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Background: Two-nucleon (2N ) short-range correlations (SRC) in nuclei have been recently thoroughly
investigated, both theoretically and experimentally and the study of three-nucleon (3N ) SRC, which could provide
important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2N

and 3N SRC are put forward in the present paper.
Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both
2N and 3N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated.
Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution
integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2N pair and aimed at
describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum
distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne
family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental
property of factorization of the nuclear wave function at short internucleon ranges.
Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution
integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location
of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike
the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings
the convolution model spectral function in much better agreement with the ab initio one; it is also found that
whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral
function, their effects on the one-nucleon momentum distribution are almost one order of magnitude less than
the effect of two-nucleon short-range correlations.
Conclusions: The convolution model of the spectral function of the three-nucleon systems featuring both two-
and three-nucleon short-range correlations and correctly depending upon the ab initio two-nucleon relative and
center-of-mass momentum distributions provides in the correlation region a satisfactory approximation of the
spectral function in a wide range of momentum and removal energy. The extension of the model to complex nuclei
is expected to provide a realistic microscopic parameter-free model of the spectral function, whose properties
are therefore governed by the features of realistic two-nucleon interactions and the momentum distributions in a
given nucleus.
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I. INTRODUCTION

The long-standing problem of the role played by short-
range correlations (SRC) in atomic nuclei has been the object
of intense activity in recent years both from the theoretical and
the experimental points of view (see the review papers given
in Ref. [1]). The experimental investigation of two-nucleon
(2N ) SRC has reached a high level of sophistication [2]
and, at the same time, a series of theoretical papers, based
upon different approaches, have clarified, both qualitatively
and quantitatively, the role played by SRC in nuclei [3–9].
In particular, it has been demonstrated (see, e.g., [5–9]) that
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2N SRC arise from a universal and fundamental property
of the nuclear wave function at short internucleon distances,
namely, its factorization into a wave function describing the
relative motion of a nucleon pair and a function describing the
motion of the center of mass (c.m.) of the pair with respect to
the “spectator” (A − 2)-nucleon system. Concerning the role
of possible 3N SRC, although important contributions have
already appeared (see, e.g., [10–12]), much remains to be done
in order to fully understand their structure and their effects on
other relevant nuclear quantities like, e.g., the one-nucleon
momentum distributions and spectral function (SF). It is the
aim of this paper to illustrate a realistic many-body approach
to the effects of 2N and 3N SRC on the one-nucleon hole
spectral function and momentum distributions, two quantities
which play a primary role in the study of short-range effects
in nuclei. Preliminary results along the line presented in this
paper have been previously given in Ref. [13].

2469-9985/2017/95(4)/044327(10) 044327-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.95.044327


CIOFI DEGLI ATTI, MEZZETTI, AND MORITA PHYSICAL REVIEW C 95, 044327 (2017)

II. THE DEFINITION OF THE NUCLEON SPECTRAL
FUNCTION AND ITS DESCRIPTION IN THE SRC REGION

BY THE CONVOLUTION MODEL

A. The nucleon hole spectral function

As is well known, the nucleon (N ) hole spectral func-
tion P N

A (k1,E) represents the joint probability that when
the nucleon “N” “N” (usually called the active nucleon)
with momentum k1 is removed instantaneously from the
ground state of the nucleus A, the nucleus (A − 1) (usually
called the spectator nucleus) is left in the excited state

E∗
A−1 = E − Emin, where E is the so-called removal energy

and Emin = MA−1 + mN − MA = |EA| − |EA−1| with EA

and EA−1 being the (negative) ground-state energy of nuclei
A and A − 1, respectively. The hole spectral function, which
takes into account the fact that nucleons in nuclei have not only
a momentum distribution, but also a distribution in energy, is
trivially related to a well-defined many-body quantity, namely
the two-points Green’s function (see, e.g., [14]). In this paper
we use the following well-known representation of the SF
P N

A (k1,E):

P N
A (k1,E) = 1

2J + 1

∑
M,σ1

〈
�JM

A

∣∣a†
k1σ1

δ(E − (ĤA − EA))ak1σ1

∣∣�JM
A

〉
(1)

= 1

2J + 1

∑
M,σ1

∑ ∫
f

∣∣〈�f
A−1

∣∣ak1σ1

∣∣�A
JM

〉∣∣2
δ
(
E − (

E
f
A−1 − EA

))
(2)

= 1

2J + 1
(2π )−3

∑
M,σ1

∑ ∫
f

∣∣∣∣∣
∫

dr1e
ik1·r1G

Mσ1
f (r1)

