3 − ac

Z(Z − 1)

A1/3

− asym
(N − Z)2

A
− ap

δp

A1/2
,

δp = − (−1)Z + (−1)N

2
. (6)

μn (μp) is the neutron (proton) chemical potential. In general
coefficients (av , as , ac, asym, and ap) and the chemical
potentials are temperature and density dependent. In the given
formulation in the Appendix, a constant volume process is
assumed in the free energy, and therefore the term “symmetry
energy” is used throughout this work. If one assumes a constant
pressure [56], the term “symmetry enthalpy” should be used.
Experimentally, the exact conditions can not be determined,
and thus we use “symmetry energy” throughout this article
[57]. In Eq. (6), the symmetry term is given as a net symmetry
energy of the volume and surface contributions [58]. This is
because at a finite temperature, notable surface dependence
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FIG. 4. ln[R(1,−1,A)] as a function of A directly from the
experimentally observed IMF yield from 64Zn + 112Sn. The curve
is the fit of data points using Eq. (8). The optimized �μ/T and ac/T

values are 0.71 and 0.35, respectively.

of the symmetry energy is not observed in AMD simulations
[25,36,39] and experiments [26,38,50].

Following Ref. [39], the isotope yield ratio between isobars
with I + 2 and I , R(I + 2,I,A), is utilized, which is

R(I + 2,I,A) = Y (I + 2,A)/Y (I,A)

= exp{[μn − μp + 2ac(Z − 1)/A1/3

− 4asym(I + 1)/A − δ(N + 1,Z − 1)

− δ(N,Z)]/T + �(I + 2,I,A)}, (7)

where �(I + 2,I,A) = Smix(I + 2,A) − Smix(I,A) and
Smix(I,A) = −[N ln(N/A) + Z ln(Z/A)]. When the above
equation is applied for a pair of mirror nuclei of odd mass
isotopes with I = −I and I , the symmetry energy term,
pairing term, and mixing entropy terms drop out and the
following equation is obtained:

ln[R(I,−I,A)]/I = [�μ + ac(A − 1)/A1/3]/T . (8)

The left side of Eq. (8) is calculated from the experimentally
obtained mirror isobar yields, and �μ/T and ac/T are opti-
mized by fitting the calculated ln[R(I,−I,A)]/I using the right
side of Eq. (8). Focusing on the I = 1 and I = −1 isotopes,
for a typical system 64Zn + 112Sn, the ln[R(1, − 1,A)] values
as a function of A and the corresponding fit using Eq. (8) are
given in Fig. 4. Similar quality results are obtained for the
other reaction systems [39]. Using the fact that the Coulomb
term in Eq. (8) is only related to the chosen isotopes and
therefore independent of the different reaction systems under
similar fragmenting conditions, the same ac/T value from
the 64Zn + 112Sn reaction is used to extract the �μ/T values
as free parameters from the different reaction systems [39].
The resultant �μ/T values extracted from all 13 systems are
plotted as a function of (Z/A)NN using open symbols in Fig. 5,
where (Z/A)NN is calculated using Eq. (2). A monotonically
decreasing trend of the experimental (secondary) �μ/T as
(Z/A)NN increases is observed in Fig. 5. This trend is a

NN
(Z/A)

0.36 0.38 0.4 0.42 0.44

/TμΔ

0

1

2

3

4
Pri.

Sec.

FIG. 5. Open circles: the �μ/T values from the experimentally
observed IMF yields from all 13 systems as a function of (Z/A)NN ;
full circles: the “primary” �μ/T values feeded using Eq. (9) as a
function of (Z/A)NN , where (Z/A)NN is calculated using Eq. (2).

natural consequence of the decreasing neutron richness of the
extracted source.

