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We investigate the problem of periodically modulated strongly interacting neutron matter. We carry out ab
initio nonperturbative auxiliary-field diffusion Monte Carlo calculations using an external sinusoidal potential in
addition to phenomenological two- and three-nucleon interactions. Several choices for the wave function ansatz
are explored and special care is taken to extrapolate finite-sized results to the thermodynamic limit. We perform
calculations at various densities as well as at different strengths and periodicities of the one-body potential. Our
microscopic results are then used to constrain the isovector term from energy-density functional theories of nuclei
at many different densities, while making sure to separate isovector contributions from bulk properties. Lastly,
we use our results to extract the static density-density linear response function of neutron matter at different
densities. Our findings provide insights into inhomogeneous neutron matter and are related to the physics of
neutron-star crusts and neutron-rich nuclei.
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I. INTRODUCTION

Neutron matter is integral to the study of neutron stars and
neutron-rich nuclei [1]. The equation of state (EOS) of neutron
matter has been studied extensively using ab initio approaches
[2–7]. While neutron matter does not obtain in nature in pure
form, its EOS is closely connected to that of physical systems.
More specifically, it is a direct input into Einstein’s field
equations (typically cast as the Tolman-Oppenheimer-Volkov
equations) that lead to basic observable properties of a neutron
star. On the other hand, the neutron-matter EOS is also
connected to nuclei via the use of nuclear energy density
functionals (EDFs). EDFs take on a variety of forms [8–11] and
are typically fit to empirical data such as nuclear masses and
radii. Other constraints may include the EOS of neutron matter
[9,12–17], the neutron-matter pairing gap [18], the energy of
a neutron impurity [19,20], or the properties of a neutron drop
[21–25]. The EDF approach is especially useful as it allows for
predictions to be made across the nuclear chart. Investigating
neutron matter is an excellent opportunity for benchmarking
both phenomenological [26–30] and chiral [31–40] nuclear
interactions and many-body methods.

While homogeneous matter is an intriguing system, it is not
fully representative of either finite systems or astrophysical
settings, since nuclei and neutron-star matter are inhomo-
geneous systems. The matter in a neutron-star crust is rich
with unbound neutrons and also contains a lattice of nuclei.
Focusing only on the unbound neutrons, these experience the
interaction with the lattice as a periodic modulation. Similarly,
nuclei are finite systems: their density eventually drops off
as one goes farther away from the center of the nucleus.
Thus, as a first approximation, one can study the effects of
a one-body external periodic potential on pure infinite neutron
matter. This system, periodically modulated neutron matter,
directly mimics the situation in a neutron star; also, if used as
an input constraint to EDFs, it can inform us about the physics
of neutron-rich nuclei. This problem of an external periodic
modulation is known as the static response of neutron matter:
it amounts to a comparison between externally modulated and
unmodulated infinite neutron systems. This problem has been

tackled using a variety of approximations in the literature
[41–48]; see Ref. [49] for a recent review. The static response
problem has also received a lot of attention in other areas
of physics [50]. This includes pioneering quantum Monte
Carlo calculations for strongly correlated systems such as
liquid 4He at zero temperature and pressure [51] and the
three-dimensional electron gas [52].

In a recent Letter [53] we reported on the first ab initio cal-
culation of the static response of neutron matter. This included
a calculation of the linear density-density static response
function of neutron matter following from a quantum Monte
Carlo (QMC) T = 0 approach. Specifically, this involved the
variational Monte Carlo (VMC) and auxiliary-field diffusion
Monte Carlo (AFDMC) methods: these are nonperturbative
and accurate methods for computing properties of many-body
nuclear systems. Reference [53] also mentioned the role of
finite-size effects, the wave-function ansatz, and conclusions
that can be drawn on the isovector gradient coefficient of EDFs.

In the present article, we expand on Ref. [53], by discussing
finite-size effects and the wave-function ansatz in more detail.
In addition to this, we have carried out new QMC calculations
for the periodically modulated system at many different
densities, extracting from there EDF parameters for several
different Skyrme parametrizations. We have also carried out
several new calculations of the modulated system for several
different strengths and periodicities of the external one-body
potential: this includes a study of the lower-density regime,
as well as separate simulations (at both low and intermediate
densities) with and without three-nucleon interactions. These
results provide a more detailed understanding of different
effects and, since they are non-perturbative and accurate, they
provide “synthetic data” that can be used in (or compared to)
other approaches. We make some first steps in this direction by
examining the response function coming from selected EDFs.

We begin with some background on the methods employed
(Sec II), mainly establishing our notation in what follows.
We also provide a more extensive discussion of the theory
of static response (Sec. II C), explaining what the density-
density response is, and how it can be extracted from our
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calculations. We then proceed to study finite-size effects in the
noninteracting problem in detail (Sec. III), before turning to
the QMC and EDF results for the interacting and periodically
modulated problem (Sec. IV).

