
PHYSICAL REVIEW C 95, 044304 (2017)
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We present two new methods for performing ab initio calculations of excited states for closed-shell systems
within the in-medium similarity renormalization group (IMSRG) framework. Both are based on combining the
IMSRG with simple many-body methods commonly used to target excited states, such as the Tamm-Dancoff
approximation (TDA) and equations-of-motion (EOM) techniques. In the first approach, a two-step sequential
IMSRG transformation is used to drive the Hamiltonian to a form where a simple TDA calculation (i.e., diagonal-
ization in the space of 1p1h excitations) becomes exact for a subset of eigenvalues. In the second approach, EOM
techniques are applied to the IMSRG ground-state-decoupled Hamiltonian to access excited states. We perform
proof-of-principle calculations for parabolic quantum dots in two dimensions and the closed-shell nuclei 16O and
22O. We find that the TDA-IMSRG approach gives better accuracy than the EOM-IMSRG when calculations
converge, but it is otherwise lacking the versatility and numerical stability of the latter. Our calculated spectra are
in reasonable agreement with analogous EOM-coupled-cluster calculations. This work paves the way for more
interesting applications of the EOM-IMSRG approach to calculations of consistently evolved observables such as
electromagnetic strength functions and nuclear matrix elements, and extensions to nuclei within one or two nucle-
ons of a closed shell by generalizing the EOM ladder operator to include particle-number nonconserving terms.

DOI: 10.1103/PhysRevC.95.044304

I. INTRODUCTION

As experimental efforts have shifted toward the study of
rare isotopes, there has been an increased demand for reliable
ab initio calculations to counter the inherent limitations of
phenomenological approaches. For decades ab initio progress
in theory was slowed by the lack of a consistent theory for
the strong internucleon interactions, and by the computational
demands required to handle the nonperturbative aspects of
the problem. For many years, the only option for controlled
calculations was to use quasiexact methods such as quantum
Monte Carlo (QMC) [1–3] or the no-core shell model (NCSM)
[4–6], which limited the reach of ab initio calculations to light
p-shell nuclei. Approximate (but systematically improvable)
methods that scale favorably to larger systems, like coupled-
cluster (CC) theory and many-body perturbation theory
(MBPT), were largely abandoned in nuclear physics, despite
enjoying tremendous success in quantum chemistry [7].

Impressive progress has been made in recent years as
advances in chiral effective field theory (EFT) [8,9], which pro-
vides a systematic framework to construct consistent two- and
three-nucleon interactions, and the increasing prevalence of
powerful renormalization group (RG) methods [10,11], which
enable one to transform interactions to much softer forms,
have led to a resurgence of CC and similar methods such as
self-consistent Green’s functions (SCGFs) and the in-medium
similarity renormalization group (IMSRG), and have pushed
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the frontiers of ab initio theory well into the medium-mass re-
gion [12–26]. Early applications of these methods were limited
primarily to ground-state properties of stable nuclei near shell
closures with two-nucleon forces only. Substantial progress
has since been made on including three-nucleon forces
[21,27–29], targeting excited states and observables besides
energy [30,31], and moving into the more challenging terrain
of open-shell and unstable nuclei [13–15,17–19,22,32]. Re-
markably, progress on the many-body front has been so swift in
recent years that inadequacies of the current-generation chiral
two- and three-nucleon interactions, rather than the many-body
calculations themselves, are the primary obstacles to system-
atic calculations across the medium-mass region [33,34].

The IMSRG framework is particularly appealing because
it offers several paths to calculate ground- and excited-state
properties for closed- and open-shell systems. One promising
approach for open-shell nuclei is to use the IMSRG to construct
a valence-space Hamiltonian that is decoupled from the much
larger Hilbert space of the full A-body problem, which is then
diagonalized using standard shell-model machinery. Initial
applications in the sd shell have been quite encouraging,
giving a marked improvement over previous valence-space
Hamiltonians constructed in MBPT and clearly demonstrating
the importance of three-nucleon interactions in reproducing
experimental spectra [14,17,18].