D. Sequential feeding for �μ/T

When fragments are emitted from the source, many of
them are in excited states and cool by evaporation processes
before they are detected. The sequential decay of these primary
hot fragments significantly alters the yield distribution and
distorts the information in the primary yields [50,59,60]. The
sequential decay process is employed in slightly different
ways in three models used in this analysis, AMD+GEMINI

[61], SMM, and QSM, but the sequential decay process is
well established and well coded. Therefore, for a quantitative
evaluation of the sequential decay effect on �μ/T , the
statistical multifragmentation model (SMM) of Bondorf et al.
[7,62] is employed. SMM assumes fragments are formed
in a given source under a statistical equilibrium within a
freezeout volume. In the thermodynamic limit, this process
in SMM is consistent with a possible nuclear liquid-gas phase
transition [63–65]. These hot primary fragments propagate
independently in their mutual Coulomb field and undergo
de-excitation to the ground state. The calculated yields of
the cold fragments after the secondary decays reasonably
reproduce the experimental data from both peripheral and
central heavy ion collisions at intermediate energies [66–68].

For the present analysis, SMM is utilized to simulate
the breakup of A = 100 sources with different Z numbers
(i.e., Z = 45, 50, and 55), under different excitation energies
(i.e., Ex = 5 and 10 MeV), different freezeout volumes (i.e.,
V/V0 = 3.0, 5.0, and 10.0). For each case, 1 × 105 events
are computed, and both primary and secondary production
yields are determined. Following the same method mentioned
in Sec. III(b), �μ/T values are extracted from the primary
and secondary isotope yields generated by SMM. The rela-
tions between the extracted primary and secondary �μ/T
[(�μ/T )Pri and (�μ/T )Sec] values are shown in Fig. 6, for the
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FIG. 6. Calculated (�μ/T )Pri vs (�μ/T )Sec. The results from
the SMM calculations are shown by solid symbols and those
from the AMD-GEMINI are shown by open circles. The reaction
systems used for the AMD+GEMINI simulation are 58Ni + 58Ni,
58Fe + 58Fe at 45 MeV/nucleon and 64Zn + 112Sn and 64Ni + 124Sn
at 40 MeV/nucleon. Data points from SMM are globally fit by a
linear function and the parameters are shown in the figure.

SMM calculations with different initial conditions. As plotted
in the figure, (�μ/T )Pri correlates linearly with (�μ/T )Sec,
and this linear relation holds in a wide region of excitation
energy and freezeout volume, i.e., Ex = 5 ∼ 10 MeV and
V/V0 = 3.0 ∼ 10.0, indicating the breakup process and the
statistical decay process are independent of each other. The
obtained values of (�μ/T )Pri and (�μ/T )Sec under different
conditions are globally fit by a linear function and the fitting
result is given by

(�μ/T )Pri = 1.25(�μ/T )Sec + 1.12, (9)

where the fitting parameters, 1.25 and 1.12, are only related
to the statistical decay process. In order to verify the SMM
results, AMD+GEMINI simulations are analyzed for some of
reaction systems. The results of the AMD+GEMINI simulations
are shown by open circles in the figure and as seen in the figure
they are consistent to those of SMM. The scaling relation in
Eq. (9) can be applied to the experimental yields to evaluate
the sequential effect on the experimentally extracted �μ/T
values quantitatively. The scaling invariance shown in Fig. 6
also suggests that Eq. (9) can be applied to reactions over a
wide incident energy region. Using Eq. (9), for all 13 systems,
the “primary” �μ/T values are derived from those of the
experimentally observed IMF yields and shown by full circles
in Fig. 5 together with the experimentally extracted ones (open
circles). The “primary” �μ/T as a function of (Z/A)NN also
shows a monotonic decreasing trend, due to the linear mapping.
Since (Z/A)NN is same before and after the sequential decays,
the monotonic behavior of the primary �μ/T as function
of (Z/A)NN originates from the characteristic properties of
the NN source. This is further utilized to determine the
temperature of the NN source and the symmetry energy in
the following analysis.

NN
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0.35 0.4 0.45 0.5

/TμΔ
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 = 3.0 MeV0T
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 = 6.0 MeV0T
 = 7.0 MeV0T
 = 8.0 MeV0T

FIG. 7. The comparison between the �μ/T values from the
calculations with different temperature inputs from 3 ∼ 8 MeV and
the experimentally extracted primary ones. The curves are the results
of polynomial fits to the calculated values for each given T value.

E. Temperature

In order to evaluate the temperature at the time of the
fragment formation from the primary �μ/T values evalu-
ated above, QSM is employed. QSM assumes thermal and
chemical equilibrium and the primary fragment formation is
characterized by the neutron and proton chemical potentials,
which are optimized using quantum statistical distributions at
a given density ρ, temperature T and N/Z ratio of the system.
It has been applied to study the characteristic nature of the IMF
emitting source produced in heavy ion reactions in the energy
range of 30 MeV/nucleon to 15 GeV/nucleon [69–73].