∣∣∣∣
2

δ
(
E − (

E
f
A−1 − EA

))
, (3)

where a
†
k1σ1

(ak1σ1 ) is the creation (annihilation) operator of a
nucleon with momentum k1 and spin σ , ĤA is the intrinsic
Hamiltonian for A interacting nucleons, and the quantity

G
Mσ1
f (r1) = 〈

χ1/2
σ1

,�
f
A−1({x}A−1)

∣∣�JM
A (r1,{x}A−1)

〉
, (4)

which has been obtained using the completeness relation for
the eigenstates of the nucleus (A − 1) (

∑
f |�f

A−1〉〈�f
A−1| =

1), is the overlap integral between the ground state wave
function of nucleus A, �JM

A , and the wave functions of the
discrete and all possible continuum eigenfunctions �

f
A−1 (with

eigenvalue E
f
A−1 = EA−1 + E

f ∗
A−1) of the nucleus (A − 1);

eventually, {x} denotes the set of spin-isospin and radial
coordinates. In what follows the angle integrated SF is
normalized according to (k1 ≡ k,|k| ≡ k)

4 π

∫
P N

A (k,E) k2 d kdE = 1. (5)

and the momentum distribution (normalized to one) is linked
to the SF by the momentum sum rule∫

P N
A (k,E) dE = nN

A (k). (6)

Thanks to its very definition, the SF can be represented in the
following useful form [8]:

P N
A (k,E) = P N

0 (k,E) + P N
1 (k,E), (7)

where P N
0 describes the shell-model part (with occupation

probability of shell-model states less than one because of SRC
populating the states above the Fermi level)

P N
0 (k,E) = (2π )−3(2J + 1)−1

∑
M,σ,f �F

∣∣∣∣
∫

eik1·r1GMσ
f (r1) dr1

∣∣∣∣
2

× δ(E − Emin), (8)

and P N
1 describes the contribution from the discrete and

continuum states above the Fermi level originating from
ground-state SRC

P N
1 (k,E) = (2π )−3(2J + 1)−1

×
∑
M,σ

∑
f >F

∫ ∣∣∣∣
∫

eik1·r1GMσ
f (r1) d�r1

∣∣∣∣
2

× δ
(
E − E

f
A−1

)
. (9)

B. The ab initio spectral function of 3He: The plane wave
impulse approximation (PWIA) vs the plane wave

approximation (PWA)

Due to the summation over the entire spectrum of states
of the final nucleus, the exact (ab initio) spectral function can
only be calculated for the three-nucleon systems for which
only two final states are open, namely the deuteron and the
continuum two-nucleon states. For this reason in this paper we
will consider the case of mirror nuclei with A = 3, which are
described by two different spectral functions and momentum
distributions, namely the proton (p) and the neutron (n) ones,
which are defined as follows:

P
p(n)
3 (k,E) = P p(n)

gr (k,E) + P p(n)
ex (k,E), (10)

for the proton (neutron) spectral function in 3He (3H), and

P
p(n)
3 (|k1|,E) = P p(n)

ex (|k1|,E), (11)

for the proton (neutron) spectral function in 3H(3He). In both
nuclei the ground (gr) part, has the following form:

P p(n)
gr (|k1|,E) = np(n)

gr (|k1|)δ(E − Emin), (12)

where Emin = |E3| − |E2| ≈ 5.49 MeV and n
p(n)
gr (|k1| ≡ k1)

is the momentum distribution corresponding to the
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FIG. 1. The ab initio neutron spectral function of 3He [Eq. (14)] calculated in Ref. [15] using 3N wave functions corresponding to the RSC
interaction [16] (a) and in Ref. [17] using 3N wave functions [18] corresponding to the AV18 [19] interaction (b). In both cases the full lines
represent the PWIA (the proton-proton wave function � t

pp in the final state is the exact solution of the the Hamiltonian which has been used to
obtain the ground-state wave function), whereas the dot-dashed line in (a) and the dotted line in (b) correspond to the PWA (the final pp state
is approximated by a plane wave). The regions where the PWA practically coincides with the PWIA are clearly visible and correspond to high
values of the momentum. In (b) Erel = E + |E3|, |E3| being the binding energy of 3He and Erel is the relative energy of the proton-proton pair
in the continuum. Therefore the energy scales in the two Figures differ only by the small value |E3| = 7.718 MeV.

