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Background: Combining the relativistic mean-field (RMF) model and distorted wave Born approximation
(DWBA) method, Coulomb form factors for elastic electron scattering have been studied for several stable nuclei
(208Pb, 40Ca, 32S, and 24Mg) with a methodology that can be extended to exotic nuclei.
Purpose: Previous studies on nuclear Coulomb form factors by the RMF + DWBA method were mainly based
on the spherical RMF model. This work aims to further extend the studies to the axially deformed RMF model.
Method: The nuclear proton density distributions are first calculated by the deformed RMF model. Next,
the axially deformed density distributions are expanded into multipole components. With the spherical ρ0

components, the Coulomb form factors of even-even nuclei are calculated by the DWBA method.
Results: For spherical nuclei, the nuclear Coulomb form factors obtained with the deformed RMF model almost
coincide with those from the spherical RMF model. For deformed nuclei, Coulomb form factors obtained with the
deformed RMF model agree better with the experimental data at the diffraction minima and at high momentum
transfers.
Conclusions: Results indicate the proton densities calculated from the axially deformed RMF model are valid
and reasonable. The electron-scattering experiments will soon be available for exotic nuclei, and the studies in
this paper are helpful to interpret the experimental data of deformed exotic nuclei.
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I. INTRODUCTION

Electron scattering provides an effective method to study
the nuclear electromagnetic structure [1–6]. The interactions
between the electrons and nucleons are mainly electromagnetic
forces and the analysis of the experimental data does not
involve theoretical uncertainties. In past decades, the electron-
scattering experiments have been carried out for many stable
nuclei. Assuming the target nuclei are spherically symmetric,
their charge-density distributions can be extracted accurately
from the electron-scattering experiments [7]. With the develop-
ment of electron-scattering experiments, different theoretical
methods have been developed to analyze the experimental
Coulomb form factors, such as the plane-wave Born approx-
imation (PWBA), the relativistic eikonal approximation [8],
and the phase-shift analysis method [9–11]. The relativistic
eikonal approximation and phase-shift analysis method can
be referred to as the distorted-wave Born approximation
(DWBA) [12] method because the nuclear Coulomb distortion
effects are included.

Recently, the structure of exotic nuclei has become a focus
research of nuclear physics [13,14], and it is valuable to
explore the charge-density distributions of exotic nuclei by
electron scattering [15–22]. To provide useful guides for the
coming experiments, many theoretical researches have been
done on the electron scattering off exotic nuclei in recent
years. With the combination of the mean-field model and the
DWBA method, the Coulomb form factors of unstable nuclei
are systematically investigated [23–34], and many meaningful
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results are obtained. However, in previous studies, the target
nuclei are usually seen as spherical. Most nuclei whose proton
and neutron numbers are not magic numbers are deformed, as
confirmed by many theoretical and experimental studies, such
as, for example, the finite-range droplet model, self-consistent
mean-field calculations, the extended Thomas–Fermi with
Strutinsky integral model calculations, and B(E2↑) measure-
ments [35–39]. Therefore, in this paper we use the deformed
mean-field model instead of the spherical mean-field model to
study the nuclear Coulomb form factors.

For the mean-field model, there are many choices for
the effective interaction [40]; for example, the Gogny inter-
action [41] and Skyrme interactions [42,43]. Besides these
nonrelativistic effective interactions, the relativistic mean-field
model (RMF) is another method to deal with the nuclear
many-body problems [44]. The spin degrees of freedom of
nucleons in the RMF model are treated microscopically and the
spin-orbit splitting is given automatically, since it is essentially
a relativistic effect. It has been proved that RMF model can
well describe the ground-state properties of finite nuclei in
all mass regions with one parameter set [40]. Therefore, in
this paper the deformed RMF model is chosen to obtain
the nuclear ground-state properties; for example, the binding
energies, charge radii, and deformations. Based on the results
of deformed RMF model, we further carry out the DWBA
calculations to investigate the nuclear Coulomb form factors.

