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Successive variational method of the tensor-optimized antisymmetrized molecular dynamics
for central interaction in finite nuclei
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Tensor-optimized antisymmetrized molecular dynamics (TOAMD) is the basis of the successive variational
method for the nuclear many-body problem. We apply TOAMD to finite nuclei described by the central interaction
with strong short-range repulsion, and compare the results with those from the unitary correlation operator
method (UCOM). In TOAMD, the pair-type correlation functions and their multiple products are operated to
the antisymmetrized molecular dynamics (AMD) wave function. We show the results of TOAMD using the
Malfliet-Tjon central potential containing the strong short-range repulsion. By adding the double products of the
correlation functions in TOAMD, the binding energies are converged quickly to the exact values of the few-body
calculations for s-shell nuclei. This indicates the high efficiency of TOAMD for treating the short-range repulsion
in nuclei. We also employ the s-wave configurations of nuclei with the central part of UCOM, which reduces
the short-range relative amplitudes of nucleon pair in nuclei to avoid the short-range repulsion. In UCOM, we
further perform the superposition of the s-wave configurations with various size parameters, which provides a
satisfactory solution of energies close to the exact and TOAMD values.
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I. INTRODUCTION

The nucleon-nucleon (NN ) interaction plays an essential
role in determining the nuclear structure. The NN interaction
has a strong repulsion at short distance in addition to a strong
tensor force at long and intermediate distances [1,2]. These
two characteristics of the NN interaction provide the high-
momentum components of nucleon motion in nuclei, which
should be treated in the nuclear wave function. The short-
range repulsion reduces the relative amplitudes of a nucleon
pair at short distance in a nucleus. The tensor force produces
the characteristic D-wave state of a nucleon pair in nuclei,
which comes from the strong S–D coupling of the tensor
force. This D-wave state is spatially compact as compared
with the S-wave state due to the high-momentum component
of the tensor correlation [3,4].

So far, we have described the short-range and tensor
correlations in nuclei with two kinds of theoretical methods.
One is the shell-model-type approach, which we call the
tensor-optimized shell model (TOSM) [5–7]. In TOSM, we
fully optimize the two-particle–two-hole (2p2h) states in
the wave function without any truncation for the particle
states. These 2p2h excitations can represent the strong tensor
correlation in nuclei. On the other hand, it is difficult to express
the short-range correlation for the shell-model-type basis
states. Hence, we combine TOSM with the central part of the
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unitary correlation operator method (central-UCOM) in which
the central-type short-range correlation is explicitly treated
[8,9]. In the central-UCOM, the central-type shift operator is
introduced in order to reduce the short-range amplitudes of the
relative motion of a nucleon pair in nuclei. In UCOM, the trans-
formed Hamiltonian is truncated up to two-body operators,
while the exact transformation produces many-body operators.
This two-body approximation of UCOM is considered to be
reasonable for the short-range correlation. In TOSM+UCOM,
we treat the tensor and short-range correlations explicitly in
the wave function. This method nicely works to describe the
shell-model-like states with the correct order of the energy
level in the p-shell nuclei [10,11].

On the other hand, it is important to treat the nuclear
clustering phenomena, which are difficult to treat in the
shell-model-type approach [12]. The nuclear clustering is an
important aspect of the nuclear structure, such as the triple-α
Hoyle state in 12C [13,14]. Recently, we have developed a
new variational theory about the clustering description of
nuclei from the NN interaction [15,16]. We employ the
antisymmetrized molecular dynamics (AMD) [17,18] as the
basis state and introduce two kinds of the correlation functions
of the tensor-operator type and the central-operator type to
treat the NN interaction. These correlation functions are
multiplied to the AMD wave function and superposed with
the original AMD wave function. We name this framework
the tensor-optimized antisymmetrized molecular dynamics
(TOAMD) [15]. We can extend the scheme of TOAMD by
using the series of the multiple products of the correlation
functions as the power expansion successively. In TOAMD,
the products of the Hamiltonian and the correlation functions
appear, which become the series of many-body operators in the
cluster expansion. We take care of all the resulting many-body
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operators, which ensures TOAMD as the variational method.
The formulation of TOAMD is general for nuclei with various
mass numbers. In the previous work [16], we have calculated
the s-shell nuclei with TOAMD within the double products
of the correlation functions and have shown that TOAMD
nicely reproduces the results of Green’s function Monte Carlo
(GFMC) using the AV8′ bare NN interaction [19].