two-body break-up (2bbu) channel 3He → D + p (3H →
D + n), namely,

np(n)
gr (k) = 1

(2π )3

1

2

∑
MD,M3,σ1

∣∣∣∣
∫

e−iρ·kχ †
1
2 σ1

×�
MD†
D (r)�M3

He(H )(ρ,r)dρdr

∣∣∣∣
2

. (13)

Here, �
M3
He(H )(ρ,r) is the 3He(3H) ground-state wave function,

M3 the projection of the spin of 3He (3H), r and rho the Jacobi
coordinates describing, respectively, the relative motion of the
spectator pair and the motion of its c.m. with respect to the
active nucleon “1”. The second, excited (ex) part P

p(n)
ex of

P3(|k1|,E) in Eq. (10) corresponds to the three-body break-up
(3bbu) channel 3He(3H) → npp(n) and can be written, e.g.,
for the neutron spectral function in 3He to be considered in
this paper, as follows:

P n
ex(|k|,E) = 1

(2π )3

1

2

∑
M3,S23,σ1

∫
d3t

(2π )3

×
∣∣∣∣
∫

e−iρ·kχ †
1
2 σ1

�t†
pp(r)�M3

He (ρ,r)dρdr

∣∣∣∣
2

× δ

(
E − E3 − t2

mN

)
, (14)

where �t
pp(r) is the two-body spectator continuum wave

functions characterized by spin projection S23 and by the

relative momentum t = k2−k3
2 of the pp pair in the continuum.

This definition of the SF, used in this and in other papers on the
subject, is referred to as the plane wave impulse approximation
(PWIA), in which the continuum wave function of the spectator
pair in the final state has to be chosen as the exact solution of
the same Hamiltonian used to obtain the ground-state wave
functions, with the motion of the active nucleon in the final
state described by a plane wave; if, moreover, the interaction
in the spectator pair is disregarded, with the three nucleons in
the final state described by plane waves, one is referring to
the so-called plane wave approximation (PWA), a case which
is relevant for the coming discussion. As a matter of fact,
we are interested in the problem as to whether and to which
extent the PWIA can be approximated by the PWA, since the
microscopic model of the SF we are going to present implies
the validity of the latter. In Fig. 1 two theoretical neutron SFs of
3He are shown, namely the one obtained with a 3N variational
wave function [15] corresponding to the Reid soft core (RSC)
interaction [16], and the one obtained [17] using ab initio
3N wave functions [18] corresponding to the AV18 [19] NN
interaction. It can be seen that, at high values of k and E∗, both
SFs exhibit two common features, namely: (i) a peak located at
values of the removal energy equal to E 	 k2/4mN , and, more
importantly, (ii) almost identical values around the peak of the
PWIA and the PWA predictions, which means that around the
peak the two-nucleon final state can safely be approximated by
plane waves. This similarity between the PWIA and the PWA,
which is illustrated in more detail in Fig. 2 in correspondence
of several values of the momentum, will be shown in what
follows to represent a clear manifestation of SRC.
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FIG. 2. The ab initio neutron spectral function of 3He shown in Fig. 1(b) in correspondence of several values of the neutron momentum in
PWA and PWIA, i.e., respectively, by disregarding (blue squares) and including (red triangles) the interaction in the pp final state. It can be
seen that at high values of the neutron momentum (k � 2.5 fm−1) the final state interaction in the the pp essentially affects only the spectral
function at small values of the excitation energy E∗ (in this and the following figures E∗ = Erel).

III. THE KINEMATICS OF TWO-
AND THREE- NUCLEON SRC

In this section it will be shown that different kinematical
features of 2N and 3N SRC will differently affect the
momentum and removal energy distributions of P N

ex (k,E).

A. 2N SRC

Momentum conservation in a system of A interacting
nucleons implies that

A∑
i=1

ki = 0 (15)

with the relative and c.m. momenta of a correlated nucleon-
nucleon pair being

krel = k1 − k2

2
Kc.m. = k1 + k2 = −

A∑
i=3

ki ≡ −KA−2.

(16)

It is a common practice to assume [20] that 2N SRC represent
those configurations, depicted in Fig. 3(a), in which the
active, high momentum nucleon “1” is correlated with the
high momentum nucleon “2”, with resulting “high” rela-
tive momentum krel = [k1 − k2]/2, and “low” c.m. momen-
tum Kc.m. = k1 + k2 = −KA−2. Assuming that the (A − 2)

nucleus is left in its ground state, the intrinsic excitation
energy of the (A − 1)-nucleon system E∗

A−1 is given by
the relative kinetic energy of the system composed by the
second correlated nucleon N2 (with momentum k2) and the
(A − 2)-nucleon system (with momentum KA−2), namely,

E∗
A−1 = 1

2 mN

A−2

A−1

[
k2 − KA−2

A − 2

]2
A=3−−→ 1

mN

(
k2 − k3

2

)2

.