The valence-space decoupling has the virtue of providing
a unified treatment of ground- and excited-state properties
(including deformation and transitions) couched in the familiar
language of the phenomenological shell model, but it also
suffers the same “curse of dimensionality” associated with
the large-scale matrix diagonalizations that are required to
access midshell nuclei and/or extended valence spaces. One
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alternative that bypasses these difficulties is to directly target
excited states by combining the IMSRG with equations-of-
motion (EOM) techniques [35], similar to what is done in
CC theory [30,31]. While the EOM-IMSRG potentially offers
some technical simplifications due to the Hermiticity of the
transformed Hamiltonian (e.g., no need to solve a separate
left-eigenvalue problem when calculating properties other
than energy), the practical limitations of the single-reference
formulation should be comparable to the analogous EOM-CC
calculations, limiting the method to nuclei within one or two
nucleons of a closed shell.

To remove these limitations, one possibility is to merge
EOM techniques with the multireference IMSRG (MR-
IMSRG) formulation recently developed for ground-state
calculations of open-shell even-even nuclei [22,23]. In prin-
ciple, spectroscopy for the target nucleus and its even-odd,
odd-even, and odd-odd neighbors could then be accessed
using suitably generalized EOM excitation operators. Since the
full implementation of the MR-EOM-IMSRG is a significant
undertaking, we first develop the single-reference EOM-
IMSRG to calculate excited states in closed-shell systems
as a “proof of principle” before taking on the much more
challenging multireference formulation. In the following we
show that the EOM-IMSRG is indeed a viable approach to
target excited states, giving good agreement with analogous
EOM-CC calculations for the 16O and 22O nuclei considered,
and exhibiting systematic improvement toward the exact full
configuration interaction (FCI) results in two-dimensional
(2D) quantum dots when perturbative triple-excitation cor-
rections are included in our EOM calculations.

This work is organized as follows. In Sec. II, we review
the basic formalism of the IMSRG and present two different
strategies for targeting excited states based on (i) sequentially
transforming the Hamiltonian to a block-diagonal form in
particle-hole excitations and then diagonalizing the one-
particle–one-hole (1p1h) block of the transformed Hamilto-
nian and (ii) performing an EOM calculation with single- and
double-excitation operators using the ground-state-decoupled
Hamiltonian. For the latter, we also present a simple perturba-
tive procedure that corrects for omitted triple-excitation terms.
In Sec. III, we give some implementation details of our calcula-
tions for the nuclear (16O and 22O) and electronic (six-electron
parabolic quantum dots) systems considered. Results are
presented in Sec. IV, and conclusions are presented in Sec. V.

II. FORMALISM

In closed-shell systems for which a single Slater determi-
nant (SD) provides a reasonable reference state, any eigenstate
of the A-body Hamiltonian may be written exactly as

|�ν〉 = C0|�0〉 +
A∑

n=1

1

n!

∑
i1, . . . ,in
a1, . . . ,an

C
a1,...,an

i1,...,in

∣∣�a1,...,an

i1,...,in

〉
, (1)

where |�0〉 is the reference SD, which we typically take as the
Hartree-Fock approximation to the A-body ground state, and
|�a1,...,an

i1,...,in
〉 is the SD with the indicated number of particle-hole

excitations out of the reference∣∣�a1,...,an

i1,...,in

〉 = a†
a1

· · · a†
an

ain · · · ai1 |�0〉. (2)

We use the convention for single-particle labels where
i,j,k, . . . corresponds to occupied orbitals in the reference SD,
a,b,c, . . . corresponds to unoccupied orbitals, and q,r,s, . . . is
either.

In principle, an exact solution of the Schrödinger equation
in the complete SD basis would provide knowledge of the
amplitudes C0,C

a
i ,Cab

ij , . . . for each state ν. In practice, for
most systems the expansion must be severely truncated at
some excitation rank n � A; one can then solve tractable gen-
eralized eigenvalue equations for the approximate amplitudes
and energy eigenvalues. In this spirit, the Tamm-Dancoff ap-
proximation (TDA), the random phase approximation (RPA),
and related EOM techniques [35] offer computationally viable
alternatives to full diagonalization for the calculation of
excited states. Owing to the necessary truncations, the types
of correlations they capture can be limited significantly.
Consequently, simple methods such as these typically require
the use of an effective Hamiltonian to account for the omitted
degrees of freedom in order to give a quantitative description
of spectra. In the following, we show that the IMSRG is well
suited for this task, providing a convenient ab initio framework
to drive the Hamiltonian to a form where simple methods such
as the TDA and EOM become very effective.