It is interesting to investigate how TOAMD describes
the central-type correlation coming from the central NN
interaction, which has a short-range repulsion, in the same
scheme as the previous work [16]. This subject can give scope
to apply TOAMD to other fields. In this study, we focus on the
central-type correlation and use the Malfliet-Tjon V central
potential having a Yukawa-type tail and a strong short-range
repulsion [20]. We take care of the short-range correlation
using the central-type correlation functions and demonstrate
the results of TOAMD for s-shell nuclei. Furthermore, the
central-UCOM could be a powerful method for the treatment
of the short-range repulsion. We shall compare the results
of TOAMD with those using the central-UCOM, which
makes clear how the central-UCOM describes the short-
range correlations of nuclei quantitatively under the two-body
approximation of the unitary transformation.

This paper is organized as follows. In Sec. II, we explain
TOAMD and UCOM for the treatment of short-range correla-
tions. In Sec. III, we present the results of s-shell nuclei with
the two methods. A summary is provided in Sec. IV.

II. HAMILTONIAN AND METHODS

A. Hamiltonian

We use the Hamiltonian with two-body interaction V for a
mass number A as

H = T + V =
A∑
i

ti − Tcm +
A∑

i<j

vij . (1)

Here, ti and Tcm are the kinetic energies of each nucleon and
the center of mass, respectively. We aim at investigating how
TOAMD and UCOM describe the central-type correlation
including the short-range correlation. For this purpose, we
use the Malfliet-Tjon V (MT-V) central potential as an NN
interaction [20], in the following form with a Yukawa-type tail
and a strong short-range repulsion:

v(r) = 1458.05
e−3.11r

r
− 578.09

e−1.55r

r
, (2)

in units of MeV and r in units of fm. We also take h̄2/m =
41.47 MeV fm2 [21].

B. Tensor-optimized antisymmetrizd molecular
dynamics (TOAMD)

We explain the essential formulation of TOAMD. The
details of TOAMD are given in Ref. [15]. We start from
the AMD wave function, which is the Slater determinant
consisting of the Gaussian wave packets of nucleons. The

AMD wave function �AMD is defined as

�AMD = 1√
A!

det

{
A∏

i=1

φi

}
, (3)

φ(�r) =
(

2ν

π

)3/4

e−ν(�r− �D)2
χσχτ . (4)

The single-nucleon wave function φ(�r) consists of a Gaussian
wave packet with a range parameter ν and a centroid position
�D, the spin part χσ , and isospin part χτ . In this study of s-shell

nuclei, χσ is fixed with the up or down component and χτ is
a proton or neutron. The range parameter ν is common for all
nucleons and this condition factorizes the center-of-mass wave
function from �AMD.

In the usual TOAMD, we include two kinds of correlations
induced by the tensor force and short-range repulsion. Fol-
lowing the concept given in Refs. [22,23], we introduce the
pair-type correlation functions FD for tensor force and FS for
short-range repulsion and multiply them to the AMD wave
function, individually. We superpose these components with
the AMD wave function. The correlation functions FD and
FS are determined variationally. This concept of TOAMD is
motivated from the success of TOSM [6,11].

In this study, we focus on the short-range repulsion of the
central force and consider only the short-range correlation
function FS in TOAMD. We define the TOAMD wave function
for short-range correlation as

�
single
TOAMD = (1 + FS) × �AMD, (5)

FS =
1∑

t=0

1∑
s=0

A∑
i<j

f
t,s
S (rij ) Ot

ij Os
ij , (6)

with relative coordinate �rij = �ri − �rj , Ot
ij = (�τi · �τj )t and

Os
ij = (�σi · �σj )s . Here t and s represent the isospin and spin

channel of a pair, respectively. We call this form of the TOAMD
wave function with a single correlation function FS “single
TOAMD.” The function FS affects the relative motion of a
nucleon pair in �AMD. This FS is a scalar operator and does
not change the angular-momentum state of �AMD.