By the combination of the deformed RMF model and
DWBA method, the validity of the deformed RMF model can
be tested by the electron-scattering experiments. In previous
research, the experimental charge root mean square (rms) radii
are usually used to check the theoretical results of deformed
RMF model. However, one charge radius may correspond to
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different charge-density distributions. This will add uncertain-
ties to the theoretical results. Compared to the charge radius,
the Coulomb form factor, which can be seen approximately
as the Fourier transformation of the corresponding charge
distribution, is unique for each charge distribution. Therefore,
by the experimental Coulomb form factors obtained from the
electron-scattering experiments, we can further examine the
validity of the deformed RMF model with certain parameter
set. In this paper, two well-calibrated parameter sets of RMF
model are chosen for the discussion: one is the classical
NL3 parameter set [45], which achieves enormous success
in descriptions of the ground-state properties of many nuclei
throughout the periodic table; another is the new FSUGarnet
parameter set [46,47], which also displays the validity for the
neutron-rich isotopes near the neutron drip lines. The proton
density distributions of even-even nuclei are obtained by these
two density functionals and the corresponding Coulomb form
factors are investigated. By analyzing with both the spherical
and deformed nuclei, the validity of the deformed RMF model
are further examined by the experimental Coulomb form
factors. The studies in this paper are also helpful for the
analysis of the new scattering experimental data of deformed
exotic nuclei.

The paper is organized as follows: In Sec. II, a brief
review of the theoretical framework for the RMF model and
DWBA method is provided. In Sec. III, numerical results
and discussions are presented. Finally, a summary is given
in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, we present the formalism for calculations
of nuclear Coulomb form factors by the combination of the
deformed RMF model and DWBA method. In the first part of
this section, we introduce the axial deformation constrained
RMF model. In the second part of this section, we discuss the
DWBA method for calculating the Coulomb form factors of
deformed even-even nuclei.

A. Axially deformed relativistic mean-field model

In the framework of RMF theory, the nuclear interaction is
usually described by the exchange of mesons, and the effective
Lagrangian density can be written in the following form [48]:

L = ψ̄
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and the self-interacting term of nonlinear omega-rho coupling
is taken as

Ueff(ωμ, �ρ μ) = �v
(
g2

ρ �ρ μ �ρμ

)(
g2

ωωμωμ

)
. (2)

With the Euler–Lagrange equation, the motion equations of
nucleons can be derived. Based on the no-sea approximation
and mean-field approximation, the Dirac equation of nucleons
is written as

{−iα · ∇ + β[M − S(r)] + U (r)}ψi(r) = εiψi(r), (3)

where S(r) and U (r) are the scalar and vector potentials,
respectively. From the effective Lagrangian density, the Klein–
Gordon equations for the mesons and photon can also be
obtained.

For axially symmetric deformed nuclei, the single-particle
wave functions are characterized by the eigenvalue �i of the
third component of the total angular momentum j on the
symmetry axis z, by the parity πi , and by the z component
of the isospin ti . The spinor can be written in the form [49]

ψi(r,t) =
(

fi(r,s)

igi(r,s)

)
χti (t). (4)

Expanding the Dirac spinor with the eigenfunctions φα of an
axially symmetric deformed harmonic-oscillator potential in
cylindrical coordinates, we can obtain

fi(r,s,t) = 1√
2π

(
f +

i (z,r⊥)ei(�−1/2)π

f −
i (z,r⊥)ei(�+1/2)π

)

×
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f (i)
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g
(i)
α̃ �α̃(r,s)χti (t), (5)

where �α can be expressed in terms of Hermite and Laguerre
polynomials.

Substituting Eqs. (4) and (5) into the Dirac equation (3),
the coefficients f (i)

α and g
(i)
α̃ can be obtained. Combining the

Klein–Gordon equations of mesons, the Dirac equations can
be solved by iterations. After the Dirac spinors of nucleons
are obtained, we can calculate the binding energies, charge
rms radii, nuclear quadrupole moments, and proton density
distributions.

B. Nuclear Coulomb form factors

For the deformed density distribution calculated from the
axially deformed RMF model, it can be expanded in multipoles
by the Legendre function [50]:

ρ(r,z) =
∑

k

ρk(R)Pk(cosθ )

= ρ0(R) + ρ2(R)P2(cosθ ) + · · · , (6)
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where the multipole components can be written as

ρk(R) = 2k + 1

2

∫ 1

−1
Pk(cosθ )ρ(Rcosθ,Rsinθ )d(cosθ ). (7)

In PWBA method, the proton form factor is defined as the
Fourier transformation of the proton distribution:

Fp(q) = 1

Z

∫
ρp(�r )ei �q·�rd�r, (8)

where the exponential function ei �q·�r can be expanded as partial
waves:

ei �q·�r =
∞∑
λ

iλ(2λ + 1)jλ(qr)Pλ(cosθ ). (9)

Substituting Eq. (6) into Eq. (8) and taking into account of
the relations between the intrinsic multipoles and Coulomb
multipoles, the proton form factor can be decomposed into
several multipoles by selection rules [51]:

|Fp(q)|2 =
∑

λ=0,2,...

|Cλ(q)|2. (10)

For each multipole λ, the Cλ form factor is defined as

Cλ(q) = 1

Z

∫
d3rρλ(r)jλ(qr), (11)

where ρλ(r) is the λ order multipole component of the
deformed proton density.