A. IMSRG

We begin with a brief review of the IMSRG; for details,
see the recent review articles [24,36]. The similarity renor-
malization group (SRG) consists of a continuous sequence of
unitary transformations that gradually suppress off-diagonal
matrix elements, driving the Hamiltonian toward a band-
or block-diagonal form [37–39]. We write the transformed
Hamiltonian as

H̄ (s) = U (s)HU †(s) ≡ H̄ d (s) + H̄ od (s), (3)

where H̄ d (s) and H̄ od (s) are the arbitrarily defined diagonal
and off-diagonal parts of the Hamiltonian. The evolution with
the continuous flow parameter s is given by

dH̄ (s)

ds
= [η(s),H̄ (s)], (4)

where η(s) ≡ U (s)dU †(s)/ds is the (anti-Hermitian) gener-
ator of the transformation. Solving Eq. (4) with any gen-
erator amounts to performing the unitary transformation in
Eq. (3) without explicitly constructing the U (s) operator.
The flexibility of the SRG stems from the fact that (i) there
are a multitude of choices one can make for η(s) such
that lims→∞ H̄ od (s) → 0, and (ii) the partitioning of H̄ (s)
into diagonal and off-diagonal terms is completely arbitrary,
allowing one to construct transformed Hamiltonians that are
convenient for specific problems (e.g., ground-state versus
excited-state calculations) through a suitable definition of H̄ od .

The “in-medium” part of the IMSRG refers to the use of
normal ordering with respect to an A-body reference state
to capture the dominant effects of three- and higher-body
interactions in a computationally efficient manner. Starting
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from the second-quantized Hamiltonian with two- and three-
body interactions,

H =
∑
qr

Tqra
†
qar + 1

4

∑
qrst

V
(2)
qrst a

†
qa

†
r atas

+ 1

36

∑
qrstuv

V
(3)
qrstuva

†
qa

†
r a

†
s avauat , (5)

Wick’s theorem can be used to normal-order H with respect
to an arbitrary A-body reference SD:

H = Eref +
∑
qr

fqr : a†
qar : + 1

4

∑
qrst

�qrst : a†
qa

†
r atas :

+ 1

36

∑
qrstuv

Wqrstuv : a†
qa

†
r a

†
s avauat : . (6)

Here, colons denote normal-ordered operator strings, whose
expectation value in the reference state is zero by definition:
〈�0| : a

†
q · · · ar : |�0〉 = 0. The key advantage of the normal-

ordered representation is that the dominant mean-field contri-
butions from three- and higher-body interactions are included
in the A-dependent zero-, one-, and two-body couplings

Eref, f , and �,

Eref =
∑

i

Tii + 1

2

∑
ij

V
(2)
ij ij + 1

6

∑
ijk

V
(3)
ijkijk, (7)

fqr = Tqr +
∑

i

V
(2)
qiri + 1

2

∑
ij

V
(3)
qijrij , (8)

�qrst = V
(2)
qrst +

∑
i

V
(3)
qristi , (9)

Wqrstuv = V
(3)
qrstuv, (10)

where antisymmetric two- and three-body matrix elements are
assumed.

Since the explicit inclusion of three-body interactions poses
a significant challenge for most many-body methods, one
common approach is to use the normal-ordered two-body
(NO2B) approximation, in which the Wqrstuv matrix elements
are neglected. In practice, the NO2B approximation has been
shown to be an excellent approximation for a wide range of
internucleon interactions and nuclei [27,28].