(17)

In the case of the so-called “naive 2NC model”, which is
the model based upon the assumption that KA−2 = 0 (k2 =
−k1 ≡ −k) Eq. (17) trivially becomes

E∗
A−1 = 1

2 mN

A − 2

A − 1
k2

2
A=3−−→ k2

4mN

. (18)

For the 3N systems, the main object of our investigations in the
present paper, the residual nucleus is just the third spectator
nucleon, so that the excitation energy of the (A − 1)-nucleon
system is exactly the relative kinetic energy of particles “2”
and “3”, i.e., k2/(4mN ), in agreement with the nonrelativistic
ab initio calculation of the spectral function shown in Figs. 1
and 2.

B. 3N SRC

When 3N SRC are at work, two limiting cases should be
considered. In the first one [20], depicted in Fig. 3(b1), the
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FIG. 3. (a) Pictorial representation of the kinematics of 2N SRC
in nucleus A: the high momentum k1 ≡ k � 2.0 fm−1 of nucleon
“1” is almost completely balanced by the momentum k2 	 −k of
the correlated partner nucleon “2”, with the residual system moving
with low momentum |KA−2| = |k1 + k2| � 1.0 fm−1. Momentum
conservation reads as follows:

∑A
1 ki = k1 + k2 + KA−2 = 0. In

case of A = 3 the (A − 2) nucleus is just a nucleon with momentum
KA−2 = k3. (b) Pictorial representation of the kinematics of 3N SRC
in nucleus A. The three nucleons have high momenta and low c.m.
momentum which is balanced by the momentum of the system A − 3.
In the case of A = 3 the configuration in (b1) can affect only the
low removal energy part of the spectral function, whereas in the
configuration (b2) also the high removal energy part can be affected.

high momentum k of the active nucleon is balanced by two
nucleons having almost equal momenta k/2 antiparallel to k;
in such a configuration the excitation energy of (A − 1) is
trivially given by

E∗
A−1 = A − 3

A − 1

k2

4 mN

, (19)

which, obviously, vanishes for the three-nucleon system, being
zero the relative momentum of particles “2” and “3”. In the
second, more general case depicted in Fig. 3(b2), the excitation
energy of (A − 1) will be

E∗
A−1 = 1

2 mN

A − 2

A − 1

[
k2 − KA−2

A − 2

]2

+ 1

2 mN

A − 3

A − 2

[
k3 − 1

A − 3
KA−3

]2

A=3−−→ 1

mN

[
k2 − k3

2

]2

. (20)

Thus in the case of Fig. 3(b2) the high momentum k of
the active nucleon is balanced by two nucleons with high
relative momentum (k2 − k3)/2, with resulting high excitation
energy of (A − 1) given by Eq. (20), and 3N SRC are
expected to affect the high removal energy sector of the 3N
spectral function in a way that will be illustrated in the next
sections.

IV. FACTORIZATION OF THE MANY-BODY WAVE
FUNCTION IN THE CORRELATIONS REGION AND THE

CONVOLUTION STRUCTURE OF THE SPECTRAL
FUNCTION AND MOMENTUM DISTRIBUTION

Factorization: The fundamental property of the nuclear wave
function in the correlation region

As previously mentioned, several recent papers have ar-
gued [5–9] that at short internucleon relative distances the
ground-state realistic many-body nuclear wave function �o

exhibits the property of factorization, namely,

lim
rij →0

�0({r}A) 	 Â
⎧⎨
⎩χo(Rij )

∑
n,fA−2

ao,n,fA−2 [�n(xij ,r ij )

× ⊕�fA−2 ({x}A−2,{r}A−2)]

⎫⎬
⎭, (21)

which, in turns, is the origin of the presence of high momentum
components [8,9].