II. METHODS

A. Auxiliary-field diffusion Monte Carlo

The Hamiltonian of the full interacting problem we study
is made up of a nonrelativistic kinetic term, a two-nucleon
(NN) interaction, a three-nucleon (NNN) interaction, and a
one-body potential:

Ĥ = − h̄2

2m

∑
i

∇2
i +

∑
i<j

vij +
∑

i<j<k

vijk + vext, (1)

where vext = ∑
i v(ri) and v(ri) = 2vq cos(q · ri). The external

potential is motivated by the periodicity of nuclei found in a
neutron-star crust.

Diffusion Monte Carlo (DMC) is an accurate method for
computing the ground-state energy of a many-body system.
The procedure takes a trial wave function |�T 〉 as input and
projects the ground state out by evolving forward in imaginary
time [54]:

|�0〉 = lim
τ→∞ |�(τ )〉 = lim

τ→∞ e−(Ĥ−ET )τ |�(0)〉, (2)

where |�(0)〉 = |�T 〉 and ET is an energy offset. We handle
the fermion sign problem with the fixed-node (or, more
generally, constrained-path) approximation. As a result the
method is only exact when the nodal structure of 〈R|�T 〉 is
the same as that of the ground state. The trial wave function
(including spins) takes the form

|�T 〉 =
∏
i<j

f (rij )A
[∏

i

|φi,si〉
]

(3)

This is a product of a Jastrow factor and a Slater determinant
of single-particle orbitals. The Jastrow factor has no zeros
so it does not impact the nodal structure of the many-body
trial wave function. It serves to make the algorithm more
efficient since we run simulations for a finite amount of time.
We use variational Monte Carlo (VMC) to optimize 〈R|�T 〉
by minimizing 〈�T |Ĥ |�T 〉 over some set of variational
parameters. This also serves to produce a set of configurations
that sample |〈R|�T 〉|2 using the Metropolis algorithm. The
propagation in imaginary time is done in small time steps
�τ . The Trotter-Suzuki approximation allows the use of
Green’s functions to carry out the evolution of the wave
function. The procedure is a diffusive process that adjusts
the configurations by sampling in coordinate space and taking
into account the potential energy. The actual sampling that
is carried out in practice is called importance sampling. We
sample 〈R|�(τ )〉〈R|�T 〉 which has several advantages over
sampling 〈R|�(τ )〉 and allows the use of a mixed estimator
in extracting the ground-state energy. The mixed estimator is
given by

E0 = lim
τ→∞

〈�(τ )|Ĥ |�T 〉
〈�(τ )|�T 〉 = 1

M

∑
M

EL(RM ), (4)

where EL(R) = 〈R|Ĥ |�T 〉/〈R|�T 〉 is called the local energy
and is averaged over the configurations.

Auxiliary-field diffusion Monte Carlo (AFDMC) is an
extension of DMC that is employed for Hamiltonians with
a complicated spin dependence. The method uses a technique
that reduces the number of operations for handling spin from
exponential to linear. This is achieved by sampling over a set
of auxiliary fields that evolve the spin component of the wave
function [55]. The number of operations in AFDMC scales
with N3. This realistically limits us to simulations on the order
of 100 particles.

B. Energy-density functionals

Another method for computing the energy of this system
comes from density functional theory (DFT). In this case, the
nuclear force takes a phenomenological form of the Skyrme
type. The many-body wave function takes the form of a Slater
determinant of single-particle orbitals ψi(r). The ground-state
energy is given by

E =
∫

H(r)d3r, (5)

where H is the energy density energy functional (EDF) [8]:

H = h̄2

2m
τ + 2vq cos(q · r)n + ESk (6)

and

n(r) =
∑

i

[ψi(r)]2,

τ (r) =
∑

i

[∇ψi(r)]2
(7)

are the nucleon and kinetic energy densities. The Skyrme
interaction terms of the EDF in the isospin representation are

ESk =
∑

T =0,1

[(
C

n,a
T + C

n,b
T nσ

0

)
n2

T + C�n
T (∇nT )2 + Cτ

T nT τT

]
.

(8)

For pure neutron matter n0 = n1 = n, and the same is true for
τ . We have done calculations for the SLy4, SLy7, and SkM*
parametrizations. C�n

1 is known as the isovector gradient term.
C�n

1 = −16, −6, and −17 MeV fm5 in SLy4, SLy7, and
SkM* respectively [9]. In what follows, we will adjust this
parameter based on our AFDMC results. Equation (5) provides
us with a method to approximate the energy using the density
functions. This is called the local-density approximation. Our
method of approximating the energy is similar to the VMC
optimization of the trial wave function. The ψi’s are the
orbitals of the noninteracting Hamiltonian with our external
potential (Mathieu functions). We minimize the right-hand
side of Eq. (5) to get the local-density approximation energies.