Applying Wick’s theorem to evaluate Eq. (4) with H̄ (s) =
Eref(s) + f (s) + �(s) and η(s) = η(1)(s) + η(2)(s) truncated to
normal-ordered two-body operators, one obtains the coupled
IMSRG(2) flow equations [12,36],

dEref

ds
=

∑
ab

(na − nb)ηabfba + 1

2

∑
abcd

ηabcd�cdabnanbn̄cn̄d , (11)

dfqr

ds
=

∑
a

(1 + Pqr )ηqafar +
∑
ab

(na − nb)(ηab�bqar − fabηbqar ) + 1

2

∑
abc

(nanbn̄c + n̄an̄bnc)(1 + Pqr )ηcqab�abcr , (12)

d�qrst

ds
=

∑
a

[(1 − Pqr )(ηqa�arst − fqaηarst ) − (1 − Pst )(ηas�qrat − fasηqrat )]

+ 1

2

∑
ab

(1 − na − nb)(ηqrab�abst − �qrabηabst ) −
∑
ab

(na − nb)(1 − Pqr )(1 − Pst )ηbrat�aqbs, (13)

where Pqr is an operator that exchanges the indices q and r ,
and nq are occupation numbers in the reference state |�0〉,
with n̄q ≡ 1 − nq . Note that the s dependence is suppressed
for brevity.

In ground-state calculations for closed-shell systems, we
seek to choose η such that the transformation maps the
correlated ground state to the reference state. In other words,
the ground state of the transformed Hamiltonian is the
reference state, and the eigenvalue (which is the zero-body
piece of the transformed Hamiltonian) corresponds to the
correlated ground-state energy. The generator η is intimately
tied to the “off-diagonal” terms in the Hamiltonian, which for
the ground-state decoupling are defined as those which couple
the reference state to the Slater determinants with particle-
hole excitations. In the NO2B approximation, this gives the
following definition for the off-diagonal Hamiltonian:

H̄ od ∈ {�abij ,�ijab,fai,fia}. (14)

In the present work, we use the White generator [36,40],

η
(1)
ai = fai/�

a
i , η

(2)
abij = �abij /�

ab
ij , (15)

for ground-state-decoupling, along with the more numerically
stable “imaginary time” generator [36] for additional decou-
pling. The latter is defined as

η
(1)
ij = f od

ij sgn
(
�i

j

)
, η

(2)
ijkl = �od

ijklsgn
(
�

ij
kl

)
, (16)

where � are Epstein-Nesbet energy denominators [36].
Integrating Eq. (4) with this generator drives H̄ to a block-

diagonal form, where the reference state is decoupled from
the npnh excitation block as in Fig. 1. The correlated ground-
state (g.s.) energy is recovered for sufficiently large s as the
zero-body piece of the normal-ordered Hamiltonian

Eref(s → ∞) ≈ Eg.s. (17)

up to IMSRG(2) truncation errors [36]. Numerical solutions
of Eq. (4) are considered converged when the magnitude of the
second-order perturbation theory contribution to the ground-
state energy is less than 1 × 10−6 MeV. The IMSRG(2) has
had great success in the description of ground-state properties
of closed-shell nuclei and electronic systems [36,41]. In the
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FIG. 1. Schematic representation of the initial and ground-state-
decoupled Hamiltonians, H̄ (0) and H̄ (∞), in the many-body Hilbert
space spanned by particle-hole excitations of the reference state.

following sections we develop an analogous IMSRG formal-
ism for excited-state calculations of varying sophistication.

B. Sequential decoupling

1. TDA-IMSRG

In the ground-state IMSRG, Hartree-Fock becomes exact
for the ground state of the evolved Hamiltonian as s → ∞. It
is natural to ask if an analogous decoupling can be designed
so that some simple approximation for excited states becomes
exact at the end of the evolution. To this end, we start with
the well-known TDA, where low-lying excited states are
approximated as linear combinations of 1p1h excitations of
a reference Slater determinant [42]:∣∣�TDA

ν

〉 =
∑
ai

Xa
i a

†
aai |�0〉. (18)