In Eq. (21): (i) {r}A and {r}A−2 denote the set of radial
coordinates of nuclei A and A − 2, respectively; (ii) r ij and
Rij are the relative and c.m. coordinate of the nucleon pair
ij , described, respectively, by the relative wave function �n

and the c.m. wave function χo in 0s state; (iii) {x}A−2 and
xij denote the set of spin-isospin coordinates of the nucleus
(A − 2) and of the pair (ij ). Factorized wave functions have
been introduced in the past as physically sound approximations
of the unknown nuclear wave function (see, e.g., [21]), without
however providing any evidence of the validity of such an
approximation due to the lack, at that time, of realistic
solutions of the nuclear many-body problem which, however
became recently available and the quantitative validity of the
factorization approximation could be quantitatively checked.
As a matter of fact the factorization property of realistic
many-body wave functions has been proved to hold in the case
of ab initio wave functions of few-nucleon systems [7] and in
nuclear matter treated within the Brueckner-Bethe-Goldstone
approach [6]. Moreover it has been shown [5] that the 2N
momentum distribution in light nuclei in the region of high
(krel � 2 fm−1) relative momentum obeys indeed the property
of factorization, i.e., it becomes independent upon the angle
� between krel and Kc.m., namely,

n
N1N2
A (k1,k2) = n

N1N2
A (krel,Kc.m.,�)

	 n
N1N2
rel (krel) nN1N2

c.m. (Kc.m.) (22)

which, in the case of pn pairs, becomes

n
pn
A (krel,Kc.m.) 	 C

pn
A nD(krel) npn

c.m.(Kc.m.), (23)

where nD is the deuteron momentum distribution and C
pn
A

is a constant depending upon the atomic weight and which,
together with the integrals of nD(krel) and n

pn
c.m.(Kc.m.) in the

proper SRC region, counts the number of SRC pn pairs
in the given nucleus. It should be stressed that Eq. (23)
is free from any adjustable parameters since all quantities
appearing there result from many-body calculations [5]. It
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should also be stressed that the results of Ref. [5] demonstrate
that factorization is valid in the range of momenta including
both low and high values of the c.m. momentum; in particular,
as it will be quantified later on, the minimum value of the
relative momentum at which factorization starts to occur is a
function of the value of the c.m. momentum Kc.m., namely
factorization is valid when krel � k−

rel(Kc.m.), with [5]

k−
rel(Kc.m.) 	 a + b φ(Kc.m.), (24)

where a 	 2 fm−1 and the function φ(Kc.m.) is such that
φ(0) 	 0. The factorization of the momentum distributions
leads to an interesting and physically sound interpretation,
namely the region of high relative and low c.m. momenta is
governed by 2N SRC, whereas the region in which also the
c.m. momenta are high is governed by 3N SRC. Factorization
leads to a peculiar relationship between the one- and two-
nucleon momentum distributions in that the exact relation
between the two quantities given by [8,9] (N1 �= N2)

n
N1
A (k1) = 1

A − 1

[ ∫
n

N1N2
A (k1,k2) d k2 + 2

∫
n

N1N1
A (k1,k2) d k2

]
(25)

can be expressed in the factorization region in terms of the following convolution integral [k1 + k2 + k3 = 0, k3 = KA−2 =
−Kc.m. = −(k1 + k2)] [5,8]:

n
N1
A (k1) =

[ ∫
n

N1N2
rel

(∣∣∣∣k1 − Kc.m.

2

∣∣∣∣
)

nN1N2
c.m. (Kc.m.) d Kc.m. + 2

∫
n

N1N1
rel

(∣∣∣∣k1 − Kc.m.

2

∣∣∣∣
)

nN1N1
c.m. (Kc.m.) d Kc.m.

]

≡ nN1
ex (k1), (26)

so that the correlation part of the nucleon spectral function will be given by the following expression [5,8]:

P
N1
1 (k1,E) =

∑
N2=p,n

CN1N2

∫
n

N1N2
rel

(∣∣∣∣k1 − Kc.m.

2

∣∣∣∣
)

nN1N2
cm. (Kc.m.)d Kc.m.δ

(
E − Ethr − A − 2

2mN (A − 1)

[
k1 − (A − 1)Kc.m.

A − 2

]2 )
,

(27)

where CN1=N2 = 2 and CN1 �=N2 = 1. This is the convolution
model of the spectral function which has been first obtained in
Ref. [8] and applied there within the following approximations:
(i) an effective two-nucleon momentum distribution for both
pn and pp pairs has been used, and (ii) the constraint resulting
from Eq. (31) has not been considered. The limits of validity of
these approximations will be discussed in what follows and in a
forthcoming paper devoted to complex nuclei. Moreover, up to
now the convolution formula (27) has been applied assuming
for the c.m. distribution a soft behavior in order to enhance the
effects of 2N SRC involving low c.m. momentum components,
which provides the largest contribution to the SRC peaks of
the spectral function and to the high momentum part of the
momentum distributions. In the present paper, following the
finding of Ref. [5], demonstrating that factorization may also
occurs at high values of the c.m. momentum (cf. Fig. 6 of
Ref. [5]), we extend the factorization property to the treatment
of 3N SRC and include in the convolution formula both the soft
and the hard components of the c.m. momentum distributions,
both resulting from ab initio many-body calculations, as
illustrated in the next section in the case of the three-nucleon
system.