C. Static-response theory

An objective of this work is to compute the linear density-
density static response function of neutron matter. This gives
a quantitative (up to first order) description of the effect
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of an external perturbation on the physical properties of a
homogeneous neutron gas. Let Ĥ0 denote the unperturbed
Hamiltonian. This is Eq. (1) without the vext = ∑

i v(ri) term.
The 0 subscript is our notation for the unperturbed system.
[Note that this is different from the standard n0 notation
used in Eq. (8) in the isospin representation of the EDF.]
The ground-state density of the system is a functional of
the external potential: nv(r) = n0(r,[v]). The density-density
response functions are defined as the functional derivatives of
density with respect to v [56]:

nv(r) = n0 +
∞∑

k=1

1

k!

∫
d3r1 · · · d3rkχ

(k)(r1 − r, . . . ,rk − r)

× v(r1) · · · v(rk), (9)

where the χ (k)’s are the response functions. χ (1)(r) is the
linear density-density response function. Likewise, the ground
state energy can also be expressed as a functional of v:
Ev = E0([v]). The energy can be expressed as

Ev = E0 +
∫ 1

0
dλ

∫
d3rn0(r,[λv])v(r). (10)

This follows from first-order perturbation theory: δEv/δv(r) =
nv(r). This is easy to see if the interaction term is cast as∫

d3rn̂(r)v(r), where the one-body density operator is n̂ =∑
i δ(r − ri).
The energy and density can be expressed in terms of the

Fourier components of the potential v(r) = ∑
q vq exp(iq · r)

and the Fourier transforms of the response functions with
respect to their spatial arguments χ (k)(q1, . . . ,qk):

nv(r) = n0 +
∞∑

k=1

1

k!

∑
q1,...,qk

χ (k)(q1, . . . ,qk)vq1 · · · vqk

× exp[i(q1 + · · · + qk) · r],

Ev

N
= E0

N
+ v0 + 1

n0

∞∑
k=1

1

(k + 1)!

×
∑

q+q1+···+qk=0

χ (k)(q1, . . . ,qk)vqvq1 · · · vqk
. (11)

For the one-body external potential v(r) = 2vq cos(q · r)
the density is given by

nv(r) = n0 + 2nq cos(q · r),

nq = χ1(q)vq + χ3(q,q,−q)

2
v3

q + · · · . (12)

The change in the density nv(r) − n0 depends only on odd
powers of vq . The change in energy is

Ev

N
= E0

N
+ χ1(q)

n0
v2

q + χ3(q,q,−q)

4n0
v4

q + · · · . (13)

The energy change only depends on even powers of vq . If
the energy per particle is known at several different values
of vq then Eq. (13) gives a method to calculate lower-order
response functions by fitting to a polynomial of even powers.
The coefficient of the quadratic term gives the linear density-
density response function. The coefficient of the quartic term

is very small in our calculations, on the order of 10−4 MeV−3

or smaller. Higher-order fits, with more points, are required to
reliably extract the third-order response function.

The response of a noninteracting Fermi gas can be com-
puted analytically. It is given by the Lindhard function [57]:

χL =− mqF

2π2h̄2

[
1 + qF

q

(
1 −

(
q

2qF

)2
)

ln

∣∣∣∣q + 2qF

q − 2qF

∣∣∣∣
]
.

(14)

We compare our results in later sections with this response.

III. NONINTERACTING PROBLEM

Many of the concepts needed for an understanding of
interacting particles require an understanding of a much
simpler problem: the three-dimensional (3D) noninteracting
free Fermi gas. For a finite system of N particles it is standard
to restrict positions to a cubic box of volume V = L3 and
impose periodic boundary conditions on the wave function,
when an extended system is the end goal of the study. At
T = 0 particles occupy states corresponding to the lowest
available energy levels. A state is identified by its momentum
wave-vector k = (2π/L)(nx,ny,nz), where nx , ny , nz are
integers. For a spin-1/2 system a maximum of two particles
with different spin-projection can occupy the same wave
vector, due to the Pauli exclusion principle. A particle placed
in the state with wave vector k has energy E = h̄2k2/2m and
occupies the single-particle orbital ψk(r) = eik·r/

√
V . Closed

shell configurations where the energy level populations are
filled to capacity occur at N = {2,14,38,54,66,114, . . . }. It is
preferable to work with closed shells to avoid any ambiguity
in determining which states are occupied.

