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Background: The variational multiparticle-multihole configuration mixing approach to nuclei has been proposed
about a decade ago. While the first applications followed rapidly, the implementation of the full formalism of this
method has only been recently completed and applied in C. Robin, N. Pillet, D. Peña Arteaga, and J.-F. Berger,
[Phys. Rev. C 93, 024302 (2016)] to 12C as a test-case.
Purpose: The main objective of the present paper is to carry on the study that was initiated in that reference, in
order to put the variational multiparticle-multihole configuration mixing method to more stringent tests. To that
aim we perform a systematic study of even-even sd-shell nuclei.
Method: The wave function of these nuclei is taken as a configuration mixing built on orbitals of the sd-shell, and
both the mixing coefficients of the nuclear state and the single-particle wave functions are determined consistently
from the same variational principle. As in the previous works, the calculations are done using the D1S Gogny
force.
Results: Various ground-state properties are analyzed. In particular, the correlation content and composition
of the wave function as well as the single-particle orbitals and energies are examined. Binding energies and
charge radii are also calculated and compared to experiment. The description of the first excited state is also
examined and the corresponding transition densities are used as input for the calculation of reaction processes
such as inelastic electron and proton scattering. Special attention is paid to the effect of the optimization of the
single-particle states consistently with the correlations of the system.
Conclusions: The variational multiparticle-multihole configuration mixing approach is systematically applied to
the description of even-even sd-shell nuclei. Globally, the results are satisfying and encouraging. In particular,
charge radii and excitation energies are nicely reproduced. However, the chosen valence-space truncation scheme
precludes achieving maximum collectivity in the studied nuclei. Further refinement of the method and a better-
suited interaction are necessary to remedy this situation.
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I. INTRODUCTION

Atomic nuclei are among the most complex and challenging
quantum many-body systems to describe. On the one hand
they exhibit properties of independent-particle systems, as
evidenced, for example, by the existence of magic numbers.
On the other hand, many phenomena such as superfluidity,
deformation, clustering, or emergent collective phenomena
are proof of the deep correlations that exist between the
nucleons. Following these observations, historically two types
of approaches to the description of nuclei appeared. The
first is based on the self-consistent mean-field (SCMF)
method [1], which rests on the assumption that in the first
approximation, the nucleons can be described as evolving
in a mean potential, which emerges from the underlying
effective nuclear interaction. The nucleus is thus described
as a system of independent nucleons, which are dressed by
their averaged interaction with the other particles. The second
approach, known as interacting shell model (SM) [2], starts
from a given set of single-particle states and directly tackles the
correlations between the nucleons in a truncated many-body
model space. Both of these approaches have advantages and
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drawbacks. For instance, in the SCMF method, accounting
for correlations beyond the first-order approximation often
requires symmetry-breaking and restoration techniques. Also,
ground and excited states as well as even-even, odd-even, and
odd-odd nuclei can usually not be treated on the same footing.
On the other hand, this approach is applicable to a very large
range of masses, and excited states can usually be calculated up
to high energies. While the traditional shell model is mainly
applicable up to midmass nuclei (or near closed shell) and
restricted to low-lying states, the description of ground and
excited states of all types of nuclei can be achieved in a unified
way, while explicitly preserving important symmetries.

Several approaches aiming to reconcile SM and SCMF
methods have been developed in the past. We can cite, for
instance, the shell model Monte Carlo (SMMC) [3–8] and
Monte Carlo shell model (MCSM) [9–13], which use stochas-
tic sampling of many-body configurations around a deformed
mean-field solution and diagonalize the Hamiltonian in the
resulting subspace. From the mean-field side, the VAMPIR-
family methods (see, e.g., Refs. [14–21]) diagonalize a Hamil-
tonian in the space spanned by a symmetry-projected Hartree-
Fock-Bogoliubov ground state and quasiparticle excitations on
top of it.

The present work aims to unify SM and SCMF views
in an alternative manner, without making use of symmetry-
breaking and projection techniques. The resulting approach
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is called “variational multiparticle-multihole configuration
mixing method,” which we will abbreviate by MPMH.
More specifically, this method considers a wave function
written in the form of configuration interaction methods,
as a superposition of many-nucleon configurations. Such an
ansatz allows one to preserve the advantages of shell-model
techniques, such as explicit preservation of rotational and
particle-number symmetry and the ability to calculate energies,
densities, and transition probabilities from ground or excited
states in a single framework. Additionally, full self-consistency
is obtained as both correlations and orbitals are calculated
via a common variational principle applied to the same
energy functional of the system. The single-particle states
are, therefore, not considered as frozen inputs but are instead
determined consistently with the correlations of the system.

While such kinds of approaches have been widely employed
in the past in atomic physics and quantum chemistry [22–25],
their applications to nuclear systems are more recent. The very
first attempts were restricted to analytical models [26–28] and
were later followed by applications in the intrinsic frame that
were, however, restrained by computational limits [29–34].
The past decade has seen renewed interest and effort in the
development and application of the MPMH approach to nuclei
in realistic scenarios. The first studies have partly applied the
formalism of the MPMH method: analyses of the spectroscopy
of sd-shell nuclei were performed using frozen Hartree-Fock
orbitals [35,36], and the description of pairing correlations in
the ground states of Sn isotopes was studied in Ref. [37] by
making important approximations in the determination of the
single-particle states. Finally, the full formalism of the MPMH
approach was implemented and applied for the first time to the
12C nucleus in Ref. [38]. In the present study we continue
the work initiated in that reference and perform systematic
calculations of ground and excited states of sd-shell nuclei.

In Sec. II we briefly review the formalism of the MPMH
method. In Sec. III we investigate various properties of
the ground state of even-even sd-shell nuclei. We analyze
in more detail some aspects of a few benchmark nuclei,
such as their correlation content, wave-function composition,
single-particle energies, and single-particle orbitals. More
systematically, we calculate binding energies and charge radii,
which we compare to experimental data. In Sec. IV, we
investigate the description of low-lying excited states and
use the calculated transition densities as inputs for reaction
calculations such as inelastic electron and proton scattering.
Finally, we give conclusions and perspectives to this work in
Sec. V.

II. FORMALISM OF THE MPMH METHOD

We briefly remind the formalism of the MPMH method.
For more details we refer the reader to Ref. [38].

In the MPMH approach, the nuclear state |�〉 is taken as
a superposition of Slater determinants |φα〉 built on a certain
single-particle basis {i}:

|�〉 =
∑

α

Aα |φα〉 , with |φα〉 =
∏
i∈α

a
†
i |0〉 , (1)

where i denotes a set of quantum numbers and |0〉 refers to the
true particle vacuum.

In the case of a two-body density-dependent interaction like
the D1S Gogny force [39] used in this study, the minimization
of the energy with respect to the expansion coefficients Aα ,
and to the single-particle orbitals {i} leads to the following
system of coupled equations:∑

β

Aβ 〈φα|Ĥ [ρ,σ ]|φβ〉 = λAα, ∀α (2)

[ĥ [ρ,σ ],ρ̂] = Ĝ[σ ] , (3)

where ρ and σ denote the one-body density matrix and two-
body correlation matrix of the state |�〉, respectively:

ρij = 〈�|a†
j ai |�〉 , (4)

σil,jk = 〈�|a†
i a

†
j akal|�〉 − ρliρkj + ρljρki . (5)

In Eq. (2), the two-body operator Ĥ [ρ,σ ] is the sum of the
kinetic energy1 K̂ , the D1S interaction V̂ 2N

D1S[ρ], and a rear-
rangement term R̂ [ρ,σ ] arising from the density-dependence
of the interaction:

Ĥ [ρ,σ ] = K̂ + V̂ 2N
D1S[ρ] + R̂ [ρ,σ ], (6)

where the rearrangement term can be written as

R̂ [ρ,σ ] = 1

4

∫
d3r

∑
klmn

〈kl|δV
2N [ρ]

δρ(�r)
|m̃n〉

× (ρmkρnl − ρmlρnk + σkm,ln)ρ̂(�r), (7)

with |m̃n〉 ≡ |mn〉 − |nm〉.
In Eq. (3), h [ρ,σ ] is a general mean-field Hamiltonian:

hij [ρ,σ ] = Kij +
∑
kl

〈ik|Ṽ 2N
D1S[ρ]|j l〉 ρlk + R ij [ρ,σ ], (8)

and G[σ ] is the source term containing the effect of two-body
correlations beyond the mean-field h:

G[σ ]ij = 1

2

∑
klm

σki,lm 〈kl|V 2N
D1S[ρ]|j̃m〉

−1

2

∑
klm

〈ik|V 2N
D1S[ρ]|l̃m〉 σjl,km. (9)

Equation (2) is responsible for introducing explicit corre-
lations into the nuclear wave function, as it determines the
mixing coefficients Aα via the diagonalization of the matrix
H [ρ,σ ], while Eq. (3) determines the single-particle orbitals
that are consistent with these correlations. Practically, they
are taken as natural orbitals, i.e., eigenstates of the one-body
density satisfying Eq. (3). A detailed analysis of the role of the
orbital Eq. (3) can be found in Ref. [1].