As presented in Refs. [69–73], the density and temperature
of the source are closely correlated for a given entropy,
that is, the temperature increases as the density increases to
obtain the same entropy. The entropy is closely related to
the experimental isotope yield ratios. In other words, within
QSM, one cannot determine the density and temperature values
uniquely from the experimental isotope yield ratios. In the
present analysis, therefore, the source density of ρ/ρ0 =
0.56, which has been determined from the experimentally
reconstructed primary hot isotope yields in the reaction system
64Zn + 112Sn in our previous studies [26,50] is adopted. For the
given density of ρ/ρ0 = 0.56, the �μ/T values of the primary
fragments are calculated for different temperatures from
T = 3 to T = 8 MeV and compared with the experimentally
extracted primary �μ/T values in Fig. 7. As plotted in
the figure, both QSM and experimentally extracted �μ/T
values show rather consistent decreasing trends as (Z/A)NN

increases, and the experimental data points distribute between
the calculated ones for T = 4 and 5 MeV.

In order to extract an optimum temperature value from the
experimental results, a least square analysis is performed by
calculating χ2(T ), where χ2(T ) for a certain input T is given
by

χ2(T ) =
∑

i

[(�μ/T )exp ,i − (�μ/T )QSM,i(T )]2

σ 2
exp ,i

. (10)
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FIG. 8. The resultant χ 2(T ) values as a function of the tempera-
ture. The line is the polynomial fit of the data points.

Here (�μ/T )exp ,i and (�μ/T )QSM,i(T ) are, respectively, the
experimentally extracted and the calculated �μ/T values
for the ith system at a given temperature, and σexp ,i is the
corresponding uncertainties. The summation in Eq. (10) is
taken over all 13 systems. The resultant χ2(T ) values are
shown in Fig. 8. From this figure, T = 4.6 ± 0.4 MeV is
determined and assigned as the temperature at the fragment
emission time. The error is from the standard deviation from
the fitted experimental curve. This result is consistent with
that obtained in our previous work, T = 5.2 ± 0.6 MeV
[26], which was extracted from the reconstructed primary hot
isotope yields using a self-consistent technique.

F. Density dependent symmetry energy

According to Refs. [1,58], the differential chemical poten-
tial is given by

�μ = 2
∂(E(T ,ρ,δ)/A)

∂δ
. (11)

Here, E(T ,ρ,δ) is the total internal energy of the emitting
source with N neutrons and Z protons and δ = (N − Z)/(N +
Z). One can calculate the total internal energy using a similar
equation to Eq. (6) and therefore the resultant �μ can be
expressed as1 [74]

�μ = 4δasym(T ,ρ) − ac(ρ)A2/3(1 − δ). (12)

From the experiments, �μ can be calculated as �μ =
T (�μ/T ) from the primary �μ/T values and the NN -source
temperature obtained above. One should note that ac(ρ) cannot
be simply calculated as ac(ρ) = T (ac(ρ)/T ) from Eq. (8),
since the ac(ρ)/T value there is extracted from the final
products after the sequential decays, and does not represent the
ac(ρ)/T value of the primary NN source. Under the assump-
tion of a uniform expansion, the source radius is proportional to
(ρ/ρ0)−1/3. Thus ac(ρ) = ac(ρ0) · (ρ/ρ0)1/3, where ac(ρ0) =

1In Refs. [1,58], Eq. (12) is given without the Coulomb contribution.

NN
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 2.1 MeV±=23.6 syma

FIG. 9. The resultant asym values as a function of (Z/A)NN using
Eq. (13). The line is the constant fit of the data points.