Since a neutron star is a macroscopic system we are
particularly interested in the thermodynamic limit (TL) where
N → ∞, V → ∞, and n = N/V is constant. In the TL
the number density n is related to kF , the maximal wave
vector magnitude by kF = (3π2n)1/3. The energy per particle
is given by EFG = (3/5)h̄2k2

F /2m = (3/5) EF . Differences
in properties between the thermodynamic limit and a finite
number of particles are called finite-size (FS) effects. FS
effects go to zero in the thermodynamic limit. They are also
largest at small N . This can be seen in Fig. 1 which plots
FS effects in the energy per particle versus particle number
for the noninteracting free Fermi gas. This result is density
independent. As mentioned earlier, we are primarily interested
in shell closures. These appear at the cusps in the inset of Fig. 1.
There is a minimum in FS effects occurring at 67 particles. This
leads us to study the closed shell at 66 particles.

We now extend the above problem to include our external
potential. The Hamiltonian is

Ĥ = − h̄2

2m

∑
i

∇2
i + vext, (15)

where vext = ∑
i v(ri) and v(ri) = 2vq cos(q · ri), as before.

The orbitals are given by Mathieu functions and the energies
by the corresponding characteristic values. Similarly to the
free gas, intensive properties converge in the TL. We calculate
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FIG. 1. FS dependence of the noninteracting free-Fermi gas. FS
effects go to zero in the thermodynamic limit. The minimum at N =
67 motivates a study at the closed shell N = 66. The inset plots the
same relationship on a linear scale.

the energy per particle of the perturbed gas in the same manner
as the free gas. Doing so demonstrates convergence in the TL.
This is shown in Fig. 2 where the line gives energy per particle
versus particle number. The density is fixed at 0.1 fm−3 and q
is set to 4π/L so that two periods of the potential fit inside the
box. The amplitude of the potential is 0.5 EF = 21.363 MeV.
The curve in Fig. 2 shows a convergence near 0.8: this is
not 1, as could be expected from the presence of the external
potential.

We use the energy per particle of the noninteracting system
to handle FS effects in the interacting problem (see also
Ref. [58]). Our goal is to describe an extended neutron system.
To accomplish this, we keep the potential fixed and compute
the energy per particle versus particle number. Keeping in
mind translational invariance, we require an integer number of
periods in the box. Thus we choose to perform calculations for
a discrete set of particle numbers. This is displayed in Fig. 3
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1.2

E N
I(N

) [
E FG

]

FIG. 2. FS dependence of the noninteracting Fermi gas in the
presence of a one-body potential of fixed strength 2vq = 0.5 EF and
periodicity q = 4π/L. n is fixed at 0.1 fm−3.
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FIG. 3. FS dependence of the noninteracting Fermi gas in the
presence of a one-body potential of fixed strength 2vq = 0.5 EF and
periodicity q = 1.4433 fm−1. n is fixed at 0.1 fm−3.

where the density and amplitude are 0.1 fm−3 and 21.363 MeV
respectively. q is fixed so that two periods fit in the box at
N = 66. Of course, the energy per particle converges in the TL.
FS effects in the energy per particle EI (N ) of the interacting
system will be handled by extrapolating to the TL:

EI(∞) = EI (N ) − ENI (N ) + ENI (∞) (16)

We tested Eq. (16) by applying it to energy calculations of
homogeneous neutron matter. This was done for the SLy4
energies of 66 neutrons at various densities. The results
are shown in Table I. They agree with SLy4 energies of
homogeneous neutron matter to within 0.5%. This boosts our
confidence in Eq. (16).

We further highlight the importance of FS corrections
by comparing calculations of the response function to the
analytically known response in the TL. The response function
for 66 000 particles at a density of 0.1 fm−3 (circles in Fig. 4)
matches the Lindhard function (solid line). This makes sense
since 66 000 particles is practically in the TL, as per Fig. 3.
The response for 66 particles at this density (squares) does not
match the Lindhard function except at large q. This stresses
that 66 particles is not in the TL so it is important that FS effects
be handled in order to study infinite neutron matter. [Note that
the FS handling in Ref. [53] suffered from a numerical error
in the near-trivial calculation for ENI (66); a similar error was
present in ENI (66 000) but was immaterial there. This error

TABLE I. SLy4 energies of a free Fermi gas of neutrons computed
using the local density approximation. Equation (16) was used to
extrapolate to the TL and compare to SLy4 energies of homogeneous
neutron matter.

n (fm−3) EI (66) (MeV) EI (∞) (MeV) TL (MeV)

0.04 7.15 7.22 7.23
0.06 8.62 8.71 8.73
0.08 9.99 10.10 10.13
0.10 11.40 11.53 11.58
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FIG. 4. Static-response function of the noninteracting free-Fermi
gas at a density of 0.1 fm−3. The squares and circles are for 66
and 66 000 particles respectively. The line is the Lindhard function
describing the response in the TL.

is corrected here.] We note that the behavior exhibited by the
66-particle results in Fig. 4 is observed at other densities also:
there is a dip as q is lowered, before the response goes back
up for the lowest-q point.