1In this work, only the one-body corrections to the center-of-mass
motion are implemented.
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III. GROUND-STATE DESCRIPTION OF EVEN-EVEN
sd-SHELL NUCLEI

In this section we investigate various properties of the
ground state of even-even sd-shell nuclei, described within
the MPMH method.

This systematic study is performed using the following
scheme: The single-particle states are expanded on axially
deformed harmonic oscillator states at the spherical point
(β = 0), and we choose to use N0 = 9 major oscillator shells.
To select the relevant many-body configurations included in
the wave function |�〉 we use a “shell-model” scheme, i.e.,
we allow for all possible excitations of nucleons within the
sd-shell, on top of a core of 16O. Since this model space is
rotationally invariant, the final correlated state is characterized
by a good total angular momentum J . The minimum number
of configurations (418, using time-reversal invariance) is
obtained in the case of 20Ne, having only 4 valence nucleons
that can lead to excitations from 0p-0h up to 4p-4h. Conversely,
the maximum number of configurations (56 937) occurs in the
case of 28Si, for which excitations up to 12p-12h are possible
within the valence space. This type of truncation scheme was
already used to test the MPMH approach in 12C [38], where it
led to reasonable results using the same Gogny interaction.

In this study, we find it interesting to introduce self-
consistency step by step, in order to understand the impli-
cations of its full implementation in the MPMH method.
Therefore, we show the theoretical results at three levels of
implementation of the MPMH method:

(1) Without any self-consistency, i.e., after one single
diagonalization of the many-body matrix H [ρHF] =
K + V D1S[ρHF], in the sd-shell of pure Hartree-Fock
(HF) orbitals, when the pure HF density ρHF is used in
the interaction and therefore, no rearrangement terms
are present.

(2) With partial self-consistency, i.e., after solving the full
Eq. (2) alone, on HF orbitals, including the correlated
density in the interaction and the rearrangement terms.
This is achieved by diagonalizing H [ρ,σ ] = H [ρ] +
R [ρ,σ ] iteratively, until convergence. In this work,
convergence is said to be reached when the difference
|ρ(N−1)

ij − ρ
(N)
ij | between any element of the one-body

density matrix between two iterations N − 1 and N is
less than 1.0 × 10−5.

(3) With full self-consistency, i.e., when both Eqs. (2)
and (3) are solved together and consistency between
correlations and orbitals is reached. This is achieved
using the doubly iterative procedure described in detail
in Ref. [38]. The convergence criteria on the density
matrix is also set to 1.0 × 10−5 for both types of
iterations.

This comparison makes it possible to separate the effects of
(i) the use of the correlated density in the interaction—which
is not justified a priori—and (ii) the orbital Eq. (3).

The present study follows the work presented in Ref. [36],
which provided a description of even-even sd-shell nuclei at
the level 1 of implementation of the MPMH approach stated
above. However, the aforementioned study did not include the

FIG. 1. HFB potential energy surface (PES) of the neon isotopes.
The red curve includes zero-point energy corrections.

exact exchange Coulomb term in the HF field, and N0 = 11
major oscillator shells were used to expand the HF single-
particle states.

In the first part of this section we focus on the analysis
of a few noteworthy nuclei. In particular we are interested in
their correlation matrices, source terms G[σ ], wave-function
composition, and single-particle properties. In the second part
of the section we give a systematic description of ground-state
observables such as charge radii, binding, and two-nucleon
separation energies.

A. Analysis of a few benchmark nuclei

The nuclei of the sd-shell exhibit diverse correlation
properties. In particular their deformation profile can be
very different. As an illustration, we show in Fig. 1 triaxial
potential-energy surfaces (PES) of neon isotopes, obtained
within the Hartree-Fock-Bogoliubov (HFB) approach using
the same D1S Gogny interaction. One observes a transition
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FIG. 2. HFB PES of 24Mg (top left), 28Si (top right), and 32S
(bottom).

of shape along this isotopic chain, as the number of neutrons
N decreases. The heaviest isotopes appear spherical while the
lightest ones are predicted oblate (24Ne) or prolate (20−22Ne).
We also display in Fig. 2 the PES of three other nuclei of
the sd-shell: 24Mg, 28Si, and 32S. The 24Mg and 28Si nuclei
exhibit a large axial deformation characterized by β ∼ 0.6 and
β ∼ −0.4, respectively. The 32S nucleus is predicted spherical
and soft in its ground state and exhibits a super-deformed
second minimum at β ∼ 1.2.

1. Correlation matrices and source terms G[σ ]

As MPMH explicitly preserves spherical symmetry, the
information about the deformation of a nucleus should be
contained to some extent in the correlation matrix σ . To
illustrate this, we show in Fig. 3 the calculated correlations
for three neon isotopes obtained when full self-consistency of
orbitals and correlations is reached (level 3 of the method).
The linear index I represents a quadruplet of single-particle
states (i,j,k,l). Correlations between neutrons are drastically
modified with the neutron number. Proton correlations appear
to slowly increase when N decreases, as σπ appears more
fragmented. This behavior is likely to be caused by the
proton-neutron interaction. Indeed, we note the importance
of correlations between both isospin, which are generally
enhanced in nuclei with equal numbers of protons and
neutrons, such as 20Ne, since the two types of nucleons occupy
the same orbitals and highly overlap spatially. This effect is
also illustrated in Fig. 4, where we display the correlation
content of the three other N = Z notable nuclei. We also note
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FIG. 3. Proton correlations σπ (left), neutron correlations σ ν

(center), and proton-neutron correlations σπν (right), for 28Ne, 24Ne,
and 20Ne. They are calculated when full consistency between orbitals
and correlations is reached (level 3 of the method).

the strength of pure neutron and proton correlations in 28Si and
24Mg, compared to other nuclei under study.

Using these correlation matrices to calculate the source
term G[σ ] of the orbital Eq. (3), we obtain the values shown in
Table I. Since G[σ ] couples single-particle states in the valence
space to orbitals in the rest of the basis—characterized by the
same angular momentum j and parity π—we obtain a total of
10 couplings for each isospin.

First we note that some values of the source term are not
negligible. In particular, we observe a systematic high value of
the coupling between the 1s and the 0s shells (shown in bold)
compared to other couplings. They are >1 MeV in the nuclei
described as the most deformed by mean-field calculations,
and reach ∼2 MeV in 24Mg and 28Si. Dynamical correlations
related to the source term therefore seem to act toward a strong
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FIG. 4. Proton correlations σπ (left), neutron correlations σ ν

(center), and proton-neutron correlations σπν (right), for 24Mg, 28Si,
and 32S. They are calculated when full consistency between orbitals
and correlations is reached (level 3 of the method).
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TABLE I. Proton (top) and neutron (bottom) source terms
|Gτ

jk,jl
[σ ]| (τ = π,ν) (in MeV) between the subshells jk of the valence

space and other subshells jl outside of the model space.

(jk,jl)
28Ne 24Ne 20Ne 24Mg 28Si 32S(

0d 5
2
,1d 5

2

)
0.0361 0.00325 0.0926 0.238 0.161 0.0590(

0d 5
2
,2d 5

2

)
0.226 0.422 0.576 0.539 0.387 0.156(

0d 5
2
,3d 5

2

)
0.297 0.300 0.431 0.591 0.567 0.243

(1s,0s) 0.257 0.334 1.40 2.02 2.08 1.22
(1s,2s) 0.0561 0.0705 0.433 0.580 0.694 0.543
(1s,3s) 0.0262 0.0203 0.152 0.0586 0.0245 0.131
(1s,4s) 0.0444 0.0495 0.298 0.431 0.519 0.259(
0d 3

2
,1d 3

2

)
0.0264 0.0470 0.191 0.256 0.274 0.214(

0d 3
2
,2d 3

2

)
0.0136 0.0190 0.263 0.211 0.163 0.296(

0d 3
2
,3d 3

2

)
0.0271 0.0702 0.311 0.395 0.411 0.528

(a) Protons couplings
∣∣Gπ

jk,jl
[σ ]

∣∣ (in MeV).