As an extension of Eq. (5), we increase the order of
correlation function in TOAMD by adding double products
of FS according to the previous study [15]. Similar to the
single case, we define the TOAMD wave function with the
double correlation functions below, which is called “double
TOAMD”:

�double
TOAMD = (1 + FS + FSFS) × �AMD. (7)

This form is the power series expansion in terms of the
correlation function FS . It is noted that FS in each term in
Eq. (7) are independent and variationally determined. Hence,
we have three kinds of FS in the double TOAMD. This
treatment of the correlation functions increases the variational
degrees of freedom in TOAMD successively. For simplicity,
we denote the symbol of FS commonly in �double

TOAMD.
Physically, the correlation function FS can excite two

nucleons in the AMD state to the high-momentum region.
This corresponds to the 2p2h excitations in the shell model
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picture. The FSFS term in Eq. (7) is the situation in which the
short-range correlations can occur twice at the same time in a
nucleus, corresponding to the 4p4h excitations at maximum.
This formulation of TOAMD is independent of the mass
number. We can also increase the power expansion of FS

successively in TOAMD to the next order such as FSFSFS

in case we want to increase the accuracy of the numerical
results. We can examine the convergence of the solutions with
the power of the correlation functions.

The total energy in TOAMD is given as

ETOAMD = 〈�TOAMD|H |�TOAMD〉
〈�TOAMD|�TOAMD〉

= 〈�AMD|H̃ |�AMD〉
〈�AMD|Ñ |�AMD〉 , (8)

where H̃ and Ñ are the correlated Hamiltonian and norm,
respectively. We calculate the matrix elements of these opera-
tors with the AMD wave function. The correlated operators
H̃ and Ñ include the products of correlation functions,
such as F

†
SHFS and F

†
SFS , respectively. These operators are

decomposed into the series of many-body operators. In the
case of the kinetic energy T , F

†
ST FS is expanded to from

two-body to five-body operators with various combinations
of particle index. For the two-body interaction V , F

†
SV FS is

expanded to from two-body to six-body operators. In the same
way, F

†
SF

†
SV FSFS gives ten-body operators at maximum. We

classify these many-body operators in terms of the cluster
expansion method, the detailed procedure of which is given in
Ref. [15]. We employ all the resulting many-body operators
without any truncation and calculate the matrix elements of
each operator with the AMD wave function. The procedure
is performed systematically for any order of the multiple
products of the correlation functions in TOAMD. In general,
many-body operators produce larger number of terms of the
cluster expansion for larger mass systems and the calculation
of their matrix elements needs much more computational cost.
In this study, we discuss the s-shell nuclei with up to the mass
number of four. Hence, at most four-body operators are treated.

The present TOAMD wave function has two kinds of
variational functions, the AMD wave function �AMD and the
correlation functions FS . We determine these functions using
the Ritz variational principle with respect to the TOAMD
energy as δETOAMD = 0. For �AMD, the centroid positions
of the Gaussian wave packets { �Di} (i = 1, . . . ,A) in Eq. (4)
are determined variationally by using the cooling method [17].

The radial forms of FS are optimized in four spin-isospin
channels to minimize the energy ETOAMD in Eq. (8). We adopt
the Gaussian expansion method to express the pair functions
f

t,s
S (r) in Eq. (6) given as

f
t,s
S (r) =

NG∑
n=1

Ct,s
n e−at,s

n r2
. (9)

Here, Ct,s
n and at,s

n are the variational parameters. We take
the Gaussian basis number NG = 10 until the solutions are
converged. For the Gaussian ranges at,s

n , we search for
the optimized values from short to long ranges to express

the spatial correlation adequately. The coefficients Ct,s
n are

the linear parameters in the TOAMD wave function and
determined variationally by diagonalizing the Hamiltonian
matrix elements. For the FSFS term in Eq. (7), the products of
two Gaussian functions in Eq. (9) become the basis functions
and correspondingly the products of Ct,s

n are the variational
parameters.