IV. INTERACTING PROBLEM

A. Equation of state

We computed the equation of state of 66 neutrons both
with and without an external potential. We first present results
that do not include NNN interactions. The NN interactions are
given by the Argonne v8′ potential [59]. Calculations were
performed for densities in the range of 0.02 to 0.12 fm−3 since
these are similar to the densities found in the crust and outer
core of a neutron star. The nodal structure of the trial wave
function is important, so the single-particle orbitals used in
the Slater determinant must be chosen carefully. We use the
solutions of the one-body problem with the same external
potential and no interactions. For the case of no external
potential these are the plane waves of the noninteracting free
Fermi gas. The AFDMC results for these are the squares
in Fig. 5. The energy increases with increasing density. The
energies agree with known values [60]. We computed energies
using plane-wave orbitals for a one-body potential of strength
2vq = 0.5EF and two periods of the potential in the box
(diamonds). This yields lower energies than the unperturbed
problem. However, this is not good enough since we have not
optimized the trial wave function. The energies for optimized
single-particle orbitals (circles) are up to 1 MeV different from
the plane-wave results. Overall, the AFDMC energies with an
external potential are several MeV smaller than those without
an external potential. This reflects the particles’ tendency to
stay away from the repulsive regions of the potential and
collect in the wells of the potential. Note that the amplitude
of the external potential used is density dependent. Also, the
period of the potential decreases with increasing density. This

0 0.02 0.04 0.06 0.08 0.1 0.12
n (fm-3)

0

2

4

6

8

10

12

E/
N

 [M
eV

]

no Vext
2vq = 0.5 EF (PW)
2vq = 0.5 EF (opt.)

FIG. 5. AFDMC neutron-matter energy per particle for 66 par-
ticles as a function of density using only NN interactions. Squares
denote the case without a one-body potential; diamonds a one-body
potential of fixed strength 2vq = 0.5 EF , periodicity q = 4π/L, and
plane-wave single-particle orbitals; circles a one-body potential of
fixed strength 2vq = 0.5 EF , periodicity q = 4π/L, and optimized
single-particle orbitals (opt.).

is consistent with what happens in a neutron-star crust where
the lattice spacing decreases with increasing density.

We now describe the optimization procedure. First, Mathieu
functions yield lower VMC energies than plane-waves in the
Slater determinant. Since this is a variational optimization,
the goal is to minimize the VMC energy. We do this using
a variational parameter β where the solutions to the one-
body noninteracting problem with external potential v(r) =
β cos(q · r) [51] are used in the Slater determinant. For the case
β = 2vq these are the orbitals of the one-body noninteracting
problem with the same external potential as the system under
study. Consider a density of 0.1 fm−3 for the case where
2vq = 0.5EF and two periods of the potential fit in the box.
The minimum VMC energy that we simulated occurs at
β = 18 MeV (Fig. 6). The AFDMC energy for β = 18 MeV
is 8.19 MeV. The AFDMC energy for β = 2vq is 8.15 MeV.
Thus, the difference in energy due to the β optimization
procedure is much smaller than the difference due to using
plane waves vs Mathieu functions. Therefore, it is safe to set
β = 2vq for practical purposes.

We are primarily interested in the static response of neutron
matter. This requires us to perform calculations across a set
of strengths of the external potential. It is important that the
strengths are large enough so that the energy is statistically
different from homogeneous neutron matter. At the same time
the filling of the single particle orbitals changes at larger vq

in comparison to the free noninteracting orbital filling. We
performed simulations for various orbital fillings and found
no significant change in the energy. We did this for 2vq =
0.5EF at n = 0.08 fm−3 for two different fillings and found
AFDMC energies of 7.072 and 7.062 MeV. The same was
done for 2vq = 0.75 EF at n = 0.04 fm−3 yielding 1.818 and
1.822 MeV. We decided to calculate energies for 2vq = 0.25,
0.3, 0.35, 0.5, 0.75 EF . NNN interactions were included in
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FIG. 6. Neutron-matter VMC energy per particle as a function of
the variational parameter β using NN interactions. n0 = 0.1 fm−3,
2vq = 0.5EF = 21.363 MeV, and q = 4π/L.

these simulations. Specifically, the Urbana IX potential was
used, as is appropriate for neutron-rich matter [54]. Turning
up the potential strength results in a decrease in energy. This
is seen in the circles in Fig. 7 for 66 particles at a density of
0.1 fm−3 and two periods of the potential in the box. We have
also applied Eq. (16) to extrapolate to the TL (squares). We
extract the response function from such results. We present
those results in the next section.