V. 2N AND 3N SRC IN THE SPECTRAL FUNCTION OF 3He

In this section the microscopic convolution model of the
spectral function of the three-nucleon system embodying 2N
and 3N SRC will be presented and compared with the ab initio
spectral function. For ease of presentation we will discuss the
neutron (proton) spectral function of 3He (3H), which requires

only the knowledge of the pn relative and c.m. momentum
distributions.

A. The microscopic neutron spectral function of 3He within the
convolution model embodying 2N and 3N SRC

The basic ingredients to calculate the neutron spectral
function in 3He within the convolution model are the two-
nucleon relative and c.m momentum distribution of the pn
pair. Both quantities have been obtained in Refs. [19] and [22];
Fig. 4 shows the c.m. momentum distribution and it can be seen
that the distribution can be split into a hard and a soft parts
according to

npn
c.m.(Kc.m.) = npn,soft

c.m. (Kc.m.) + npn,hard
c.m. (Kc.m.). (28)

Thus, placing Eq. (28) in Eq. (27) the fully correlated neutron
SF in 3He (proton spectral function in 3H) acquires the
following form1:

P n
ex(k1,E)

=
∫

n
np
rel

(∣∣∣∣k1 − Kc.m.

2

∣∣∣∣
)[

nnp,soft
c.m. (Kc.m.) + nnp,hard

c.m. (Kc.m.)
]

× d Kc.m.δ

(
E − Ethr − 1

4mN

[k1 − 2 Kc.m.]
2

)
. (29)

1Because of the lack of a bound nn state the sum in Eq. (27) extends
only to free protons.
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FIG. 4. The c.m. momentum distribution of the correlated proton-
neutron pair in 3He calculated in Ref. [5] (full line) and in Ref. [3]
(open dots) with ab initio wave functions corresponding to the AV18
interaction. The figure shows the separation into the soft (dashed line)
and hard (dotted line) components. (Adapted from Ref. [5].)

Here, we would like to reiterate that Eq. (29) represents a
genuine parameter-free many-body quantity generated by ab
initio relative and c.m. two-nucleon momentum distributions
corresponding to a given local NN interaction. As a matter

of fact it should be remembered that the 2N relative and c.m.
momentum distributions appearing there are nothing but the
quantities obtained by using the one- and two-body many-body
density matrices calculated with ab initio many-body wave
functions. It is also worth stressing that Eqs. (27) and (29) are
based upon the factorization property of the 3N wave function
at short range, leading to the convolution model of the spectral
function; for such a reason those equations are only valid in
well defined ranges of the relative and c.m. momenta, which,
in the present paper, are usually quantified as follows: the
region in which k−

rel � 2 fm−1 and Kc.m. � 1 fm−1 represents
the 2N SRC region, whereas the region where k−

rel � 2 fm−1

and Kc.m. > 1 fm−1 identifies the 3N SRC region. In Fig. 5 the
krel dependence of the pn momentum distributions is shown
in correspondence of several values of Kc.m. and the region of
factorization satisfying the relation

krel � k−
rel(Kc.m.) (30)

can be clearly identified as the region where the 2N momentum
distributions corresponding to � = 0◦ and � = 90◦ overlap.
Since the value of k−

rel depends upon the value of Kc.m., Eq. (30)
generates a constraint on the region of integration over Kc.m. in
Eq. (29), in that only those values of Kc.m. satisfying Eq. (30)
have to be considered. Since for a fixed value of k1 the relation
between k1 and Kc.m. is given by

krel =
∣∣∣∣k1 − Kc.m.

2

∣∣∣∣ � k−
rel(Kc.m.), (31)