0.67 MeV [58] is the Coulomb coefficient at the saturation
density. In Ref. [26], ac(ρ)/T = 0.126 is extracted from
the experimentally reconstructed primary hot fragments at
T = 5.2 ± 0.6 MeV, which gives ac(ρ) = 0.126(5.2 ± 0.6) =
0.66 ± 0.08 MeV. This value agrees within errors to that
used here, that is, ac(ρ) = 0.67 · 0.561/3 = 0.55 MeV. After
converting Eq. (12), asym can be extracted as

asym = �μ + ac(ρ0)(ρ/ρ0)1/3A2/3(1 − δ)

4δ
. (13)

In the asym extraction, the expected value of the temperature
T = 4.6 MeV is adopted; A = ANN is calculated using Eq. (1);
δ is calculated from (Z/A)NN using Eq. (2). For all 13
available systems, the extracted asym values are shown as a
function of (Z/A)NN in Fig. 9. Their distributions show no
clear dependence on (Z/A)NN and asym = 23.6 ± 2.1 MeV
is obtained as an average value. The error is evaluated as the
standard deviation from the central value. One should note that
this error and the error of the temperature are from the spread
of the experimental �μ/T values around the average ones in
both cases and thus the origins are the same. Therefore we
take the error of the symmetry energy only from the standard
deviation from the average value in Fig. 9.

IV. DISCUSSION

A. Symmetry energy extraction at Fermi energies

In the present analysis, the experimental �μ/T values
extracted from IMF yield ratios, are utilized to extract the
temperature and symmetry energy of the fragmenting source
in the framework of QSM. The density value of ρ/ρ0 = 0.56
is taken from that in Ref. [26], in which the 64Zn + 112Sn
reaction products were analyzed with a self-consistent method
in the framework of the AMD model. In both analyses, the
experimentally observed isotope yields from the NN -source
component are utilized in the MFM formulation. However
both analyses are quite different from each other. In the
present analysis �μ/T values, which are directly related
to the symmetry energy asym in Eq. (13), are analyzed.
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They are extracted from the 13 different reaction systems
studied at 40 MeV/nucleon, whereas in the self-consistent
method five parameters in Eq. (6) were consistently determined
using all isotope yields from a single reaction system of
64Zn + 112Sn and the corresponding AMD simulations, using
Gogny interactions with three different density-dependent
symmetry energy forms [26]. As seen in the formulation of
MFM in the Appendix, the density obtained from the IMF yield
analysis is closely related to the the density of IMFs when they
are formed and therefore closely related to the nuclear matter in
a liquid phase. The extracted temperature T = 4.6 ± 0.4 MeV
and symmetry energy asym = 23.6 ± 2.1 MeV in this analysis
are common to all 13 reaction systems and consistent with
values obtained using the self-consistent method in Ref. [26],
i.e., T = 5.2 ± 0.6 MeV and asym = 20.8 ± 0.6 MeV. As
pointed out in Sec. III(a), the NN -source size is around 40 to
90 mass units, as shown in Fig. 2, indicating that the products
from the NN source originate from the overlap region of
the projectile and target in this energy regime. That is, these
particles are produced through a multifragmentation process
at a time of freezeout [24]. The extracted common symmetry
energy shown in Fig. 9 for all 13 reactions, even though their
system size and N/Z value are quite different, is a strong
indication that these fragments are produced in a common
production mechanism as mentioned earlier.

In Ref. [75], Xu et al. studied the temperature and density
dependence of symmetry energy and symmetry free energy
within a self-consistent thermal model using an isospin and
momentum dependent interaction. According to their study,
the temperature dependence of these energies at a given
density is rather small at T < 5 MeV, which suggests that the
symmetry energy value of asym = 23.6 ± 2.1 MeV is close to
the symmetry energy value at T = 0.

Strictly speaking the symmetry energy in Eq. (6) should
be the symmetry free energy according to the derivation
in the Appendix where the free energy is used. However
as discussed in Ref. [76], the calculated symmetry entropy
relative to the temperature value, Ssym/T , becomes gradually
small when the density ρ increases at ρ = 0.2ρ0 toward the
normal nuclear density as shown in Fig. 6 of Ref. [76], and at
ρ = 0.56ρ0, Ssym/T ∼ 0.2. Therefore the expected difference
between the symmetry energy and the symmetry free energy
at T = 4.6 MeV and ρ ∼ 0.56ρ0 is an order of 1 MeV.