B. Constraining the isovector gradient coefficient

We have also used the response of neutron matter to
constrain energy density functionals. The energy in Eq. (5)
is minimized with respect to the variational parameter β and
different orbital fillings. This is done for a range of potential
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FIG. 7. Neutron-matter energy per particle as a function of
the one-body potential strength using NN+NNN interactions and
AFDMC. n0 = 0.1 fm−3 and q = 4π/L. Circles correspond to
energies prior to handling FS effects and squares to energies
extrapolated to the TL.
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FIG. 8. Neutron-matter energy per particle for 66 particles as
a function of the one-body potential strength at a density of n0 =
0.10 fm−3, using NN+NNN interactions and a one-body potential
periodicity q = 4π/L. Circles denote AFDMC results, and the solid
line follows from the SLy4 energy-density functional. The dashed
line corresponds to SLy4 results with a modified isovector gradient
term.

strengths. Figure 8 displays the results of this procedure for
SLy4 (solid line) for a 66 particle system at a density of
0.10 fm−3 and two periods of the potential in the box. The
66 particle AFDMC NN+NNN energies (circles) are more
repulsive than the SLy4 energies. The separation between
the AFDMC and SLy4 energies is largest at vq = 0. The
separation decreases as vq increases. ∇n = 0 at homogeneity
so the isovector gradient term does not contribute to the
vq = 0 energy. Thus the difference between the AFDMC and
SLy4 energies at homogeneity is due to the bulk energy of
the system. This homogeneous mismatch in energy must be
respected in fitting the EDF to AFDMC results. The isovector
gradient term has the effect of bringing the SLy4 energies
closer to the AFDMC energies at larger vq . Thus, our fitting
of the isovector gradient term maintains the vq = 0 difference
between the EDF and QMC energies. We fit to low strengths
2vq = 0.25 and 0.3 EF , in order to ensure that the density
perturbation magnitude is not comparable to the unperturbed
density. We found a modified isovector gradient term of
C�n

1 = −29 MeV fm5 at this density (dashed line in Fig. 8).
The homogeneous energy difference between AFDMC and

SLy4 impacts how the isovector gradient term should be modi-
fied. Above n = 0.06 fm−3 the homogeneous AFDMC energy
(circles in Fig. 9) is more repulsive than the homogeneous
SLy4 energy (solid line in Fig. 9). Below this density the
AFDMC is more attractive than the SLy4 energy. We see
this at n = 0.04 fm−3 where the AFDMC NN+NNN energies
(circles in Fig. 10) are smaller than SLy4 (solid line in Fig. 10)
for small enough vq . The separation between AFDMC and
SLy4 decreases with increasing vq at both densities larger and
smaller than 0.06 fm−3. This means that the fitted isovector
gradient term is density dependent. This result is also found
using the density-matrix expansion [61,62]. For n > 0.06 fm−3

the isovector gradient fit must make the SLy4 energies more
attractive if they are to be equidistant from the AFDMC
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FIG. 9. TL AFDMC and TL SLy4 results in the absence of a
one-body potential.

energies. This requires a decrease in the isovector gradient
term. For n < 0.06 fm−3 an increase in the isovector gradient
term is required. At a density of 0.04 fm−3 we find a modified
isovector term of C�n

1 = 9 MeV fm5 (dashed line in Fig. 10).
Since we fit the isovector term to low strengths, the modified
SLy4 still approaches the AFDMC results at some large vq .

We have carried out calculations such as those in Figs. 8
and 10 for several other densities. They exhibit qualitatively
the same trends as discussed above. We then used these
AFDMC results to constrain the isovector coefficient for
several functionals. Specifically, Fig. 11 lists the isovector
gradient term of modified SLy4, SLy7, and SkM*. All of these
were done using two periods of the potential in the box. The
errors were determined by fitting to different strengths and
examining the spread of the modified isovector gradient term.
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FIG. 10. Neutron-matter energy per particle for 66 particles as
a function of the one-body potential strength at a density of n0 =
0.04 fm−3, using NN+NNN interactions and a one-body potential
periodicity q = 4π/L. Circles denote AFDMC results, and the solid
line follows from the SLy4 energy-density functional. The dashed line
corresponds to SLy4 results with a modified isovector gradient term.
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FIG. 11. Isovector gradient coefficients for the modified SLy4,
SLy7, and SkM* Skyrme potentials. All calculations were done with
two periods of the potential in the box. Coefficients were modified to
make Skyrme responses match the QMC responses.