Folding the proton form factor with the electric form factor
of a single proton GE(q) [52] and taking into account the
center-of-mass correction Fc.m.(q) [53], we can obtain the
nuclear Coulomb form factor:

FC(q) = Fp(q)Gp
E(q)Fc.m.(q). (12)

For elastic electron scattering off nuclei with angular
momentum Jπ = 0+, only the C0 multipole exists in the longi-
tudinal form factor by the angular-momentum considerations.
From Eqs. (10) and (12), the C0 multipole is attributed to
the spherical part ρ0(r) of the proton density. Therefore, for
elastic electron scattering off deformed even-even nuclei, only
the ρ0(r) contributes to the total Coulomb form factor.

The Coulomb form factor of the Eq. (11) is performed
with the plane-wave description, where the nuclear Coulomb
distortion effects are neglected. To obtain more accurate
results, the DWBA method are needed where the Coulomb
distortions are included. In this paper, an approximate method
is used to deal with the the nuclear Coulomb distortion
effects. If the nuclear deformation is not large, we neglect
Coulomb distortions of the aspherical parts and only include
the Coulomb distortions of the spherical part of ρ0(r). By
this way, the C0 multipole, which is the major component of
the Coulomb form factor, is calculated with the full DWBA
method. At this case, the Coulomb potential V (r) for large r
is also Z/r as it should be, because∫

V

[ρ0(r) + ρ2(r)P2(cosθ ) + · · · ]d3r =
∫

V

ρ0(r)d3r = Z.

(13)

TABLE I. Theoretical binding energies per nucleon B/A (MeV),
charge rms radii RC (fm), neutron skins Rnp (fm), and deformation
parameter β2 for some spherical and deformed nuclei, calculated by
the axially deformed RMF model with NL3 and FSUGarnet param-
eter sets. The experimental data are taken from the Refs. [36,55,56].
In the table, FSUGarnet is abbreviated as FSUG.

Nuclei Forces B/A RC β2 Rnp

208Pb NL3 7.88 5.51 −0.004 0.28
FSUG 7.91 5.49 0.000 0.16
Expt. 7.87 5.50 0.055

40Ca NL3 8.59 3.49 0.000 −0.06
FSUG 8.53 3.47 −0.006 −0.07
Expt. 8.55 3.48 0.123

32S NL3 8.30 3.29 0.198 −0.06
FSUG 8.33 3.25 0.134 −0.06
Expt. 8.49 3.26 0.312

24Mg NL3 8.06 3.15 0.440 −0.05
FSUG 8.08 3.12 0.427 −0.06
Expt. 8.26 3.06 0.605

A similar method has been used in Ref. [52] to investigate the
Coulomb form factor of 27Al. With this approximation, we can
do the DWBA calculations by numerically solving the Dirac
equation and summing partial waves.

In DWBA method, the elastic electron scattering by the
nuclear electrostatic potential is described by the Dirac
equation [54]:

[α · p + βm + V (r)]�(r) = E�(r), (14)

where V (r) is the Coulomb potential of the spherical part
ρ0(r) of the deformed proton densities. The wave functions
of scattered electrons can be expanded in terms of spherical
spinors with definite angular momentum:

�(r) = 1

r

[
P (r)�κ,mj

(θ,φ)
iQ(r)�−κ,mj

(θ,φ)

]
. (15)

The upper component P (r) and lower component Q(r) of
the radial wave function at large distances can be determined
with the phase shift δ. Substituting Eq. (15) into Eq. (14), the
spin-up δ+

l and spin-down δ−
l phase shifts for the partial wave

with orbital angular momentum l can be solved. With the phase
shifts of the wave functions, the direct scattering amplitude and

FIG. 1. Ground-state proton densities (units of fm−3) and nuclear
surface shapes of 208Pb, calculated by the deformed RMF model with
FSUGarnet and NL3 parameter sets.
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(a) (b)