(jk,jl)
28Ne 24Ne 20Ne 24Mg 28Si 32S(

0d 5
2
,1d 5

2

)
0.0317 0.0977 0.0368 0.159 0.0918 0.0251(

0d 5
2
,2d 5

2

)
0.0869 0.172 0.600 0.578 0.422 0.172(

0d 5
2
,3d 5

2

)
0.0152 0.303 0.420 0.579 0.553 0.233

(1s,0s) 0.289 1.43 1.39 2.02 2.07 1.20
(1s,2s) 0.122 0.448 0.393 0.531 0.619 0.478
(1s,3s) 0.0505 0.00147 0.182 0.104 0.0876 0.0706
(1s,4s) 0.0450 0.335 0.292 0.429 0.513 0.254(
0d 3

2
,1d 3

2

)
0.284 0.154 0.168 0.226 0.237 0.151(

0d 3
2
,2d 3

2

)
0.0395 0.102 0.274 0.230 0.189 0.338(

0d 3
2
,3d 3

2

)
0.261 0.245 0.304 0.389 0.406 0.520

(b) Neutrons couplings
∣∣Gν

jk,jl
[σ ]

∣∣ (in MeV).

mixing of these shells. The 1s and 2s shells, as well as some
d5/2 and d3/2 subshells, also appear importantly coupled.

Regarding the Neon isotopic chain, the proton source term
generally increases as the neutron number N decreases, in
accordance with the correlation matrices from Fig. 3. The
behavior of the neutron source term, is less clear. For instance,
these couplings appear globally quite strong in 24Ne compared
to the proton ones.

Finally, let us look more carefully at the evolution of the
couplings Gkl[σ ] with the single-particle energy difference
ε = |εk − εl|. In an intuitive way using perturbative argu-
ments, one would expect the values of G[σ ] to decrease
as ε increases. However, this behavior is not clear from
the calculated values. We remind that these calculations are
realized using a spherical mean field. Thus, if correlations
associated to deformation are strong, important couplings to
high-energy orbitals can appear.

2. Correlation energies

Table II displays the correlation energy Ecorr = EHF − E0

of the selected benchmark nuclei, defined as the difference
between the energy E0 of the correlated ground state and the
energy EHF of the spherical Hartree-Fock ground state. The re-
sults are shown at stages 1, 2, and 3 of implementation of the
method, described at the beginning of the section. As expected
from the values of σ and G[σ ], the correlation energy of the
neon isotopes increases considerably as the neutron number

TABLE II. Correlation energy Ecorr = EHF − E0 for the neon
isotopes and other benchmark nuclei, in MeV.

Level 1: Level 2: Level 3:
Eq. (2) with Full Full

ρ = ρHF, σ = 0 Eq. (2) Eqs. (2) and (3)

28Ne 1.15 1.28 1.58
26Ne 0.41 0.88 1.55
24Ne 5.75 6.23 6.98
22Ne 10.48 10.90 12.12
20Ne 10.93 11.54 13.30
24Mg 14.24 15.06 16.04
28Si 5.89 6.25 8.08
32S 3.37 4.58 5.76

decreases. At the non-self-consistent stage (column 2), among
the presented nuclei, 24Mg appears as the most correlated one.
Introducing the correlated density in the interaction and the
rearrangement terms that account for medium effects (column
3) leads to a gain of correlation energy that is less than
1 MeV in all nuclei. On top of that, the renormalization of
single-particle states has a considerable effect (column 4). The
most significant one appears in 28Si, for which optimizing the
orbitals brings an additional 1.83 MeV. Ecorr is increased by
1.76, 1.22, 1.18, and 0.98 MeV in 20Ne, 22Ne, 32S, and 24Mg,
respectively. The effect is weaker in the other nuclei under
study.

3. Composition of the ground-state wave function

In order to obtain a more precise description of the
correlations incorporated by MPMH in the ground state,
it is necessary to analyze the composition of the wave
function in terms of the different configurations. We show
in Table III the main components of the wave function
obtained again at the three levels of implementation of the
MPMH method. When the orbitals are not modified (levels
1 and 2), we show the weights of the most important con-
figurations built on pure Hartree-Fock single-particle states.
Conversely, when full self-consistency is applied (level 3), the
many-body Slater determinants are constructed on optimized
orbitals.

At the non-self-consistent level 1 (column 3), the Hartree-
Fock 0p-0h state always appears as the major component, and
absorbs most of the wave function in weakly correlated nuclei
(>86% in 28Ne). The rest of the weight is distributed among
many other configurations, mostly of 1p-1h and 2p-2h types.
As already stated, configurations involving excitations of both
protons and neutrons are more important in N = Z nuclei,
where their interaction is favored. For instance, the second
main component in 28Si is a (2p-2h)πν = (1p-1h)π ⊗ (1p-1h)ν
excitation, with a weight >12%, while the Hartree-Fock states
only embodies ∼26% of the wave function. The medium
effects simulated by the rearrangement terms (level 2, column
4) fragment the wave function by decreasing the 0p-0h
component in most cases. Only 28Si makes exception with
a Hartree-Fock component that increases from ∼26 to ∼39%.
When full self-consistency is reached (level 3, column 5) the
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TABLE III. Main components of the ground-state of different nuclei, expressed in percents (%).

Level 1: Level 2: Level 3: Level 3:
Nucleus Configuration Eq. (2) with Full Full Full

ρ = ρHF, σ = 0 Eq. (2) Eqs. (2) and (3) Eqs. (2) & (3)
(HF orbitals) (HF orbitals) (SC orbitals) (HF orbitals)

0p-0h 86.24 84.11 83.63
28Ne (1p-1h)π (0d5/2 → 1s) 3.49 3.19 2.85

(1p-1h)ν (1s → 0d3/2) 3.26 4.04 4.50
0p-0h 77.11 70.88 69.62 61.50

26Ne (1p-1h)ν (1s → 0d3/2) 6.02 7.28 7.59
(1p-1h)ν (0d5/2 → 0d3/2) 4.45 4.87 5.20

(2p-2h)πν

(
1sν ⊗ 0dπ

5/2 → 0dν
3/2 ⊗ 1sπ

)
2.27 2.75 2.38

0p-0h 56.51 53.45 49.41
24Ne (1p-1h)ν (0d5/2 → 1s) 17.81 17.48 17.81

(1p-1h)ν (0d5/2 → 0d3/2) 5.60 6.27 6.34
(2p-2h)ν (0d5/2 → 1s) 6.17 6.56 7.54

0p-0h 45.36 43.05 33.05
(2p-2h)πν

(
0dπ

5/2 ⊗ 0dν
5/2 → 1sπ ⊗ 1sν

)
8.15 6.80 8.86

(1p-1h)π (0d5/2 → 0d3/2) 6.91 8.26 8.65
20Ne (1p-1h)ν (0d5/2 → 0d3/2) 6.94 8.30 8.58

(1p-1h)π (0d5/2 → 1s) 5.29 4.44 5.08
(1p-1h)ν (0d5/2 → 1s) 5.40 4.50 5.13

(2p-2h)π (0d5/2 ⊗ 0d5/2 → 1s ⊗ 1s) 2.32 1.89 2.46
(2p-2h)ν (0d5/2 ⊗ 0d5/2 → 1s ⊗ 1s) 2.44 1.95 2.52

0p-0h 34.63 32.45 23.82
(1p-1h)ν (0d5/2 → 1s) 8.31 7.13 6.49
(1p-1h)π (0d5/2 → 1s) 8.08 6.98 6.37