FIG. 5. The pn two-nucleon momentum distributions in 3He, npn(krel,Kc.m.,θ ), obtained ab initio in Ref. [5] in correspondence of several
values of Kc.m. and two values of the angle θ between Kc.m. and krel. The region of krel where the value of npn(krel,Kc.m.,θ ) is independent of
the angle determines the region of factorization of the momentum distributions, i.e., npn(krel,Kc.m.,θ ) → n

pn
rel (krel)npn

c.m.(Kc.m.). It can be seen
that the region of factorization starts at values of krel = k−

rel, which increase with increasing values of Kc.m., i.e., k−
rel = k−

rel(Kc.m.); because of
the dependence of k−

rel upon Kc.m., a constraint on the region of integration over Kc.m. arises from Eq. (31). (Adapted from Ref. [5].)
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FIG. 6. Full line: the ab initio spectral function of the neutron in 3He in PWA corresponding to the AV18 interaction, shown in Fig. 2 by
the full squares. Dot-dashed line: convolution model which includes 2N SRC only (krel > 2 fm−1, Kc.m. � 1.0 fm−1); Dashed line: convolution
model which includes both 2N (krel > 2 fm−1, Kc.m. � 1.0 fm−1) and 3N (krel > 2 fm−1, Kc.m. > 1.0 fm−1) SRC. Both dashed and dot-dashed
lines include the constraint on the values of Kc.m. imposed by the requirement of factorization [Eq. (31)]. Dotted line: convolution model of
Ref. [8] which uses only the soft part of the c.m. momentum distribution without the constraint on the value of Kc.m. [Eq. (31)]. The full dots
in the case of k = 3.0 fm−1 denote the contribution from 3N SRC, i.e., the difference between the dashed and the dot-dashed curves.

this is the equation which establishes a constraint on the the
region of integration over Kc.m.; this region becomes narrower
than the region which is obtained if the constraint given by
Eq. (31) is disregarded. It is worth stressing that Eq. (31) and
the resulting constraint were never been considered in the past.

B. The microscopic convolution model of the spectral function
of 3He embodying 2N and 3N SRC and its comparison

with ab initio spectral functions

In this section the ab initio neutron spectral function of
3He, [17], will be compared with the microscopic convolution
model embodying 2N and 3N SRC calculated by Eq. (29)
taking properly into account the constraint on the value of
Kc.m. imposed by Eq. (31), unlike what done in Ref. [8] where
the constraint was not considered because the two-nucleon
momentum distribution calculated at different angles was not
known at that time. The result of these comparisons, in the
region 2.5 < k < 4 fm−1, E � 400 MeV, are shown in Fig. 6.
A careful inspection at these results suggests the following
comments:

(1) The prediction by the microscopic convolution model
of the spectral function which correctly includes 2N
SRC as previously defined (krel � 2 fm−1, Kc.m. �
1 fm−1), as well as the constraint resulting from Eq. (31)
(dot-dashed line in Fig. 6), generally agrees with the

ab initio SF (full line), as far as the energy position of
the peak, its amplitude and the energy region around
it are concerned, but severely underestimates the high
removal energy wings.

(2) The inclusion of 3N SRC, as previously defined (krel �
2 fm−1, Kc.m. > 1 fm−1), into the convolution model
which satisfies Eq. (31) (dashed line) appreciably
increases the amplitudes of the wings, leading to
a satisfactory agreement with the ab initio spectral
function, in a wide range of energy; the difference
between the dashed and dot-dashed curves provides
the effect of 3N SRC, whereas the difference between
the full and the dashed curves identifies the region
where the 3N configurations cannot be described by
the factorized momentum distribution leading to the
convolution model.

(3) The results within the model of Ref. [8] (dotted line),
where only the soft part of the c.m. distribution is
considered and the constraint on the values of Kc.m. is
disregarded, do not appreciably differ from the results
obtained with the ab initio spectral function.

(4) The results shown in Fig. 6 can be explained as follows:
(i) the hard part of the c.m. momentum distribution
(dotted line in Fig. 4) produces a very high and
unrealistic contribution to the spectral function (see
Fig. 7) which is however cut down when the constraint
[Eq. (31)] is taken into account; as a result, the amount
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FIG. 7. The contributions to the neutron spectral function of the
soft and hard parts of the c.m. momentum distributions shown in
Fig. 4 in the case of k = 2.5 fm−1 (cf. Fig. 6) considering (Const.) and
disregarding (NoConst.) the constraint on the value of Kc.m. generated
by Eq. (31).

of 3N SRC produced by the hard part of the c.m
momentum distribution becomes comparable to the
ones produced by the high momentum part of soft c.m
momentum distribution; (ii) the sharp decrease of the
2N SRC contribution with increasing values of E∗
is due to the fact that once the integration over the
angle between k and Kc.m. is carried out, the limits of
integrations in Kc.m. in Eq. (29) are K−

c.m. = |k − K0|/2
and K+

c.m. = (k + K0)/2, with K0 = (4 mN E∗)1/2 and
it can be trivially seen that beyond a certain value of
E∗, which increases with increasing values of k, 2N
SRC cannot occur, since they would fall outside the
lower limits of integration.