It is worth noting a recent work of Brown [77], in which the
energy-density functional of nuclear matter was studied using
Skyrme interactions, evaluated under the constraints of several
experimental values of ground state doubly magic nuclei.
According to the extracted narrow bounded energy-density
functional, the symmetry energy value of around 24.5 MeV
is obtained at ρ = 0.1 fm−3 ∼ 0.65ρ0, which is very close to
the values extracted in this analysis. This energy-density point,
as pointed out in his work, corresponds to a crossing point in
the equation of state that is more or less independent of the
neutron skin thickness.

B. Symmetry energy constraint at subsaturation densities

In another previous work [76], the density, temperature
and symmetry energy of dilute warm nuclear matter were

experimentally extracted in collisions of 40Ar + 112Sn, 124Sn,
and 64Zn + 112Sn, 124Sn at 47 MeV/nucleon. In that analysis,
yields and energy spectra of early emitted light charged parti-
cles from the NN source were analyzed within a coalescence
model. The particle multiplicity of the NN source is dominated
by these light particles and the extracted density is the density
around these light particles. Therefore the extracted density is
closely related to the gas phase of the nuclear matter during
the collisions in contrast to the results shown in the present
analysis. In the coalescence model, the density is closely
related to the coalescence radius determined from the yield
relationships between the light particles. The extracted density
is rather small in the range of ρ/ρ0 = 0.03 to 0.2, indicating
that the relative multiplicity of these light particles is governed
by the final state interaction between nucleons and clusters
in a dilute warm nuclear matter. The temperature values of
∼4–11 MeV were determined as a function of the surface
velocity of the LCPs, using the H-He double ratio thermometer
as a function of the surface velocity of the LCPs. The surface
velocity is closely related to the emission time of the LPCs
[78]. Symmetry free energy values were extracted from the
measured isoscaling parameter values, utilizing the relation
α = asym/T · [�(Z/A)2]. Using the extracted parameters at a
given surface velocity, combined with the quantum statistical
(QS) approach of Röpke et al. [79–82], symmetry energy
values were extracted. The corresponding symmetry energy
values vary from ∼7 MeV to ∼11 MeV at the density range
of ρ/ρ0 = 0.03 to 0.2.

In Fig. 10, the density dependent symmetry energy obtained
in the above two experiments and other experimentally
extracted results from various observables are summarized.
Details about the cited experimental results are given in Table I.
All of data points cited are all the results which are deter-
mined based on the nuclear reactions [26,32,59,76,83–88],
whereas the shaded area is that from the fit of the properties of
the nuclei on the ground and low-excited states [89].

In Fig. 10, two groups are clearly identified, which are
at 0.1 � ρ/ρ0 � 1.0 and ρ/ρ0 � 0.1, respectively. At 0.1 �
ρ/ρ0 � 1.0, the existing data points are consistent with each
other within the errors and distribute along a line as a function
of ρ/ρ0. This fact is in good agreement with the prediction
of the mean-field theory. Following the mean-field theory, the
density dependent symmetry energy is phenomenologically
parameterized as a power function,

asym(ρ/ρ0) = aρ=ρ0
sym (ρ/ρ0)γ , (14)

where a
ρ=ρ0
sym is the symmetry energy value at the saturation

density, and γ is a parameter for describing the “stiffness”
of the density dependent symmetry energy. This symmetry
energy formulation has been adopted in many statistical and
transport models. As “free” parameters, a

ρ=ρ0
sym and γ can be

extracted by performing the global fit of the existing data
points at 0.1 � ρ/ρ0 � 1.0 using Eq. (14). This fitting result
is shown by a blue line in Fig. 10 and given by

asym(ρ/ρ0) = 31.6(ρ/ρ0)0.69. (15)

At the saturation density, the slope parameter can be also
calculated by the relation of L = 3γ a

ρ=ρ0
sym as L = 65.4 MeV.

044601-8



CHEMICAL POTENTIAL AND SYMMETRY ENERGY FOR . . . PHYSICAL REVIEW C 95, 044601 (2017)

0
ρ/ρ

0 0.5 1

 (
M

eV
)

sy
m

a

0

10

20

30

Danielewicz14
Lin14
Khoa05
Kowalski07
Wada12
Roca-Maza13
Shetty04
Shetty07
Trippa08
Tsang09
Liu14
present work

FIG. 10. Summary of the density dependent symmetry energy
obtained in the present and previous studies. The line is the fit of the
existing data points at 0.1 � ρ/ρ0 � 1.0 using Eq. (14).