24Mg (2p-2h)πν

(
0dπ

5/2 ⊗ 0dν
5/2 → 1sπ ⊗ 1sν

)
5.30 4.32 5.16

(1p-1h)ν (0d5/2 → 0d3/2) 4.43 4.83 3.94
(1p-1h)π (0d5/2 → 0d3/2) 4.37 4.83 3.96

(2p-2h)ν (0d5/2 ⊗ 0d5/2 → 1s ⊗ 1s) 2.24 1.83 2.26
(2p-2h)π (0d5/2 ⊗ 0d5/2 → 1s ⊗ 1s) 2.12 1.76 2.17

0p-0h 26.02 38.68 17.80 16.99
28Si (2p-2h)πν

(
0dπ

5/2 ⊗ 0dν
5/2 → 1sπ ⊗ 1sν

)
12.36 8.11 8.98

(2p-2h)ν (0d5/2 ⊗ 0d5/2 → 1s ⊗ 1s) 5.03 3.28 3.66
(2p-2h)π (0d5/2 ⊗ 0d5/2 → 1s ⊗ 1s) 4.87 3.17 3.54

0p-0h 60.30 47.23 26.20 24.26
32S (2p-2h)πν

(
1sπ ⊗ 1sν → 0dπ

3/2 ⊗ 0dν
3/2

)
8.36 9.31 11.20

(2p-2h)ν (1s ⊗ 1s → 0d3/2 ⊗ 0d3/2) 3.80 4.38 5.47
(2p-2h)π (1s ⊗ 1s → 0d3/2 ⊗ 0d3/2) 4.11 4.80 5.87

composition of the ground-state wave function is again notably
modified. The weight of the 0p-0h reference state is the most
affected. In the neon chain it decreases by a few percent in
the heavier isotopes while the reduction is more important
in the lighter ones. In particular, the 0p-0h component is
lowered from ∼43 to ∼33% in 20Ne. The wave function of
24Mg already appeared fragmented before self-consistency
was introduced with a 0p-0h Hartree-Fock component of
∼35%. Still, self-consistency leads to an additional loss of
∼11% of this weight. In 28Si, the rise of the 0p-0h component
due to the rearrangement terms is now counterbalanced by
the transformation of the single-particle states, which brings it
back down to only ∼18%. Finally, the most striking effect
is seen on 32S, for which the reference state component
decreases from ∼60% to ∼45% with rearrangement terms
and to only ∼26% after orbital optimization. Looking at the

other components, we note that this systematic reduction
of the 0p-0h state in all the nuclei under study is not
transferred to another particular configuration: the missing
weight seems to be rather equally distributed over many
components.

Finally, it is always informative to analyze the evolution
of the pure Hartree-Fock component, that is, the weight of the
0p-0h component built on nonoptimized Hartree-Fock orbitals
at the three stages 1, 2, and 3 of the MPMH method. To obtain
this quantity after reaching self-consistency, we follow the
procedure described in Ref. [38]. As it is not trivial, we can
only apply this procedure to nuclei with at least one closed
subshell. We show the results in the sixth column of Table III.
Comparing them to the values shown in the fifth column,
we note that the weight of the optimized reference state
|0p-0h〉 is systematically slightly higher than the weight of the
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Hartree-Fock state |HF〉, illustrating the fact that this new
reference state incorporates a higher physical content and
minimizes the effect of correlations. This phenomenon is, how-
ever, in competition with the tendency to fragment the wave
function and the evolution of the single-particle spectrum.
Indeed, if gaps around the Fermi level are reduced, certain
excitations may become more favorable and their weight might
increase.

4. Single-particle energies

We present here the modification of single-particle energies
(SPE) when the mean-field is constructed consistently with
the correlations present in the system. We show in Fig. 5 the
difference between Hartree-Fock SPE εHF and optimized SPE
taken as eigenvalues ε of the general mean-field of Eq. (8)
for the lightest and heaviest neon isotopes under study. The
proton and neutron spectra appear very similar for the N = Z
nucleus 20Ne. They are globally more compressed than the
Hartree-Fock ones (by ∼1 MeV), and in particular the gaps
under and above the Fermi level are decreased. The deepest
shells 0s and 0p undergo the biggest modification and are
shifted up by >600 keV (∼1 MeV for the 0s and the 0p1/2).
The change is less important in 28Ne where the biggest shifts
are of order ∼250 keV. Although a smooth compression of the
neutron spectrum is observed, the behavior of the proton one
is less systematic and seems to indicate an important influence
of the proton-neutron interaction. The gap at the Fermi level
is actually slightly increased in this case (by ∼40 keV). We
emphasize that these results strongly depend on the properties
of the effective interaction. In particular, particle-vibration
coupling effects have only been very scarcely tested with the
D1S Gogny force used here.

5. Single-particle orbitals

We now examine the modification of the single-particle
orbitals due to the correlations. We show in Fig. 6 the
squared modulus of the radial part of the core and valence
single-particle orbitals 0s,0p3/2,0p1/2,0d5/2,1s,0d3/2 for both
isospin. The proton π (neutron ν) self-consistent (SC) orbitals
are shown with full red (black) lines while the pure HF orbitals
are shown with dashed lines. Globally, although small, the
modification of the radial orbitals due to the correlations of
the many-body wave function is noticeable both in the deeply
bound orbitals of the core and in the valence-space ones.
Depending on the nucleus, the s, p, and d single-particle
states are more or less sensitive to the correlations. When
the change compared to the HF states is appreciable, the
extrema of the p and d wave functions are globally shifted
toward larger distance r . The 0d5/2, 0p3/2, and 0p1/2 are rather
smoothed by the self-consistency compared to the HF result,
and their surface component becomes larger. On the contrary,
the 0d3/2 orbital acquires a stronger volume component as
the peak around 3 fm increases and the extension toward
the surface decreases. The biggest changes in the p and d
states are observed in 20Ne, 28Si, and 24Mg. In 28Ne the peak
of the π0d3/2 is enhanced but not shifted. The magnitude
of the s orbitals can be strongly modified. Systematically,
the maximum of the 0s shell at r = 0 is increased by the
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self-consistent single-particle energies, expressed in MeV. The Fermi
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FIG. 6. Squared modulus of the radial part of the single-particle orbitals. The proton (neutron) self-consistent (SC) orbitals are shown with
full red (black) lines while the pure Hartree-Fock (HF) orbitals are shown with dashed lines.

correlations of the system while the 1s is decreased (except for
the π1s in 28Ne). The strongest modifications for the neutron
s orbitals appear in 28Ne and 28Si.

B. Systematic description of even-even sd-shell nuclei

In this section we study systematically the properties
of the ground states of even-even sd-shell nuclei with
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FIG. 7. Difference between theoretical and experimental binding
energies (in MeV) at the different levels of implementation of the
MPMH method. Experimental data are taken from Ref. [40].

10 � (Z,N ) � 18. Observables such as charge radii and
energies are calculated and compared to experiment at the
three levels of implementation of the MPMH method.

1. Binding and two-nucleon separation energies

We plotted in Fig. 7 the difference BE between exper-
imental [40] and theoretical binding energies BE(N,Z) =
〈�(N,Z)

0 |K + V 2N
D1S[ρ]|�(N,Z)

0 〉 for the different isotopic chains.
At the non-self-consistent level 1 (red squares), an average
difference to experiment 〈BE〉 ∼ 8.34 MeV is found when
averaging over the sd-shell nuclei. This global shift is related
to the use of the D1S Gogny interaction, which was fitted
at the mean-field level, only leaving room for reasonable
extensions aiming at the treatment of long-range correlations,
and thus includes already in a phenomenological way some
of the correlations that are explicitly treated by the MPMH
method [36]. Accordingly, 〈BE〉 increases when introducing
self-consistency: the use of the correlated density in the D1S
interaction and resulting rearrangement terms (green circles)
leads to an average difference of 8.91 MeV, and the additional
orbital optimization (blue triangles) gives 〈BE〉 = 9.84 MeV.
On the other hand, the standard deviation σdev(BE) slightly
improves when going from no to full self-consistency as
it varies from 0.82 to 0.79 MeV. We note that this small
deviation compared to experiment leads to a relatively good
description of the two-nucleon separation energies S2n and S2p.
Statistically, when averaging the difference to experiment [40]
over the sd-shell nuclei we find: 〈S2n〉 = 641 keV and
〈S2p〉 = 577 keV, when the full MPMH method is applied.
The standard deviations to data are σ (S2n) = 453 keV and
σ (S2p) = 332 keV.