FIG. 2. (a) The density multipole components of 208Pb for deformed proton distributions in Fig. 1, which are obtained by Eqs. (6) and (7).
(b) The proton distributions of 208Pb, calculated by the spherical RMF model. In the figure, FSUGarnet is abbreviated as FSUG.

spin-flip scattering amplitude can be determined as [32]

f (θ ) = 1

2ik

∞∑
l=0

[
(l + 1)(e2iδ+

l − 1) + (e2iδ−
l − 1)

]
Pl(cos θ ),

g(θ ) = 1

2ik

∞∑
l=0

[
e2iδ−

l − e2iδ+
l

]
P 1

l (cos θ ), (16)

with Pl and P 1
l denoting the Legendre and associated Legendre

function. The electron-scattering amplitudes f (θ ) and g(θ ) are
given as sum of infinite partial waves. However, their Legendre
expansion has fast convergence with l increasing. For electron
scattering off the heavy nucleus 208Pb with incident energy
600 MeV, about 40 partial waves need to be taken into account
in numerical calculations. For light nuclei such as Ca and
S, the numbers of partial waves required are fewer. When
the scattering amplitudes f (θ ) and g(θ ) are obtained, the C0

multipole can be calculated as

FC0 (q) = (|f (θ )|2 + |g(θ )|2)/σMott, (17)

where the Mott scattering cross section is

σM (θ ) =
(

Zα

2E

)2 cos2 1
2θ

sin4 1
2θ

. (18)

III. NUMERICAL RESULTS AND DISCUSSION

With the formula presented in Sec. II, the Coulomb form
factors are calculated in this section for both the spherical
and deformed even-even nuclei. By comparing the theoretical
results with the experimental data, the validity of the axially
deformed RMF model is examined. The nuclear proton
densities are calculated under the deformed RMF models with
two parameter sets. One is the NL3 parameter set [45], which
provides many descriptions for nuclei throughout the periodic
table. The other is the new calibrated FSUGarnet parameter
set [46,47], which displays a soft symmetry energy and
provides good descriptions for nuclei near the neutron trip line.

In Table I, we present the theoretical binding energies
per nucleon B/A, charge rms radii RC , neutron skins Rnp =
Rn − Rp, and deformation parameter β2 for both the spherical
and deformed nuclei, which are calculated by the axially
deformed RMF model with the NL3 and FSUGarnet parameter
sets, respectively. The experimental data are also given in this
table. From this table, it can be seen that the theoretical results
agree with the experimental data for these two parameter
sets. However, the charge rms radii RC only provide a rough
description for the nuclear ground-state properties, because
different density distributions can correspond to the same
rms radii. Compared with charge rms radii RC , the Coulomb
form factor can provide a better description for the nuclear

FIG. 3. Nuclear Coulomb form factors of 208Pb, where the corresponding proton density distributions are calculated by the spherical RMF
model and axially deformed RMF model with two parameter sets, respectively. In the figure, FSUGarnet is abbreviated as FSUG.
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FIG. 4. Nuclear Coulomb form factors of 40Ca, where the corresponding proton density distributions are calculated by the spherical RMF
model and axially deformed RMF model with two parameter sets, respectively. In the figure, FSUGarnet is abbreviated as FSUG.

electromagnetic properties. Therefore, the theoretical nuclear
Coulomb form factors for nuclei in Table I are investigated by
the DWBA method.

A. Spherical nuclei

First, the Coulomb form factors of spherical nuclei are
investigated by the deformed RMF model and DWBA method.
The double magic nuclei 208Pb and 40Ca always serve as
a benchmark for studying the nuclear properties. Therefore,
Coulomb form factors of 208Pb and 40Ca are an important
examination for the recent research. The ground-state proton
density distributions of 208Pb calculated by the deformed RMF
model with different parameter sets are presented in Fig. 1,
and the corresponding density multipole components for the
deformed proton distributions are given in Fig. 2(a). As a
comparison, the proton densities calculated by the spherical
RMF model are presented in Fig. 2(b). In these two figures, one
can see that the proton density distributions of 208Pb calculated
from the deformed RMF model have a spherical surface shape,
and the deformed multipole components ρ2 and ρ4 are very
close to zero.