In the calculation of Hamiltonian matrix elements, we
express the NN interaction as a sum of Gaussians. In order to
calculate the matrix elements of many-body operators in H̃ and
Ñ , we use the Fourier transformation of the Gaussians in the
correlation functions FS and the NN interaction [15,24]. This
transformation decomposes the many-body operators contain-
ing various sets of the relative coordinates in the exponent
into the separable form of the single-particle coordinates with
the plane-wave form. In the momentum space, the matrix
elements of the many-body operators result in the products
of single-particle matrix elements of the plane wave. Using
the single-particle matrix elements in AMD, we perform the
multiple integration of the associated momenta and obtain the
matrix elements of TOAMD.

C. Unitary correlation operator method (UCOM)

We explain the central-UCOM for the short-range central
correlation [8,9]. One introduces the following unitary opera-
tor C

C = exp

⎛
⎝−i

∑
i<j

gij

⎞
⎠. (10)

We express the wave function � including the short-range
correlation in terms of the uncorrelated wave function � as
� = C�. The transformed Schrödinger equation is given
as Ĥ� = E� where the transformed Hamiltonian has the
relation of Ĥ = C†HC. In principle, the operator C becomes
a many-body one because of the two-body operator in the
exponent. Similarly, the transformed Hamiltonian Ĥ becomes
the series of many-body operators. In the case of the short-
range correlation, it seems reasonable to truncate Ĥ at the
two-body level [8].

Two-body Hermite operator g in Eq. (10) is defined as

g = 1

2
{prs(r) + s(r)pr}, (11)

dR+(r)

dr
= s[R+(r)]

s(r)
, (12)

where the operator pr is the radial component of the relative
momentum, conjugate to the relative distance r . The function
s(r) represents the amount of the shift of the relative wave
function at distance r . In the central-UCOM, the function
R+(r) is often used instead of s(r), where R+(r) is the
transformed distance of the original distance r . This R+(r)
plays a role to reduce the short-range amplitude of the relative
wave functions to avoid the short-range repulsion in the
NN interaction. The explicit transformations of the various
operators are given in Refs. [8,9].

In many-body case, the shift operator g in Eq. (11) is
introduced for every nucleon pair in nuclei. The amount of
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TABLE I. The length b in units of fm [ν = (2b2)−1 in units of
fm−2] and three parameters in R+(r) of UCOM for 3H and 4He with
MT-V.

b (ν) α β γ

3H 1.44 (0.24) 0.944 1.018 0.389
4He 1.23 (0.33) 0.954 1.121 0.369

the shifts, namely the function R+(r), is determined in the
energy minimization of the total system under the two-body
approximation of the UCOM transformation. We parametrize
R+(r) in the same form proposed by Feldmeier and Neff [8,9]:

R+(r) = r + α

(
r

β

)γ

exp

[
− exp

(
r

β

)]
, (13)

where α, β, and γ are the variational parameters.
In the calculation with UCOM, we choose the uncorrelated

wave function � as the (0s)A configurations of the harmonic
oscillator (HO) wave functions with the length parameter b for
3H and 4He, respectively. The length b has a relation with ν in
AMD in Eq. (4) when �D = 0, as

b = 1√
2ν

. (14)

The correlated wave function also depends on the length b as
�(b) = C�(b). We determine the length b and α, β, and γ in
R+(r) in the energy minimization of each nucleus using MT-V.
In Table I, we list four parameters obtained for 3H and 4He,
respectively. In Fig. 1, the distribution of R+(r) − r is shown
as the difference between the transformed and the original
distances of a nucleon pair, which represents the amount of
shift of the relative wave function at r . It shows a maximum
shift of about 0.15 fm at about 0.3 fm of the relative distance
in each nucleus.

In the central-UCOM, the short-range correlation is
included in the wave function, but the long-range and
intermediate-range correlations do not change. In order to
improve the s-wave HO configuration �(b), we superpose
the basis states with various length parameters b. This
corresponds to the generator coordinate method (GCM). We
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0.15

0.20

0.0 0.5 1.0 1.5 2.0 2.5

R +
(r)

 - 
r  

[f
m

]

r [fm]

3H
4He

FIG. 1. The functions R+(r) in 3H (solid) and 4He (dashed),
respectively. The differences between R+(r) and the original distance
r are shown as the amount of shift of the wave function.

use the common UCOM transformation R+(r) as is shown in
Table I for these basis states. The total GCM wave function
is expressed in the linear combination of the internal wave
functions of the correlated basis states �int(b) as

�GCM =
N∑
i

ci�int(bi). (15)

The internal wave function is defined as

�(b) = �int(b) ×
(

A

πb2

)3/4

e−A(�rG/b)2/2. (16)

The correlated basis state �(b) has the 0s center-of-mass state
with the coordinate �rG, which is factorized and independent
of UCOM. The coefficients {ci} are determined by the
diagonalization of the Hamiltonian matrix elements with
UCOM. We take the basis number N as 40, covering a wide
range of b to get the converged solutions.