2. Charge radii

Charge radii are measurable quantities very sensitive to
the correlation content of nuclei and related to nuclear
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FIG. 8. Comparison between experimental and MPMH charge
radii (in fm). Experimental values are taken from Ref. [41].

deformation. The root-mean-square charge radius rc is ex-
pressed as

rc =
√

r2
p + 3

2
(B2 − b2) − 0.1161

N

Z
, (10)

where rp denotes the proton root-mean-square radius,

rp =
√∫

d3rρπ (r)r2

Z
, (11)

with ρπ (r) the proton radial density in the ground state,

ρπ (r) = 〈�|â†
π (r)âπ (r)|�〉

=
∑
iπ jπ

φ∗
iπ

(r)φjπ
(r) 〈�|â†

iπ
âjπ

|�〉

=
∑
iπ

|φiπ (r)|2niπ , (12)

where we used the fact that the density matrix is diagonal in the
basis used for the configuration mixing due to the small valence
space, and niπ denotes the proton occupation numbers. The
charge radius rc is corrected by 3

2 (B2 − b2), where B = 0.7144
fm results from the proton form factor, and b is a center of
mass correction. Finally, 0.1161N

Z
denotes a correction due to

neutron electromagnetic properties.
In Fig. 8 we compare the theoretical charge radii to available

experimental data [41]. To understand these results we also
show in Fig. 9 the radial densities of a few nuclei (the proton
densities are on the left panels). We also show on these figures
the contribution ni |φi(r)|2 of each orbital i.
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FIG. 9. Radial proton density ρπ (r) (left) and neutron density ρν(r) (right) for 20Ne, 28Ne, 24Mg, 26Mg, 28Si, and 32S, and contribution of
each orbital, in fm−3.

At the non-self-consistent stage (red squares in Fig. 8),
charge radii are either lying in the experimental error bars or
underestimated, leaving room for unaccounted correlations.
The worst discrepancy is encountered in the most deformed

nuclei, exhibiting important collectivity. This behavior can be
anticipated since the configuration mixing has been restricted
to the sd-shell, and therefore “surface” orbitals with a larger
spatial extension such as the 0f7/2 are not populated. The
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introduction of the correlated density in the interaction and
of the rearrangement terms (green circles) slightly improves
the theoretical values. The only exception is 28Si. Looking at
Fig. 9, we note that, in most nuclei, the rearrangement terms
do not induce a change in the profile of the proton density,
but only lead to a slight decrease of the proton density at the
center, counterbalanced by a slightly larger extension of the
density towards the surface. In 28Si, the change is stronger as
we observe a modification of the density shape with a strong
depopulation at the center which is accompanied by an increase
around r � 2–3 fm. We also note a slight shrinking of the
density at high distance, leading to a smaller predicted radius.

At the fully self-consistent level (blue triangles), when the
orbitals are optimized according to the correlations, the charge
radii are (almost) systematically increased. The radii of the
Argon isotopes, rather poorly correlated, are all improved. The
radii of Sulfur nuclei are drastically increased and in better
accordance with experiment. Let us remind the important
fragmentation introduced in the ground state of 32S via the
orbital renormalization. An important effect is also seen on
the silicon and magnesium isotopes, although it appears too
important in 26Mg and 28Si, leading to an overestimation of
the radii and the wrong trend along the isotopic chains. Of
course, one should remember that the Gogny interaction used
to perform the calculation is not adapted to approaches such
as the MPMH configuration mixing method, which introduces
explicitly all types of correlations that are already included
phenomenologically in the force parameters. Moreover, the
use of the correlated density in the interaction may lead
to uncontrolled over-counting effects. Concerning the neon
nuclei, the radii for 28−26−24Ne, barely inside the error
bars, are slightly overestimated when full self-consistency
is considered. Very little effect is seen on the lighter and
more correlated isotopes 20−22Ne, whose radii remain largely
undervalued. Globally we see from Fig. 9 that in the nuclei that
show the largest increase of rc, such as 32S, 28Si, and 26Mg, the
density is significantly reduced at r = 0 by the optimization of
orbitals, while the shape of the density profile is kept similar to
the one obtained when no self-consistency is applied (level 1
of MPMH). In the nuclei where the improvement is small, such
as 24Mg or the neon isotopes, the density is on the other hand
increased at the center, and thus extends to smaller distances.
Finally, let us note that the good experimental trend is obtained
for the Ne, S, and Ar isotopes.

IV. DESCRIPTION OF LOW-LYING EXCITED STATES
AND APPLICATIONS TO REACTION CALCULATIONS

In this section, we study the low-lying excited states and
put to test the MPMH ground and excited wave functions by
using them as input for reaction calculations. As explained in
Ref. [38], the excited states are obtained in the following way:

At the non-self-consistent stage (level 1), they are calculated
by extracting several eigenstates of the Hamiltonian matrix
H [ρHF] with the Lanczos algorithm.

When the first equation is solved iteratively with the rear-
rangement terms (level 2), we first iterate the diagonalization
of H [ρgs,σgs] = H [ρgs] + R[ρgs,σgs], where ρgs and σgs refer
to the densities of the correlated ground-state. Once this
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FIG. 10. Theoretical excitation energies of the 2+
1 states com-

pared to experiment. Experimental data are taken from Ref. [42].
Results are expressed in MeV.

procedure has converged, we extract several eigenvalues of
H [ρgs,σgs] in order to obtain the excited states.

Similarly, when full self-consistency is applied, we first
perform the doubly iterative procedure described in Ref. [38]
for the ground state only. In this way, we obtain single-particle
orbitals that are consistent with the ground-state correlations.
Again, once this doubly iterative procedure has converged, we
extract several eigenvalues of H [ρgs,σgs] in order to obtain the
excited states.

A. Excitation energies

We plotted in Fig. 10 the theoretical excitation energies
of the first excited Jπ = 2+ state of sd-shell nuclei as
a function of experimental ones [42]. We have excluded
from this study 26S, 28Ar, and 30Ar, as these nuclei are
predicted with negative two-proton separation energies S2p, in
accordance with experiment [40]. For the majority of nuclei,
a good agreement with experiment is found at the levels
1 and 2 of implementation of MPMH, although we note a
small systematic underestimation of the experimental values.
Discrepancies are seen for a few silicon and sulfur nuclei.
In particular, the energy of the first 2+ state is overestimated
by ∼600 and ∼800 keV in 32S and 28Si. More importantly,
it is overestimated by 1.7 and 1.9 MeV in the two mirror
nuclei 30S and 30Si, respectively. We found that this shift also
appears in the next excited states (see Figs. 11 and 12). This
behavior has, in fact, already been noticed and investigated in
a previous study [35], where it was found that this systematic
shift is due to uncontrolled proton-neutron matrix elements
of the Gogny interaction in the T = 0 channel. However, the
optimization of orbitals modifies the single-particle spectra
and in particular the sizes of the gaps around the Fermi level.
Solving the variational Eq. (3) is thus expected to modify the
values of the matrix elements occurring in the Hamiltonian
matrix to diagonalize, and hence to have an impact on the
low-lying spectroscopy. Indeed, we observe on the right panel
of Fig. 10 a downward shift of ∼600 keV in the spectra of 30Si
and 30S. This effect is very encouraging but still insufficient
to reach the experimental values. The rest of the discrepancy
may be attributed to the aforementioned uncontrolled T = 0
matrix elements of the D1S Gogny interaction. For the rest
of the sd-shell nuclei, including 32S and 28Si, the theoretical
energies are very close to the experimental values. Overall,
the average difference to experimental results is decreased
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The experimental plain lines show states with spin and parity that have been surely assigned, while the dashed lines denote states for which the
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FIG. 12. Same as Fig. 11 for the silicon, sulfur, and argon chains.
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from 418 to 286 keV when optimizing the orbitals, and the
standard deviation is lowered from 680 to 494 keV. Excluding
the peculiar cases 30S and 30Si, the average difference to
experiment is decreased from 227 to 149 keV, while the
standard deviation decreases from 214 to 121 keV. Globally,
the results concerning the 2+

1 excitations energies are in very
good agreement with experiment.