With the spherical multipole components ρ0 in Fig. 2(a),
the Coulomb form factors of 208Pb are calculated by the
DWBA method, and the results are presented in Fig. 3. From
this figure, one can see that, for 208Pb, the Coulomb form
factors from the deformed RMF proton densities coincide
with those from the spherical RMF densities, and both of
them have good agreements with the experimental data. Only
at high momentum transfers (q > 2.8 fm−1), a small deviation
occurs between the results of deformed RMF model and
spherical RMF model, and there are no experimental data in
this range. The form factors at high momentum transfers are
mainly sensitive to the inner parts of the density distributions.
Therefore, further experiments at high momentum transfers
will be helpful to constrain the central density distribution of
208Pb. Results in Fig. 3 indicate that for the spherical nucleus
208Pb, the deformed RMF model can also give an effective
description for its proton density distributions.

Besides 208Pb, the Coulomb form factors of 40Ca are
also investigated with the deformed RMF model and DWBA
method. In Table I, charge rms radii of 40Ca are calculated by
the deformed RMF model with FSUGarnet and NL3 parameter

sets, and the results coincide with the experimental data.
Besides the charge rms radii, the nuclear Coulomb form factors
for the deformed RMF proton densities of 40Ca are further
calculated and presented in Fig. 4. In this figure, the theoretical
Coulomb form factors from the deformed RMF model have
good agreement with the experimental data and Coulomb form
factors of the spherical RMF model. Combining Figs. 2–4,
one can see that, for the spherical nuclei, the proton density
distributions obtained from the deformed RMF model are
consistent with those from the spherical RMF model. This is
because, for spherical nuclei, the deformed RMF programs
also converge to the case of the spherical solutions. The
deformed RMF model is more general and contains the
solutions for the spherical nuclei.

B. Deformed nuclei

Besides the spherical nuclei, the Coulomb form factors of
deformed nuclei in Table I are also investigated in this paper. In
Fig. 5, the ground-state proton density distributions of 32S are
presented, which are calculated by the deformed RMF model
with the FSUGarnet and NL3 parameter sets. From this figure,
it can be seen that the RMF proton density distributions from
different parameter sets are very similar. Both of them have a
prolate shape, and their density distributions are depressed
in the center because of the lower population of s-wave
orbitals. There are also small differences between the results
of FSUGarnet and NL3 parameter sets. The central proton

FIG. 5. Ground-state proton densities (units of fm−3) and nuclear
surface shapes of 32S, calculated by the deformed RMF model with
FSUGarnet and NL3 parameter sets.
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(a) (b)

FIG. 6. (a) The density multipole components for deformed proton distributions of 32S in Fig. 5, which are obtained by Eqs. (6) and (7).
(b) The proton density distributions of 32S, calculated by the spherical RMF model. In the figure, FSUGarnet is abbreviated as FSUG.

density distribution from the NL3 parameter set is smaller
than that from the FSUGarnet set.

With Eqs. (6) and (7), the proton distributions in Fig. 5
are further decomposed into different multipole components.
The multipole components ρ0, ρ2, and ρ4 for the deformed
RMF proton densities of 32S are presented in Fig. 6(a). For
comparison, the proton density distributions of 32S calculated
by the spherical RMF model are also presented in Fig. 6(b).
Although 32S is a deformed nucleus, the spherical part ρ0 is
still the major part of its proton distributions. The multipole ρ2

provides the nuclear quadruple deformation, which is much
smaller than ρ0. With the multipole order k increasing, the
values of the components decrease very rapidly. In Fig. 6(a), for
multipoles ρk (k � 4), its contributions to the proton densities
can be neglected. To study the Coulomb form factors of even-
even nucleus 32S, only the spherical part ρ0 need to be taken
into account.

The nuclear Coulomb form factors of 32S for deformed
RMF proton density distributions in Fig. 5 are investigated
with the formulas in Sec. II, and the results are presented
in Fig. 7. For comparison, the Coulomb form factors of the
spherical RMF proton density distributions are also calculated
and presented in Fig. 7. From this figure, one can see that
the Coulomb form factors calculated from the spherical and
deformed models are very close to each other. Both of them
can describe the experimental data. At the first diffraction

minimum (q � 1.2 fm−1), there are small discrepancies
between the experimental data and theoretical results of the
spherical RMF model. The Coulomb form factors calculated
from the deformed RMF model coincide with the experimental
data better at the first diffraction minimum. Results in Fig. 7
show the proton density distributions of 32S from the axially
deformed RMF models are valid and reasonable.