FIG. 8. The ab initio neutron momentum distribution in 3He
[22] (full line) compared in the high momentum region with the
distribution obtained from the momentum sum rule [Eq. (6)], i.e., by
integrating the convolution model spectral function [Eq. (27)]. Dotted
line: contribution from 3N SRC; Dashed line: contribution from 2N

SRC; Full dots: the sum of 2N and 3N SRC contributions.

(5) In the light of the previous remarks, it appears that in
the case of 3He the model of Ref. [8] effectively takes
into account the factorization property of the two-body
momentum distributions.

(6) In Fig. 8 the ab initio neutron momentum distribution
nn

3(k) in 3He (full line) is compared in the high
momentum region with the distribution obtained from
the momentum sum rule [Eq. (6)], i.e., by integrating
the microscopic convolution model spectral function
presented in Fig. 6; the dashed line includes only 2N
SRC, whereas the full dots include both 2N and 3N
SRC; it can be seen that although the contribution from
2N SRC is almost one order of magnitude higher than
the one due to 3N SRC, the introduction of the latter
brings the result of the microscopic convolution model
in perfect agreement with the ab initio results.

VI. SUMMARY AND CONCLUSION

The main aspects and results of the present paper can be
summarized as follows:

(1) We have reiterated that the basis of any treatment of
SRC is the wave function factorization at short range
leading in a natural way to the convolution model of
the spectral function and, accordingly have developed
an advanced microscopic many-body, parameter-free
approach to the the nucleon spectral function expressed
in terms of ab initio A-dependent two-nucleon relative
and c.m. momentum distributions reflecting the un-
derlying NN interaction; by this way we take into
account the specific features of the given nucleus
without recurring to approximations for finite nuclei
relying on infinite nuclear matter.

(2) Unlike previous convolution models of the spectral
functions, in our approach the region of factorization
of the nuclear wave function in momentum space has
been clearly identified and the resulting constraints on
the values of the relative and c.m momenta have been
properly taken into account in the convolution integral.

(3) In the case of the three-nucleon system, we have found
that when only 2N SRC are taken into account, the
convolution model predictions agree within 80–90 %
with the results of the ab initio spectral function as far
as the peak position and the energy region around it
are concerned, whereas far from the peak, particularly
at high values of the removal energy, they disagree
by orders of magnitude; this disagreement however
is strongly reduced when one considers the effects of
3N SRC, which are implicitly generated by the high
momentum part (Kc.m. > 1 fm−1) of the soft c.m.
distribution used in the model of Ref. [8], or arise
explicitly from the introduction of the hard components
of the c.m. distribution as in Eq. (29) of the present
paper; it turns out that the requirement of factorization
lead to similar results in both cases; and whether such a
result remains valid also in the case of complex nuclei
is a current matter of investigations.
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(4) We found that the high momentum part (k � 2 fm−1)
of the neutron momentum distribution in 3He is
practically governed by the effects of 2N SRC, since
the tails of the spectral function affected by 3N SRC
have small effects on the energy removal integration;
it should however be pointed out that the inclusion
of 3N SRC brings the result of the microscopic
convolution model in perfect agreement with the ab
initio momentum distribution corresponding to the
AV18 NN interaction.

To conclude, we would like to stress that by exploiting the
universal factorization property exhibited by the short-range
behavior of the nuclear wave function for finite nuclei, we have
generated a microscopic and parameter-free spectral function
based upon ab initio relative and center-of-mass two-nucleon
momentum distributions for a given nucleus. The model
rigorously satisfies the conditions for its validity, in that it takes
into account only those two- and three-nucleon configurations

compatible with the requirement of wave function factoriza-
tion. We have tested the convolution formula by a comparison
with available ab initio spectral functions for the three-
nucleon system resulting from the nonrelativistic Hamiltonian
containing realistic local two-nucleon interactions (Argonne
AV18), finding an excellent agreement in a wide range of
removal energy and momentum, provided the effects of 3N
SRC are also taken into account. It is highly satisfactory that
such an agreement has been obtained without the use of any
adjustable parameter. The generalization of our approach to
complex nuclei, for which ab initio spectral functions cannot
yet be obtained, is straightforward and will be presented
elsewhere. We consider such a generalization particularly
useful whenever precise calculations of nuclear effects in
various processes, e.g., electron and neutrino scattering, is
required. Needless to say that these type of processes require
the inclusion of all types of final-state interaction which are
at work when the active (struck) nucleon leaves the nucleus
interacting with the spectator particles.
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