III. RESULTS

A. 3H

We show the results of 3H with MT-V. We first demonstrate
the calculation of TOAMD with the single correlation function,
namely the single TOAMD, �

single
TOAMD in Eq. (5). This is done

to investigate the configuration of AMD wave function �AMD.
In the energy variation of the TOAMD wave function, we
optimize the range parameter ν and the centroid positions of
nucleons �D in �AMD. The energy minimum is obtained as
−7.68 MeV with ν = 0.20 fm−2 and �D = 0 for all nucleons,
which is equivalent to the shell-model states of (0s)3. This
result indicates that the s-wave configuration is preferred in
AMD even with the short-range repulsion. The same result of
�D = 0 is obtained for 3H and 4He using the AV8′ bare NN

interaction having the tensor and LS components [16]. In the
present analysis, we keep this condition of �D = 0 in TOAMD
for 3H and 4He.

In Fig. 2, we show the energy surface of 3H as function of
the range ν in AMD. It is noted that the range ν has a relation
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0

0.1 0.2 0.3 0.4 0.5

Exact

En
er

gy
 [M

eV
]

ν [fm-2]

1+S
1+S+SS

FIG. 2. Energy surface of 3H as function of range parameter ν in
TOAMD with single (dashed line) and double (solid line) correlation
functions. Solid circles are the energy minimum points. Dotted line
represents the exact energy in the few-body calculations [25].
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FIG. 3. Convergence of the energy of 3H with respect to the order
of TOAMD. The range parameter ν is fixed as 0.11 fm−2, which is
determined in the double TOAMD.

of h̄2ν/m = h̄ω/2 and the ν independence corresponds to
the h̄ω independence in the shell-model prescription. We
simply write FS with the symbol of S. At each value of ν,
the correlation functions FS are optimized. We can clearly
confirm the energy minimum in 3H in the single TOAMD,
denoted by 1 + S. Second, we increase the order of TOAMD
to the double TOAMD �double

TOAMD containing up to the FSFS

term. In the double TOAMD as is shown in Fig. 2, denoted
by 1 + S + SS, the energy curve becomes deeper at any value
of ν due to the additional FSFS term. The lowest energy is
obtained as −8.24 MeV with ν = 0.11 fm−2. This energy is
very close to the exact value of −8.25 MeV reported in the
few-body calculations [25]. It is found that the energy curve
has a flat region with respect to the variation of ν. This behavior
is characteristic and indicates that the TOAMD wave function
can be optimized variationally in the wide range of ν value.
This represents the flexibility of the correlation functions FS .

In Fig. 3, we show the convergence of the energy in the order
of TOAMD starting from AMD without the short-range corre-
lation, where ν is chosen as 0.11 fm−2 optimized in the double
TOAMD. In the figure, +S and +SS mean the single and
double TOAMD, respectively. It is confirmed that the TOAMD
energy is converged rapidly. We also summarize the results in
Table II. At energy minimum, the radius of 3H is 1.67 fm in
TOAMD while few-body calculations provide 1.68 fm [25].

TABLE II. Energies of 3H( 1
2

+
) and 4He (0+) with MT-V potential

in TOAMD in units of MeV in comparison with other theories. In
UCOM, a two-body approximation is adopted for the transformed
Hamiltonian, which produces the slight overbinding of the energy of
4He with respect to the few-body calculations. For details, see the
text.

Exact [25] TOAMD UCOM

Single Double HO GCM

3H −8.25 −7.68 −8.24 −6.51 −7.91
4He −31.36 −29.35 −31.28 −30.77 −31.73
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ν [fm-2]

UCOM
UCOM+GCM

FIG. 4. Energy surface of 3H as function of range parameter ν =
(2b2)−1 in UCOM (solid line) with the result of UCOM+GCM (short
solid line).