Besides the 32S, the Coulomb form factors of 24Mg are
also investigated with the deformed RMF model and DWBA
method. In Fig. 8, we present the ground-state proton density
distributions and nuclear surface shapes of 24Mg, which are
calculated by the axially deformed RMF model with the
FSUGarnet and NL3 parameter sets, respectively. Compared
with Fig. 5, one can see that there are also central depression in
the proton density distributions of 24Mg because of the lower
population of s-wave orbitals. Besides the central depression,
there are two regions of pronounced localization at the outer
ends of the symmetry axis. The density multipole components
ρk for the deformed RMF proton distributions of 24Mg in
Fig. 8 are also calculated by Eqs. (6) and (7), and the results
are presented in Fig. 9(a). In Fig. 9(b), we also provide
the proton densities of 24Mg, which are calculated by the
spherical RMF model. From Fig. 9, one can see that the
quadrupole components ρ2 of proton density distributions of
24Mg are larger than those of 32S, which can interpret the larger
deformation parameter β2 of 24Mg in Table I.

FIG. 7. Nuclear Coulomb form factors of 32S, where the corresponding proton density distributions are calculated by the spherical RMF
model and axially deformed RMF model with two parameter sets, respectively. In the figure, FSUGarnet is abbreviated as FSUG.
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FIG. 8. Ground-state proton densities (units of fm−3) and nuclear
surface shapes of 24Mg, calculated by the deformed RMF model with
FSUGarnet and NL3 parameter sets.

With the spherical components ρ0 in Fig. 9, the Coulomb
factors of 24Mg are calculated, and the results are presented
in Fig. 10. From two panels of Fig. 10, one can see that
the theoretical Coulomb factors from the deformed RMF
model present good agreements with the experimental data.
Especially in the range of high momentum transfers (q >
2 fm−1), there are deviations between the theoretical results
of spherical RMF model and experimental data. However,
the results of the deformed RMF model coincide with the
experimental data better in this range. The form factors in
high momentum transfers are sensitive to the details of the
inner part of density distributions. Therefore, results in Fig. 10
indicate that for 24Mg, the deformed RMF model can give a
better descriptions on the density distributions at the central
part of the nucleus, compared with the spherical RMF model.

IV. SUMMARY

The nuclear Coulomb form factors are important quantities,
which can accurately reflect the nuclear electromagnetic
structure. In previous theoretical studies, the combination of
the spherical RMF model and DWBA method was widely used
to study the nuclear Coulomb form factors. The purpose of this
paper is to extend this method to the deformed RMF model. In
this paper, the Coulomb form factors of even-even nuclei are
systematically investigated by the deformed RMF model and
the DWBA method.

For even-even nuclei, the Coulomb form factors only
contain the C0 multipoles by the angular-momentum con-
sideration. The C0 multipole is attributed to the spherical
part of the proton distribution. Therefore, we first calculate
the nuclear proton density by the deformed RMF model.
Next, the RMF proton distribution is expanded in multipoles
by the Legendre function to extract its spherical part ρ0(r).
After the ρ0(r) is obtained, the C0 multipole is studied with
the DWBA method. An approximate method is used to deal
with the nuclear Coulomb distortion effects. If the nuclear
deformation is not large, we neglect the Coulomb distortions of
the aspherical parts and do the DWBA calculations where only
the Coulomb distortions of spherical parts ρ0(r) are taken into
account.

During the studies, both the spherical and deformed nuclei
are chosen as the candidates. Their density distributions are
calculated by the axially deformed RMF model with two
parameter sets. One is the classical NL3 parameters and the
other is the new FSUGarnet parameters. The Coulomb form
factors of these nuclei are investigated and the results are
compared with the experimental data. For spherical nuclei,
the theoretical Coulomb form factors from the deformed RMF
models almost coincide with those from the spherical RMF
models, and both of them have good agreement with the
experimental data. For deformed nuclei, the Coulomb form
factors calculated from deformed RMF model modify the
results of spherical RMF model at the diffraction minima and
at high momentum transfers. Results in this paper indicate that
deformed RMF model contains the solutions for the spherical
nuclei and also provide better descriptions for the deformed
nuclei. The new experiments of elastic electron scattering off
exotic nuclei are under way. The studies in this paper are also
helpful to interpret the experimental data of electron scattering
off exotic deformed nuclei.
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