In order to evaluate further the capability of the MPMH
approach to describe the low-energy spectroscopy, we show in
Figs. 11 and 12 the low-energy spectra of the same sd-shell
nuclei. From a theoretical point of view, the description of the
spectra of these light nuclei is a great challenge as important
variations can be seen in nuclei differing by only one nucleon.
The spectra shown here contain the first nine excited states
with natural and positive parity calculated by the complete
MPMH method (level 3). These include 2+

1 , 2+
2 , 2+

3 , 2+
4 , 2+

5
shown with blue lines, 4+

1 , 4+
2 , 4+

3 shown with red lines, as
well as 0+

2 , 0+
3 with black lines and 6+

1 with green lines. They
are compared to the corresponding experimental states taken
from Ref. [42]. The plain lines show states with spin and parity
that have been surely assigned, while the dashed lines denote
states for which the spin and/or parity have been assigned
“based on weak arguments” [42]. As the configuration mixing
is restricted to the sd-shell, which contains positive-parity
states only, we show by a blue area the energy region above the
first experimental negative-parity state, where our predictions
could be potentially polluted by negative-parity orbitals.

Concerning the neon isotopic chain, the 2+
1 and 4+

1 states
are in good agreement with the data (experimentally, 26Ne has
a state at ∼3.5 MeV with spin and parity potentially equal
to 3+ or 4+, which is not shown here). In 22Ne and 24Ne
the position of the 2+

2 state is also well predicted by MPMH.
More discrepancies are found for higher 2+ and 4+ states. The
position of the 6+

1 state, measured in 20Ne and 22Ne, is in very
good agreement with experiment. However, the position of the
0+

2 is found systematically overestimated by 0.7 to 3 MeV.
Similar conclusions are obtained for the magnesium chain,
although the 0+

2 and 0+
3 states in 26Mg are found in excellent

agreement with the data. In 30Mg the 0+
2 state is, however,

overestimated by 4.4 MeV. The low-lying spectrum of 26Si is
rather well reproduced despite some inversions of states above
3.5 MeV, which are close in energy. The worst discrepancy is
found for the 2+

4 state, which is underestimated by ∼840 keV.
In 28Si, the sequence of state is perfectly reproduced. Although
the 2+

1 state is in accordance with the data, we note an upward
shift of the theoretical states that appears to grow with energy.
A similar situation is seen in 32Si, although several states
are unassigned experimentally, which makes the comparison
more difficult. In 30Si and 30S, as already noted, the entire
spectrum appears to be shifted by more than 1 MeV. In 32S, the
2+

2 , 2+
3 , 2+

4 and 4+
1 , 4+

2 , 4+
3 states tend to be a bit overestimated

by the theory (by ∼400 keV to ∼1 MeV), while the position
of the 0+

2 and 0+
3 states are underestimated by ∼500–700

keV. A rather good agreement is obtained for the spectrum of
34S in the region below the first experimental negative-parity
state. This is also true for the Argon isotopes. Several states
with unassigned spin and parity are however present at higher
energy, which makes the comparison to data more difficult.

TABLE IV. Comparison between the low-energy states of 24Mg
calculated by the MPMH method, the GCM method of Ref. [44], and
the experimental data [42]. The energies are in MeV.

State EXP MPMH Ref. [44]

2+
1 1.369 1.453 1.202

2+
2 4.238 4.230 5.616

2+
3 7.349 7.914 12.686

4+
1 4.123 4.564 3.875

4+
2 6.011 6.518 7.990

4+
3 8.439 7.923 14.363

6+
1 8.114 8.843 8.256

0+
2 6.432 8.676 11.265

Recently developed beyond-mean-field methods based on
symmetry-breaking and projection techniques using the same
Gogny interaction [43–45] can be an interesting point of
comparison. For instance, Ref. [44] studied the nucleus
24Mg within a GCM approach including particle-number and
angular-momentum projection of a triaxially deformed wave
function. We compare our results to the states predicted in
that study in Table IV. While the GCM method predicts the
position of yrast states (2+

1 , 4+
1 , and 6+

1 ) with a similar accuracy
as MPMH, the position of other excited states appears to
be overestimated. On the other hand, the GCM approach
is very powerful for the description of nuclear collectivity
and deformation, which cannot be reproduced in the present
application of the MPMH method, due to the small valence
space used here (see the discussion and Fig. 15 of transition
probabilities in the next section).

B. Transition densities and inelastic scattering on discrete states

In this last section, we aim to test the structure description
provided by the MPMH approach by using it as ingredient
for reaction calculations. In this study, we are interested in
inelastic scattering of electrons and protons from sd-shell
nuclei, when the target nucleus is excited from its ground
state to a low-lying excited state.

1. Inelastic electron scattering

Using transition densities calculated in the framework of
the MPMH method, we calculated form factors for electron
scattering on nuclei of the sd-shell. Here we consider the
plane wave born approximation (PWBA), which treats the
electron as a plane wave and the electromagnetic interaction
as an exchange of a single virtual photon. We consider only
the longitudinal part of the form factors due to the Coulomb
interaction between the electron and the nucleus; i.e., we
neglect their transverse part, which arises from the interaction
with the electromagnetic currents of the target nuclei. In this
case, the form factors read

|FC,λ=J (q)|2 = 4π

Z2

√
2Jf + 1

2Ji + 1

∫ ∞

0
ρtr (r)jλ(qr)r2dr, (13)
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FIG. 13. Charge transition densities and corresponding form factors for 28Si, 32S, and 20Ne. The experimental data are taken from
Refs. [46–49].

where jλ(qr) are spherical Bessel functions. The radial charge
transition density between initial and final states ρtr (r) =
〈�f |ρ̂ch(r)|�i〉 constitutes the input calculated within the
MPMH method. The correction to the charge density due
to the finite size of the nucleons is obtained by folding the
proton (respectively, neutron) density with the distribution of
the proton (respectively, neutron) which is normalized to unity
(respectively, zero).

We show in Fig. 13 the results obtained for the transitions
0+

1 → 2+
1 for 28Si, 32S, and 20Ne. The theoretical curves are

compared to experiment [46–49]. To interpret the results

we also show the MPMH transition densities used in the
calculations.

At the non-self-consistent level 1, the trends of the
experimental form factor are rather well reproduced by the
theoretical results at low momenta, while the tail appears too
spread toward high momenta. We also observe a clear lack of
magnitude of the calculated form factors, which underestimate
the experimental data by a factor ∼4 to ∼5 depending on
the nucleus. When introducing the correlated density in the
interaction while keeping the Hartree-Fock orbitals frozen
(level 2), the results are not very much modified. We observe
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a slight increase and decrease of the global magnitude in 32S
and 28Si, respectively, while there is no change in 20Ne.

As already stated in Ref. [38], this systematic underestimate
of the electric quadrupole properties is a well-known behavior,
which is due to the restriction of the configuration mixing
to the sd-shell, unable to fully account for the quadrupole
collectivity, as it only generates 0h̄� excitations. In traditional
shell-model studies, the missing 2h̄� transitions that can be
generated by the electric quadrupole operator are usually
implicitly taken into account via the introduction of effective
charges, which are often fitted to data. In this work we aim to
quantify the effect of the optimization of orbitals on transition
probabilities, with no use of effective charges. Indeed, as
discussed in Ref. [38], the source term G[σ ] of the orbital
Eq. (3) introduces a coupling between the initial blocks of
single-particle states: core, valence space, and initially empty
pure HF states. Thus, solving Eq. (3) implicitly generates np-nh
excitations (as products of 1p-1h excitations) spanning on the
entire initial HF single-particle basis, on top of the Slater
determinants of the sd-shell. Part of the neglected Hilbert
space is thus implicitly accounted for. For instance, the most
important effect is encountered in 32S for which an analysis of
the final wave function shows that the self-consistent ground
state contains more than 7% of Slater determinants built
outside of the initial HF sd-shell.

The missing 2h̄� configurations can result either from 1p-
1h excitations between shells differing by Nshell = 2, or from
2p-2h excitations between shells with Nshell = 1.