From these results, TOAMD with double correlation functions
agrees with the results of few-body calculations very well. This
fact indicates that the power-series expansion of the correlation
function in TOAMD is a powerful method.

We compare the results of TOAMD with the UCOM
case. In Fig. 4, we show the energy of 3H with UCOM as
function of the range parameter ν = (2b2)−1 with a single
s-wave HO configuration. The energy minimum is obtained
as −6.51 MeV at ν = 0.24 fm−2 (b = 1.44 fm) as is listed in
Table II. The result of UCOM underestimate the exact energy
by about 1.7 MeV. This difference brings the improvement of
the uncorrelated s-wave HO configuration of 3H. We perform
the UCOM+GCM calculation by superposing the basis states
with various ν(b) parameters. The UCOM+GCM provides the
energy of −7.91 MeV and the energy gain is 1.4 MeV from
the single configuration case as shown in Fig. 4. The energy
becomes close to the exact value and UCOM+GCM fairly
reproduces the few-body calculations, but still underestimates
the energy slightly by 0.3 MeV. One of the possible reasons
for the small energy difference is that in UCOM+GCM,
only the breathing-type correlation is included in the basis
function with various spatial sizes. The other possible reason
is the two-body approximation of the UCOM Hamiltonian,
which corresponds to the 2p2h excitations. On the other hand,
in TOAMD, the correlation function FS produces the 2p2h
excitations and FSFS can produce up to the 4p4h excitations.
This treatment of the particle-hole excitations in TOAMD is
beyond the present UCOM+GCM. In addition, FS contributes
not only to the short-range correlation but also to the long- and
intermediate-range correlations.

In Fig. 5, the radius of 3H in the double TOAMD is shown
with respect to the range ν. The result of UCOM with a single
configuration is shown together. The TOAMD provides flatter
curve than the UCOM case. This flat behavior comes from the
flexibility of the correlation functions in TOAMD at various
ν values. The UCOM calculation with single basis function
gives 1.44 fm of radius at the energy minimum, which is small,
and the UCOM+GCM calculation gives the larger radius of
1.62 fm, improved due to the effect of GCM.

044314-5



MYO, TOKI, IKEDA, HORIUCHI, AND SUHARA PHYSICAL REVIEW C 95, 044314 (2017)

0.5

1.0

1.5

2.0

2.5

3.0

0.1 0.2 0.3 0.4 0.5

ra
di

us
 [f

m
]

ν [fm-2]

1+S+SS
UCOM

FIG. 5. Radius of 3H as function of range parameter ν in the
double TOAMD (solid line) in comparison with UCOM (dashed line).
Dotted line represents the value (1.67 fm) at the energy minimum in
TOAMD.

B. 4He

We show the results of 4He. The procedure of the calculation
is the same as that of 3H. In the single TOAMD, we confirm
that �D = 0 for 4He, which is equivalent to the (0s)4 closed
configuration. This result is the same as that using the AV8′
bare NN interaction [16].

In Fig. 6, we show the energy surface of 4He as function
of the range parameter ν in AMD. We show two kinds
of TOAMD calculation with single- and double-correlation
functions, respectively. In the single TOAMD, the energy
minimum is obtained as −29.35 MeV with ν = 0.27 fm−2.
In the double TOAMD, the energy curve becomes deeper due
to the additional FSFS term and the curve has a wide flat region
with respect to the variation of ν. This behavior is common
for 3H and represents the flexibility of the correlation function
FS in TOAMD. In the double TOAMD, the energy minimum
is obtained as −31.28 MeV with ν = 0.25 fm−2, which is
very close to the exact energy of −31.36 MeV obtained in the
few-body calculations [25]. The radius is 1.40 fm at the energy
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FIG. 6. Energy surface of 4He as function of range parameter ν in
TOAMD with single (dashed line) and double (solid line) correlation
functions. Solid circles are the energy minimum points. Dotted line
represents the exact energy in the few-body calculations [25].
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FIG. 7. Convergence of the energy of 4He with respect to the
order of TOAMD. The range parameter ν is fixed as 0.25 fm−2 which
is determined in the double TOAMD.

minimum while GFMC [21] and stochastic variational method
[25] provide 1.36 and 1.41 fm, respectively.