This constraint using the reaction-related observables is
compared with that proposed by Danielewicz et al. in Ref. [89]
(shaded area), where a combination constraint of isobaric
analog states and neutron-proton skins was performed. In
their analysis, the symmetry energy coefficient was ex-
pressed as the sum of the volume and surface contributions
and their values were evaluated separately. For the net
symmetry energy, they set a constraint for asym and γ
at the saturation density in a

ρ=ρ0
sym = 30.2 ∼ 33.7 MeV and

γ = 0.36 ∼ 0.74, respectively, and the slope parameter was
constrained as L = 35 ∼ 70 MeV. Both the constraints of our

TABLE I. Summary on the cited data from various independent
studies.

Ref. Year Experimental measurement

Danielewicz et al. [89] 2014 Isobaric analog states, �Rnp

Lin et al. [59] 2014 Reconstructed isotopic yield
Khoa et al. [83] 2005 Elastic scattering, charge exchange
Kowalski et al. [84] 2007 LCP production
Wada et al. [76] 2012 LCP production
Roca-Maza et al. [85] 2013 Giant quadrupole resonance
Shetty et al. [86] 2004 Isoscaling
Shetty et al. [87] 2007 Isoscaling
Trippa et al. [32] 2008 Giant dipole resonance
Tsang et al. [88] 2009 Isospin diffusion, neutron-proton ratio
Liu et al. [26] 2015 Reconstructed isotopic yield

present work and of Danielewicz et al. suggest a stiff, but
softer than linear, form of symmetry energy at subsaturation
densities.

At lower densities (ρ/ρ0 � 0.1), the experimentally ex-
tracted symmetry energy values significantly deviate from the
mean-field prediction as shown in Fig. 10. This significant
deviation has been attributed to the formation of clusters
at low densities, well described by the QS approach which
includes cluster correlations in the medium [76,90,91]. Further
investigations are urgently required for a better understanding
of the clusterization mechanism in low density matter, due
to its critical applications in both nuclear and astrophysical
physics [91].

V. SUMMARY

Within the framework of MFM, values of �μ/T , the ratios
of neutron-proton differential chemical potential values to the
temperature, are experimentally extracted from isotope yields
of 13 reaction systems at 40 MeV/nucleon. After evaluation
of the secondary decay effect on �μ/T with the help of
SMM, the resultant primary �μ/T values are compared to
those from QSM simulations to determine the temperature and
symmetry energy values of the fragmenting system. Using the
density value of ρ/ρ0 = 0.56 from a previous analysis [26],
the temperature and symmetry energy values of T = 4.6 ±
0.4 MeV and asym = 23.6 ± 2.1 MeV are extracted. These
values agree well with those of the previous work in Ref. [26],
in which a different method was utilized. Following the
mean-field theory, the density dependent symmetry energies at
0.1 � ρ/ρ0 � 1.0 are phenomenologically parametrized as a
power function, asym(ρ/ρ0) = 31.6(ρ/ρ0)0.69, by performing
a global fit to the symmetry energy values obtained in the
present work and those experimentally extracted from other
studies. At lower densities (ρ/ρ0 � 0.1), the experimen-
tally extracted symmetry energy values significantly deviate
from the mean-field prediction, and this fact is attributed
to the clusterization mechanism in a dilute warm nuclear
matter.
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APPENDIX: MODIFIED FISHER MODEL (MFM)

Free energy is formulized as two types,

F = U − T S, (A1)

F = H − T S. (A2)

Equation (A1) is the Helmholtz free energy which is obtain
from a process under the condition of a constant volume,
whereas Eq. (A2) is the Gibbs free energy from a process
under the condition of a constant pressure.

In the Fisher model [42], for a single constituent system, a
spherical droplet from A particles is formed in the gas phase
with B particles through a phase transition and both phases are
derived from a parent source with mass A + B particles. The
free energy of the system in the initial and final phases can be
written, respectively, as

Finitial = μg(A + B) − T S, (A3)

Ffinal = μlA + μgB + 4πR2σ − T (S − τ ln A).