The former type of excitations are mostly excitations from
the sd to the sdg shell or from the 0s to the sd shell. As seen
from Table I the 0s and sdg shells are largely influenced by the
source term G[σ ]. In particular, the coupling sd − 0s is always
very strong. Moreover, 1p-1h excitations, being one-body
excitations, can be generated through the optimization of
orbitals. For these two reasons, the effect of the orbital equation
should be maximal in this case and should allow us to partly
account for this type of excitations. Less importantly, 1p-1h
excitations from the p to the fp shells can also come into
play. The source term does not couple to such negative parity
states. The orbital equation will, however, allow us to mix the
single-particle orbitals from p subshells with the same angular
momentum j through [ĥ [ρ,σ ],ρ̂] = 0. Again, we remind that
we are reasoning here in terms of the initial nonoptimized
orbitals. In practice these are taken as spherical Hartree-
Fock states. Since the Hartree-Fock field already incorporates
much physical information (compared to, e.g., pure harmonic
oscillator potential), the mixing between orbitals remains
usually rather small, as illustrated in Sec. III A 5.

On the other hand, 2p-2h excitations between shells
with Nshell = 1 remain unaccounted for. Indeed, because
symmetries are explicitly conserved in the MPMH approach,
single-particle states from sd cannot mix with orbitals from
p or fp, and therefore 2p-2h excitations such as sd → fp or
p → sd cannot be generated by the transformation of orbitals.

When looking at the form factors obtained when full self-
consistency is applied (level 3), we note that the optimization
of orbitals globally improves the results. The effect in 28Si and
32S are quite noticeable, as the magnitude of the theoretical

form factors is increased and the global factor needed to reach
experiment is now reduced to a value of ∼2.5 for both of
these nuclei. This is caused by an important increase of the
transition density at the surface. Indeed, the peak around 3 fm
varies from a value of ∼0.013 to ∼0.016 fm−3 in 28Si and
from 0.0082 to 0.011 fm−3 in 32S. Moreover, we also observe a
slight extension of the transition density toward larger distance
r , which induces a shrinking of the tail of the form factor
toward lower momenta q and leads to a better agreement with
experiment, in particular in 28Si. This is in accordance with
the results shown in Sec. III A 5, where it was found that the
self-consistent orbitals tend to have a larger spatial extension
than the pure HF ones. In 32S, however, we note a displacement
of the minimum of the form factor toward higher momenta as
self-consistency is included, which is in disagreement with
the data. In 20Ne, on the contrary we note a displacement
of the minimum of |FC,2|2 toward smaller momenta due to
the orbital transformation which leads to a better agreement
with experiment. A strong shrinking at the tail also appears,
however there is no data at high momenta q. The magnitude of
the form factor is only slightly increased by self-consistency
effects. The global factor needed to reach experiment varies
from a value of ∼4.5 at the levels 1 and 2 of implementation
of MPMH to a value of ∼4 when the correlations and orbitals
are fully consistent (level 3).

To end this study, we also investigate the effect of the
explicit inclusion of the fp shell in the configuration mixing.
We note that in principle, when using more than one shell
as the valence space, one would need an exact treatment of
the center of mass motion. However, here we only aim to
provide an illustration of the effect caused by the introduction
of explicit 2h̄� configurations. We show in Fig. 14 the form
factors calculated for the transition 0+

1 → 2+
1 in 20Ne when

the sd + fp valence space is considered, without and with full
self-consistency (levels 1 and 3 of MPMH). We compare them
to the ones previously obtained with the sd valence-space only.
With no consistency (red curves), little change is observed
when the fp shell is included. Self-consistency effects are,
however, increased. The shift of the minimum toward smaller
momenta q is found larger and is accompanied by a global
compression of the form factor, in particular at the tail.
Magnitude is also gained and the discrepancy with experiment
is reduced to a factor of ∼3.5.

Finally, for information, we note that, as expected, the
results concerning the form factors are consistent with B(E2)
calculations that we show in Fig. 15.

2. Inelastic proton scattering

While charge, thus proton, density distributions can be
precisely inferred from electron scattering measurements, the
scattering of hadrons provides insight on the distribution of
both neutrons and protons. Besides, for nucleon incident
energies around 50 MeV, the strength of the proton-neutron
interaction has been shown to be approximately three times
larger than the strength of proton-proton or neutron-neutron
interaction [50]. Proton inelastic scattering is therefore very
sensitive to the neutron collectivity in transitions. We propose
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FIG. 14. Transition densities and corresponding form factors for 20Ne obtained with two valence spaces: sd shell and sd + fp shells.

to illustrate these aspects through the study of inelastic proton
scattering off 28Si that leads to the excitation of the yrast 2+
state, for an incident energy of 65 MeV.

In this energy range, nucleon direct inelastic scattering off
spherical and near spherical target is well described within
the distorted wave born approximation (DWBA) [51], as the
elastic channel remains strongly dominant over one particular
inelastic channel. Below, we remind the main steps of this
approach. We omit the various projectile and target intrinsic
spin dependencies for simplicity, as these details can be found
in Ref. [51]. In the DWBA framework, the transition amplitude
expressing an excitation of the nucleus from its ground state
|�0〉 to an excited state |�n〉 reads

Tf i � 〈χ−
f (kf)�n|V̂eff|χ+

i (ki)�0〉 . (14)

 10
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B
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  [
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FIG. 15. Comparison of theoretical and experimental quadrupole
transition probabilities B(E2; 2+

1 → 0+
1 ) expressed in e2 fm4. The

experimental data (in black) are taken from Ref. [42]. Results without
and with full self-consistency are shown in red and blue, respectively.
Results obtained with introducing rearrangement terms in the first
variational equation are shown in green. Theoretical results for 28Si,
32S, and 20Ne obtained using the sd-shell as a valence space are shown
on the left of the figure. For comparison, the results obtained for 20Ne
with an sd + fp valence space, without and with full self-consistency,
are displayed on the right.

The distorted waves χ+
i (ki) and χ−

f (kf) are solutions of the
equations

(Ei − T0 + 〈�0|V̂eff|�0〉)χ+
i (ki) = 0, (15)

(Ef − T0 + 〈�0|V̂ †
eff|�0〉)χ−

f (kf) = 0, (16)

where T0 is the kinetic energy operator for the relative motion
in the center of mass system, and Ei/f is the initial/final
kinetic energy, that is Ef = Ei − E∗ (E∗ is the excitation
energy of the state |�n〉). The subscript + (−) refers to
the boundary condition of a plane wave plus an outgoing
scattered wave (plane wave plus incoming scattering wave).
If we express the two-body effective interaction Veff in the
second quantification framework, the transition and opti-
cal potentials, Ûn0 ≡ 〈�n|V̂eff|�0〉 and Û00 ≡ 〈�0|V̂eff|�0〉,
respectively, read

Ûnm = 1

2

∑
ij kk′

〈k′j |V̂eff|k̃i〉 〈�n|a†
j ai |�m〉 a

†
k′ak, (17)

where (k,k′) denote states of the projectile nucleon, while
(i,j ) are states for nucleons in the target. In this work,
the effective interaction Veff between the projectile and the
target nucleons is taken as the Melbourne G-matrix, which
is a solution of the Brueckner-Bethe-Goldstone equation with
the Bonn-B bare interaction [52]. The one-body ground-state
density matrix elements 〈�0|a†

j ai |�0〉, as well as the one-body

transition density matrix elements ρm→n
ij = 〈�n|a†

j ai |�m〉, are
calculated within the MPMH approach as detailed in the
Appendix.

This reaction approach based on the Melbourne G-matrix
interaction was previously successfully used to describe elastic
and direct inelastic nucleon scattering, for various closed-
shell or near closed-shell nuclei and various excitations [52].
Calculations based on the Melbourne G-matrix and nuclear
structure information, calculated within the random phase
approximation formalism implemented with the D1S Gogny
force, also provided a very good account of elastic and
direct inelastic scattering data for various doubly closed-shell
nuclei [53,54]. We show in Fig. 16 the theoretical cross
sections for inelastic proton scattering on a 28Si target.
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FIG. 16. Inelastic proton scattering cross section for the transition
0+

1 → 2+
1 in 28Si.

Inelastic cross section calculated considering three various
levels of implementation of the MPMH method are compared
to experiment [55].

Qualitatively, the results are in accordance with the previous
electron scattering study. In particular, we note that the
rearrangement terms do not produce a noticeable effect, while
the optimization of orbitals globally improves the cross section
by a factor ∼1.25.