In Fig. 7, we show the convergence of the energy of 4He
in the order of TOAMD with ν = 0.25 fm−2, similar to the
analysis of 3H. It is confirmed again that the TOAMD energy
is converged rapidly. From these results, TOAMD with double
products of the correlation functions agree with the few-body
calculations very well for 4He in addition to the results of 3H. It
is noted that variational Monte Carlo (VMC) calculation gives
the energy of 4He with −31.19(5) MeV [26], which is higher
than the value of TOAMD (−31.28 MeV). This indicates that
TOAMD provides the better solution than that of VMC from
the variational point of view.

TOAMD has the advantage in the clustering description
based on the AMD basis states. We shall consider the system
consisting of several clusters in TOAMD. For 4He, we need the
double products of the correlation functions in TOAMD to get
the sufficient energy. This property indicates that the separated
two-4He clusters for 8Be naively need the quadruple products
of the correlation functions in TOAMD. It is interesting to
investigate the clustering states in TOAMD increasing the
power of correlation functions.
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FIG. 8. Energy surface of 4He as function of range parameter
ν = (2b2)−1 in UCOM (solid line) and UCOM+GCM (short solid
line).
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FIG. 9. Radius of 4He as function of range parameter ν in the
double TOAMD (solid line) in comparison with UCOM (dashed line).
Dotted line represents the value (1.40 fm) at the energy minimum state
in TOAMD.

We compare the results of TOAMD with the UCOM case.
The s-wave configuration of 4He is assumed in UCOM and we
change the range ν = (2b2)−1 in the HO basis wave function.
In Fig. 8, the energy minimum is obtained at ν = 0.33 fm−2

(b = 1.23 fm) with the energy of −30.77 MeV for 4He,
as is listed in Table II. The UCOM calculation slightly
underestimates the exact energy by about 0.6 MeV, which
is smaller than the 3H case of 1.7 MeV. This indicates the
(0s)4 assumption for 4He is rather better than the (0s)3 one
for 3H. This is naively considered to come from the strong
binding nature of 4He. We further perform the UCOM+GCM
calculation by superposing the basis states with various spatial
sizes. The UCOM+GCM provides the energy of −31.73 MeV.
The energy gain is 1.0 MeV from the single configuration
case. This energy slightly overestimates the exact value of
−31.36 MeV by about 0.4 MeV. One of the possible reasons
for the slight overbinding of energy is the missing three-body
term of the transformed Hamiltonian in the central-UCOM.
The three-body term of the central-UCOM is not derived so
far but its effect is expected to be small physically because of
the small probability of the three-particle concentration in a
small region at the same time. In this sense, the central-UCOM
almost consistently works for the treatment of the short-range
correlation in nuclei.

In Fig. 9, the radius of 4He is shown with respect to the range
ν. The double TOAMD provides a rather flatter curve than the
UCOM case with a single configuration. The UCOM calcula-
tion gives 1.32 fm for the radius at the energy minimum and
the UCOM+GCM calculation make the radius larger, 1.37 fm.

IV. SUMMARY

We have developed a new variational theory, tensor-
optimized antisymmetrized molecular dynamics (TOAMD),
to describe nuclei from the nucleon-nucleon (NN ) interaction,
in particular, toward the nuclear clustering description. In
TOAMD, the tensor- and central-type correlation functions
are multiplied to the AMD wave function in order to express
the effects of tensor force and short-range repulsion in the NN
interaction. TOAMD is independent of the mass number and
extendable by increasing the power of the multiple products
of the correlation functions successively. In TOAMD, the
products of the Hamiltonian and the correlation functions
produce the many-body operators, which are exactly treated
using the cluster expansion. This treatment makes TOAMD
the variational theory starting from the NN interaction.

In this study, based on the success of TOAMD for s-shell
nuclei with bare NN interaction [16], we demonstrate the effi-
ciency of TOAMD for the short-range correlation. We show the
results of TOAMD for s-shell nuclei with Malfliet-Tjon central
potential containing the strong short-range repulsion. It is
found that the TOAMD with double products of the correlation
functions nicely reproduces the exact energies in the few-body
calculations. TOAMD with the power series expansion of the
correlation functions is expected to be a powerful approach.