Note that the density dependent energy versus vq behavior
described above does not hold for SkM*. Nevertheless, our
fitting prescription yields the same density dependence in the
modification of the isovector term for all three parametriza-
tions. We see a decrease is required at large densities. At
low densities there is an increase in the isovector term. The
isovector term is least modified at n = 0.06 fm−3, where in
the homogeneous case the AFDMC and SLy4 results agree
reasonably well, as per Fig. 9.

Note that the isovector coefficient fits discussed above were
all carried out by focusing on the EDF and QMC results for
L = 2d, i.e., using two periods of the potential in the box. As
we will see in the following subsection, our attempt to make
the QMC and EDF results equidistant essentially amounts to
trying to match not QMC energies to EDF energies, but the
EDF response function to the QMC response function. In other
words, we are attempting to modify the SLy4 response from
Fig. 12 below to match that in Fig. 13 below. All this is done
for the specific case of L = 2d. As the difference between
SLy4 and modified SLy4 in Fig. 12 shows, for L = 2d we
would need a more attractive modification, whereas for L = d
we would need a more repulsive one (and for L = 3d we
would need a modification that is more attractive than that for
L = 2d). Thus, the optimal thing to do is to try to optimize
results for as many periodicities as possible simultaneously.
We have done this at the two densities of n = 0.10 fm−3 and
n = 0.04 fm−3, where we have produced AFDMC results for
many different periodicities, as discussed below.

C. Response functions

Using calculations like those discussed above, we extracted
linear density-density response functions at both 0.04 and
0.10 fm−3 for AFDMC, SLy4, and modified SLy4 results.
[To do this, we fit to even-powered polynomials up to fourth
order in Eq. (13).] Since we are studying neutron matter, we
use Eq. (16) to extrapolate energies to the TL. It was previously
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FIG. 12. Static-response functions of neutron-matter at a density
of 0.10 fm−3. The circles are the SLy4 response extrapolated to
the TL limit. The diamonds are for the modified SLy4 with C�n

1 =
−29 MeV fm5 extrapolated to the TL. The response was extracted by
fitting to 2vq = 0.25, 0.3, 0.35, 0.5, and 0.75 EF . The dashed curve
is the SLy4 response produced in the TL [63]. The solid line is the
Lindhard function describing the response of a noninteracting Fermi
gas.

mentioned that we only consider q such that an integer number
of periods of the potential fit in the box. We have performed
simulations for q = 2, 4, 6, 8, 12, 16, and 20 times π/L
corresponding to 1, 2, 3, 4, 6, 8, and 10 periods of the potential
inside the box.

We have also taken advantage of the compressibility sum
rule; this provides us with a way to calculate χ (0) starting
from the energy per particle as a function of density of the
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FIG. 13. Static-response functions of neutron matter at a density
of 0.10 fm−3. Produced using AFDMC results. Circles are with
NN+NNN interactions extrapolated to the TL limit. Diamonds
are for NN interactions extrapolated to the TL. The response was
extracted by fitting to 2vq = 0.25, 0.3, 0.35, 0.5, and 0.75 EF . The
square is the response at q = 0 predicted by the compressibility
sum rule for the NN+NNN case. The curve is the Lindhard function
describing the response of a noninteracting Fermi gas.

unperturbed system:

1

χ (0)
= −∂2(n0E/N)

∂n2
0

. (17)

We used Eq. (17) to compute χ (0) for the various response
functions that we extracted and checked for consistency with
our modulated results.

We first present results at n0 = 0.10 fm−3. We have found
that the SLy4 response (circles in Fig. 12) does not match the
Lindhard function (solid line in Fig. 12) although there are
similarities. Both responses have a finite χ (0) and go to 0 at
large q. We compare to the SLy4 response function in the TL
[63] (dashed line in Fig. 12). Our response agrees with it pretty
well for all except the smallest q values. The compressibility
sum rule gives a value of −χ (0)/n0 = 0.057 MeV−1 for SLy4,
which matches the TL SLy4. We are also interested in the
modified SLy4 response (diamonds in Fig. 12). This response
is similar in shape but larger in magnitude than the SLy4
response we extracted. This makes sense since the modified
SLy4 is more attractive than SLy4. The compressibility sum
rule gives the same χ (0) for modified SLy4 as SLy4 since the
unperturbed system is independent of the gradient term.

In Fig. 13 we show updated AFDMC NN+NNN results
(circles); note that these include the corrected FS handling
and therefore differ (in the lowest-q response value) from the
circles in Fig. 3 of Ref. [53]. The diamonds in Fig. 13 show the
AFDMC NN response function in the TL. Our results in the TL
are similar in shape to the Lindhard function (line in Fig. 13).
At larger q the response goes to zero and matches the Lindhard
function. At smaller q the NN+NNN response is smaller than
the Lindhard function. The NN response is larger than the
Lindhard function at the lowest q value, but other than that it
is very similar to the NN+NNN response. The compressibility
sum rule gives a value of −χ (0)/n0 = 0.043 MeV−1 for
neutron matter with our NN+NNN interactions (square in
Fig. 13) and a value of 0.089 MeV−1 for NN interactions only.
These are larger than the corresponding value of 0.035 MeV−1

for the Lindhard function. Note that Fermi liquid theory yields
−χ (q)/n0 ≈ 0.035 MeV−1 at n0 = 0.10 fm−3 [41,64].