V. CONCLUSION AND PERSPECTIVES

In this paper, the full formalism of the variational MPMH
configuration mixing method was systematically applied to
the study of even-even sd-shell nuclei. Using the D1S Gogny
force, we have investigated many properties of ground and
first excited states. We have also put an emphasis on the
effect of the modification of single-particle states due to
the correlations of the system, which we found can modify
both the valence states and the deeper orbitals of the core.
We have analyzed in more detail the correlation content of
the ground state of some notable nuclei and found that the
optimization of the orbitals leads to a fragmentation of the
wave function, which can exceed 20% in a few cases. In most
cases the change of orbitals also led to a depletion of the spatial
density at the center, which was counterbalanced by a larger
extension toward the surface and therefore led to an increase
of the charge radii, in accordance with experiment. While the
binding energies were found to be overestimated by several
MeVs—as expected from the Gogny interaction—very good
results were found concerning the excitation energies of the
first excited states. Finally, in order to test the nuclear structure
description provided by the present approach, we have used the
transition densities calculated within the MPMH framework
as input for the calculation of (e,e′) form factors and (p,p′)
cross sections. The experimental trends were found to be well
reproduced in most cases, in particular when using optimized
orbitals. An underestimation of the magnitude, reflecting a lack
of collectivity in the nuclear wave functions, was observed,
although the use of optimized of single-particle states led to a
small improvement.

This first systematic study has shed light on the potential
and mandatory extensions of the MPMH approach. The
determination of the single-particle orbitals consistently with
the correlations of the system is a desirable and satisfying
feature of this framework, which also leads to better results.
However, in its present status, the MPMH method shows some
insufficiencies. The use of the D1S Gogny interaction, fitted
at the mean-field level, inevitably leads to double-counting
when used in an approach such as MPMH which explicitly
treats many-body correlations. To avoid this problem, we
envisage for the future to implement better-suited interac-
tions. Additionally, currently available computational power
imposes limits on the complexity and quantity of nucleon
configurations in the model space, making it very difficult to
properly describe the collectivity of the system. This issue may
be alleviated using the Feshbach formalism [56] to renormalize
the Hamiltonian within the space of Slater determinants that
are explicitly introduced in the many-body wave function. The
resulting effective Hamiltonian would implicitly account for
the missing space that is left untreated by the configuration
mixing built on optimal orbitals. Such an extension would
make it possible to improve the description of the collectivity
and to tackle the description of mid- to heavy-mass nuclei,
without introducing phenomenological effective charges.

APPENDIX: TRANSITION DENSITY MATRIX

The structure ingredient provided by the MPMH approach
for the reaction calculations is the one-body transition density.
The matrix elements of the transition density matrix between
states |�n〉 and |�m〉 are defined by

ρn→m
ij = 〈i| ρ̂n→m |j 〉 = 〈�m| â†j âi |�n〉 , (A1)

where i and j are single-particle states with angular momen-
tum j , projection m, and other quantum number ζ :

|j 〉 = â†j |0〉 = |ζj jjmj 〉 . (A2)

Within the MPMH approach, nuclear states are explicitly char-
acterized by a good projection K of the angular momentum on
the quantization axis in the laboratory frame and a good parity
π . As calculations are performed at the spherical point, and
configuration mixings are done in spaces preserving rotational
symmetry, the nuclear states are also characterized by a good
total angular momentum J . Here we detail the calculation of
the matrix element of ρ̂ between two MPMH states |�JKπ

n 〉
and |�J ′K ′π ′

m 〉, which are linear combinations of the same Slater
determinants: ∣∣�JKπ

n

〉 =
∑

α

A(n)
α

∣∣�Kπ
α

〉
, (A3)∣∣�J ′K ′π ′

m

〉 =
∑

α

A(m)
α

∣∣�K ′π ′
α

〉
, (A4)

in the natural single-particle basis, used to build the many-body
configurations.

Denoting by ā, b̄..., the states belonging to the core, and
by a, b..., the active orbitals, we can decompose the transition
density matrix into parts:
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(a) The transition density between two orbitals of the core
matrix is diagonal and reads

ρn→m
āb̄

= δāb̄ δnm. (A5)

(b) For pure active orbitals, the transition density can be
decomposed into fractional diagonal elements and a
nondiagonal part as

ρn→m
ab = δab vnm

a + (1 − δab) wnm
ab . (A6)

(c) Finally, matrix elements between core and active
orbitals cancel:

ρn→m
āa = ρn→m

aā = 0 ∀ā, a, n,m. (A7)

ρn→m
ij ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δnm 0
. . . 0

0 δnm

vnm
1 (wnm)i<j

0
. . .

(wnm)i>j vnm
N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
core orbitals active orbitals (A8)

Finally, we calculate the transition density matrix coupled to
a good angular momentum λ,

ρn→m
ji,λμ = 〈

�J ′K ′
m

∣∣ [â†i ⊗ ãj ]λμ
∣∣�JK

n

〉
, (A9)

where the tilde operator ãj is defined as (−)jj −mj âj to
transform under rotation as a spherical tensor of rank jj . This
object can be deduced from the transition density ρn→m

ij by

ρn→m
ji,λμ = 〈

�J ′K ′
m

∣∣ [â†i ⊗ ãj ]λμ
∣∣�JK

n

〉
=

∑
mj mi

(ji mi jj −mj |λμ) (−)jj −mj

× 〈
�J ′K ′

m

∣∣ â†i âj

∣∣�JK
n

〉
. (A10)

We now consider the case of transitions between the ground
state of an even-even nucleus (J = K = 0) and one of its
excited states also characterized by K = 0. The transition
density will be coupled to (λ,μ) = (J,0). In this case, the
contribution of time-reversed single-particle states can be
simply related to the one of the “positive” states:

ρ0→n
ji,J0 = 〈

�J0
n

∣∣ [â†i ⊗ ãj ]J0
∣∣�00

gs

〉
,

=
∑

0<|m|�min(jj ,ji )

(ji m jj −m|J0) (−)jj −m

× 〈
�J0

n

∣∣ â†i âj

∣∣�00
gs

〉
(A11)

=
min(jj ,ji )∑
m=1/2

(ji m jj −m|J0) (−)jj −m
〈
�J0

n

∣∣ â†i âj

∣∣�00
gs

〉

+
min(jj ,ji )∑
m=1/2

(ji −m jj m|J0) (−)jj +m

× 〈
�J0

n

∣∣ â†−i â−j

∣∣�00
gs

〉
. (A12)

In the previous equations |−j〉 denotes the state having all
the same quantum numbers as |j 〉 with mj changed into −mj :

|−j 〉 = â†−j |0〉 = |ζj jj −mj 〉 . (A13)

The state |−j 〉 corresponds to the time-reversal conjugate state
of |j 〉 up to a phase (−)lj +jj −mj ,

|−j 〉 = (−)lj +jj −mj |j〉 = (−)lj +jj −mj |ζj jjmj 〉 . (A14)

In addition, the two Clebsch-Gordan coefficients in Eq. (A12)
are related by

(ji −m jj m|J0) = (−)jj +ji+J (ji m jj −m|J0). (A15)

The excited nuclear state is either time-reversal symmetric or
time-reversal antisymmetric according to the parity of its total
angular momentum J ,

T̂
∣∣�J0

n

〉 = (−)J
∣∣�J0

n

〉
. (A16)

Therefore, the last matrix element in Eq. (A12) satisfies〈
�J0

n

∣∣ â†−i â−j

∣∣�00
gs

〉 = (−)lj +jj −mj (−)li+ji−mi

× 〈
�J0

n

∣∣ â†
i
âj

∣∣�00
gs

〉
(A17)

= (−)lj +jj −mj (−)li+ji−mi (−)J

× 〈
�J0

n

∣∣ â†i âj

∣∣�00
gs

〉
. (A18)

Finally, the matrix elements of ρ0→n
ji,J0 become

ρ0→n
ji,J0 =

min(jj ,ji )∑
m=1/2

(ji m jj − m|J0) (−)jj −m
〈
�J0

n

∣∣ â†i âj

∣∣�00
gs

〉

+
min(jj ,ji )∑
m=1/2

(ji m jj − m|J0) (−)jj −m (−)2jj (−)2ji

× (−)2J (−)lj +li
〈
�J0

n

∣∣ â†i âj

∣∣�00
gs

〉
=

min(jj ,ji )∑
m=1/2

(ji m jj − m|J0) (−)jj −m (1 + (−)lj +li )

× 〈
�J0

n

∣∣ â†i âj

∣∣�00
gs

〉
. (A19)
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