We also compare TOAMD with the central part of
UCOM (central-UCOM) using the s-wave configurations.
In the central-UCOM, the short-range repulsion is almost
consistently treated for s-shell nuclei under the two-body ap-
proximation of the transformed Hamiltonian. We also perform
the GCM calculation with UCOM to improve the s-wave con-
figurations. The UCOM+GCM provides satisfactory energies,
which are comparable to the exact and TOAMD values.
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[5] T. Myo, K. Katō, and K. Ikeda, Prog. Theor. Phys. 113, 763

(2005).
[6] T. Myo, H. Toki, and K. Ikeda, Prog. Theor. Phys. 121, 511

(2009).

[7] T. Myo, A. Umeya, H. Toki, and K. Ikeda, Phys. Rev. C 84,
034315 (2011).

[8] H. Feldmeier, T. Neff, R. Roth, and J. Schnack, Nucl. Phys. A
632, 61 (1998).

[9] T. Neff and H. Feldmeier, Nucl. Phys. A 713, 311
(2004).

[10] T. Myo, A. Umeya, H. Toki, and K. Ikeda, Phys. Rev. C 86,
024318 (2012).

[11] T. Myo, A. Umeya, K. Horii, H. Toki, and K. Ikeda, Prog. Theor.
Exp. Phys. 2014, 033D01 (2014).

[12] B. R. Barrett, P. Navrátil, and J. P. Vary, Prog. Part. Nucl. Phys.
69, 131 (2013).

044314-7

https://doi.org/10.1146/annurev.nucl.51.101701.132506
https://doi.org/10.1146/annurev.nucl.51.101701.132506
https://doi.org/10.1146/annurev.nucl.51.101701.132506
https://doi.org/10.1146/annurev.nucl.51.101701.132506
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1016/j.physletb.2013.07.038
https://doi.org/10.1016/j.physletb.2013.07.038
https://doi.org/10.1016/j.physletb.2013.07.038
https://doi.org/10.1016/j.physletb.2013.07.038
https://doi.org/10.1143/PTP.113.763
https://doi.org/10.1143/PTP.113.763
https://doi.org/10.1143/PTP.113.763
https://doi.org/10.1143/PTP.113.763
https://doi.org/10.1143/PTP.121.511
https://doi.org/10.1143/PTP.121.511
https://doi.org/10.1143/PTP.121.511
https://doi.org/10.1143/PTP.121.511
https://doi.org/10.1103/PhysRevC.84.034315
https://doi.org/10.1103/PhysRevC.84.034315
https://doi.org/10.1103/PhysRevC.84.034315
https://doi.org/10.1103/PhysRevC.84.034315
https://doi.org/10.1016/S0375-9474(97)00805-1
https://doi.org/10.1016/S0375-9474(97)00805-1
https://doi.org/10.1016/S0375-9474(97)00805-1
https://doi.org/10.1016/S0375-9474(97)00805-1
https://doi.org/10.1016/S0375-9474(02)01307-6
https://doi.org/10.1016/S0375-9474(02)01307-6
https://doi.org/10.1016/S0375-9474(02)01307-6
https://doi.org/10.1016/S0375-9474(02)01307-6
https://doi.org/10.1103/PhysRevC.86.024318
https://doi.org/10.1103/PhysRevC.86.024318
https://doi.org/10.1103/PhysRevC.86.024318
https://doi.org/10.1103/PhysRevC.86.024318
https://doi.org/10.1093/ptep/ptu012
https://doi.org/10.1093/ptep/ptu012
https://doi.org/10.1093/ptep/ptu012
https://doi.org/10.1093/ptep/ptu012
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003


MYO, TOKI, IKEDA, HORIUCHI, AND SUHARA PHYSICAL REVIEW C 95, 044314 (2017)

[13] K. Ikeda, H. Horiuchi, and S. Saito, Prog. Theor. Phys. Suppl.
68, 1 (1980).

[14] H. Horiuchi, K. Ikeda, and K. Katō, Prog. Theor. Phys. Suppl.
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