(A4)

In Eqs. (A3) and (A4), μl and μg are, respectively, the
chemical potentials of liquid and gas phases, and S is the
total entropy of the initial phases. τ is the critical exponent
and T is the system temperature. The third term in Eq. (A4) is
the surface contribution for the spherical droplet with radius
R (R = r0A

1/3) and surface tension parameter σ . σ near the
critical point can be expressed as a function of temperature as

σ (T ,Tc) =
{

σ0
(
1 + 3T

2Tc

)(
1 − T

Tc

)3/2
(T < Tc)

0 (T � Tc),
(A5)

where Tc is the temperature at the critical point. The last term
in Eq. (A4) originates from the entropy change of the system
when the droplet is formed. The term τ ln A is the entropy
change caused by the droplet, introduced by Fisher in his
model [42]. The free energy of the droplet can be given as the
difference between Eqs. (A3) and (A4) as

Fdroplet = Ffinal − Finitial

= (μl − μg)A + 4πr2
0 σA2/3 + T τ ln A. (A6)

In a canonical ensemble, free energy can be deduced as

−Fdroplet = T ln(Z), (A7)

where Z is the partition function and it is proportional to the
yield Y (A) of a given type of droplets with A particles,

Y (A) ∝ Z = exp

(
−Fdroplet

T

)
. (A8)

Equation (A8) is the mathematical expression of Fisher
model.

In order to apply the Fisher model to a nuclear multifrag-
mentation process, two constituents (neutrons and protons)
and the characteristics of nuclear force have to be taken into
account in the model. In the framework of MFM, from the
analogy to Eq. (A6), the free energy of a fragment with mass
number A and I = N − Z (N neutrons and Z protons) is
expressed as

F (I,A) = (−W (I,A) − μnN − μpZ)

+ T (τ ln A − Smix(N,Z)). (A9)

Following Ref. [44], utilizing the generalized Weizsäcker-
Bethe semiclassical mass formula [4,5], W (I,A) is given as
Eq. (6) in the text. Smix(N,Z) is called mixing entropy, which
originates from the change from a single constituent system
to a two constituent system. For classical particles, the total
number of the microstates, M.B. can be expressed as

M.B. = N0!

�al!
�ω

al

l !, (A10)

where N0 is the particle number and al is the particle number
at the l state, that N0 = �al . ωl is the degeneracy of the l state.
Going to a nuclear system, ignoring the spin, nucleons only
have two “states”, proton and neutron, defining as “n” state
and “p” state here. The degeneracies of two states are both 1.
Therefore for a nuclei with Z protons (ap = Z) and N neutrons
(an = N ), the total number of the microstates becomes

M.B.(N,Z) = A!

N !Z!
. (A11)

Thus Smix(N,Z) is simply calculated as

Smix(N,Z) = ln(A!) − ln(N !Z!)

=
[
A(ln A − 1) + 1

2
ln(2πA)

]
−

[
N (ln N − 1) + 1

2
ln(2πN ) + Z(ln Z − 1) + 1

2
ln(2πZ)

]
≈ A(ln A − 1) − [N (ln N − 1) + Z(ln Z − 1)]

= −
[
N ln

(
N

A

)
+ Z ln

(
Z

A

)]
. (A12)

Combining Eqs. (6), (A9), and (A12), one can get

F (I,A) =
(

−ãv − δ

2
�μ

)
A + asA

2/3 + T

[
τ ln A + N ln

(
N

A

)
+ Z ln

(
Z

A

)]
+ ac

Z(Z − 1)

A1/3
+asym

(N − Z)2

A
+ap

δp

A1/2
,

(A13)
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where ãv = av + 1
2 (μn + μp), �μ = μn − μp, and δ = (N − Z)/A. Comparing Eqs. (A6) and (A13), we can see the

correspondence between a liquid-gas transition and a nuclear multifragmentation process as

(μl − μg)A ⇐⇒
(

−ãv − δ

2
�μ

)
A,

4πr2
0 σA2/3 ⇐⇒ asA

2/3

T τ ln A ⇐⇒ T

[
τ ln A + N ln

(
N

A

)
+ Z ln

(
Z

A

)]
. (A14)

Other terms, such as Coulomb, symmetry, and pairing terms, are added in Eq. (A13) for the nuclear matter application.
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