We now examine some of the responses at a density of
0.04 fm−3. We have found that the AFDMC results do not
follow the Lindhard function (solid line in Fig. 14) as well
as the 0.10 fm−3 AFDMC results do. Both the AFDMC NN
response (diamonds in Fig. 14) and the AFDMC NN+NNN
response (circles in Fig. 14) are larger than the Lindhard
function at small q. The compressibility sum rule gives a
value of −χ (0)/n0 = 0.14 MeV−1 for neutron matter with our
NN+NNN interactions and 0.19 MeV−1 for NN interactions
only. These are larger than the −χ (0)/n0 = 0.065 MeV−1 of
the Lindhard function. Fermi liquid theory yields −χ (q)/n0 ≈
0.083 MeV−1 at n0 = 0.04 fm−3 [41,64].

For all results it was found that the response function goes
to zero as q goes to infinity and χ (0) is finite. In addition, the
response functions extracted from AFDMC and the Lindhard
functions show more similarity to one another than to the
SLy4 responses. Overall, the SLy4 responses are narrower and
steeper than the other responses. It is also interesting to contrast
these to the response functions of 4He [51] and the 3D electron
gas [52], both of which have χ (0) = 0.
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FIG. 14. Static-response function of neutron-matter at a density
of 0.04 fm−3. The circles are with NN+NNN interactions extrap-
olated to the TL. Diamonds are for NN interactions extrapolated
to the TL. The AFDMC responses were extracted by fitting to
2vq = 0.25, 0.3, 0.35, and 0.5 EF . The solid line is the Lindhard
function describing the response of a noninteracting Fermi gas.

Similarly to what was shown in Figs. 13 and 14, one
can extract the response function of neutron matter for other
densities. We have carried out precisely such an extraction
and show the results in Fig. 15. These correspond to AFDMC
calculations using NN+NNN interactions for the case where
two periods fit inside the box. They are compared to the
free-gas result, which follows from the Lindhard function.
Overall, we see that the microscopic results are roughly
similar to the free-gas results regardless of the density. At
a more fine-grained level, we observe that the answer to
whether or not the microscopic response is higher or lower
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FIG. 15. Static-response function of neutron matter across several
densities. The circles correspond to AFDMC results with NN+NNN
interactions (and are extrapolated to the TL). The solid line cor-
responds to the Lindhard function describing the response of a
noninteracting Fermi gas.

than the free-gas one depends on the density. One could
say that this behavior is similar to what is seen in Fig. 9,
but such a comparison is misleading for two reasons: (a)
there we were comparing AFDMC results to EDF results,
not to free-gas values, and (b) our new results in Fig. 15
show the answer for the response, i.e., at finite one-body
potential strength. Thus, these responses cannot be simply
extracted from the homogeneous-gas answers and constitute
microscopic benchmarks.

V. SUMMARY AND CONCLUSION

To summarize, in this article we have investigated the
properties of periodically modulated neutron matter, using
a combination of large-scale simulations and qualitative
insights. We started from the non-interacting problem, ex-
amining in detail finite-size effects; since 66 is the number
of particles commonly used for homogeneous neutron matter,
we studied the adjustments that need to be carried out in order
to use that particle number for the inhomogeneous problem.
We then reported on our auxiliary-field diffusion Monte Carlo
simulations, underlining the importance of optimizing the trial
wave function by minimizing the VMC energy. This depended
on a detailed understanding of the single-particle orbitals.
AFDMC allowed us to compute the ground-state energy of
neutron matter at various densities, potential strengths, and
periodicities of the potential. In particular we studied the
inhomogeneous problem by increasing the strength of the
potential starting from homogeneity.

We then examined several consequences of our ab initio
results. We first saw the impact that they have on energy
density functionals. We used the response of neutron matter
to constrain the isovector term while carefully disentangling
the contributions of bulk and gradient terms. We found a
density-dependent isovector term and provided our estimate
for its magnitude at each density. Next, we extracted the linear
density-density static response function of neutron matter from
AFDMC and EDF results at two different densities. This
required a set of ab initio results for each of the periodicities
that we studied. We then compared and contrasted the response
function of neutron matter to that of other systems. More than
a proof of principle, this work provides detailed benchmarks
that other ab initio calculations can compare to or that EDF
approaches can use as input.
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