In this approximation, the Schrödinger equation becomes∑
bj

(fabδij − fjiδab + �ajib)Xb
j = ωTDA

ν Xa
i , (19)

where ωTDA
ν = (ETDA

ν − Eref). For the case of a Hartree-Fock
reference, the TDA is equivalent to diagonalizing H on the
subspace spanned by |�0〉 and the singly excited |�a

i 〉 Slater
determinants. Because it completely neglects ground-state
correlations and higher-rank particle-hole excitations in the
excited states, the TDA is deficient for Hamiltonians that
exhibit significant coupling between the reference state and the
higher particle-hole sectors, and between the 1p1h and higher
excitation blocks. The initial nuclear Hamiltonian (treated in
the NO2B approximation) certainly falls into this class, as
indicated by the left-hand panel in Fig. 1.

However, we see that the ground-state-decoupled Hamil-
tonian in the right-hand panel of Fig. 1 is already in a semi-
block-diagonal form with respect to particle-hole excitation
rank. Here, there are no correlations in the ground state since
it is decoupled, and the 1p1h block only couples directly to
the 2p2h block. Therefore, we expect that a TDA calculation
for H̄ (∞) should be much more reliable than an analogous
calculation for the initial Hamiltonian H̄ (0) ≡ H .

In fact, the TDA becomes exact for a subset of excited
states—modulo IMSRG(2) truncation errors—if we apply a

FIG. 2. Schematic representation of the sequentially decoupled
Hamiltonians in the many-body Hilbert space spanned by particle-
hole excitations of the reference state. The left-hand panel cor-
responds to the use of Eq. (21), where the entire 1p1h sector
is decoupled, and the right-hand panel corresponds to Eq. (27),
where just the valence 1v1h excitations are decoupled. The latter
corresponds to the small block in the upper left corner of the full
1p1h block.

second IMSRG transformation that eliminates the coupling
between different particle-hole excitation ranks, bringing the
Hamiltonian to a block-diagonal form as in the left-hand
panel of Fig. 2. Since these two transformations are applied
sequentially, we label the ground-state decoupling as U1

and the subsequent transformation to decouple the different
particle-hole sectors as U2. Therefore, we seek to construct

H̄21(s) ≡ U2(s)H̄1(∞)U †
2 (s)

= U2(s)U1(∞)HU
†
1 (∞)U †

2 (s), (20)

with the relevant off-diagonal terms for U2 given in the NO2B
approximation by

H̄ od ∈ {�icjk,�bcak} + H.c. (21)

Assuming the second IMSRG evolution converges, the trans-
formed Hamiltonian becomes block diagonal in particle-hole
excitations,

〈
�

a1,...,an

i1,...,in

∣∣H̄21(∞)
∣∣�a′

1,...,a
′
m

i ′1,...,i ′m

〉 = 0 (n �= m), (22)

taking the schematic form shown in the left-hand panel of
Fig. 2. Hereafter, we refer to this sequential decoupling as
TDA-IMSRG, since the TDA becomes exact up to IMSRG(2)
truncation errors when applied to H̄21(∞).

2. vTDA-IMSRG

Owing to the simple block-diagonal structure, the exact
eigenvalues of H̄21(∞) can be obtained by diagonalizing each
npnh block separately, with the TDA being the simplest case.
However, in actual calculations we find that the second U2

transformation does not always converge with respect to the
flow parameter s. Moreover, even when the U2 evolution
converges, the truncation errors due to the IMSRG(2) ap-
proximation can significantly degrade the unitary equivalence
between the initial H and H̄21(∞). Heuristically, we expect
that the loss of unitarity is due to the large number of
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off-diagonal terms driven to zero in the second transformation,
which can lead to large induced three- and higher-body terms
which are neglected in the IMSRG(2).

One way to minimize the loss of unitarity in the second
transformation is to decouple a smaller portion of the 1p1h
configuration space in which the particle orbital is restricted
to the lowest valence shell, as shown in the right-hand panel
of Fig. 2. We refer to this as vTDA-IMSRG decoupling and
denote the new transformation by U3 with

H̄31(s) ≡ U3(s)H̄1(∞)U †
3 (s)

= U3(s)U1(∞)HU
†
1 (∞)U †

3 (s). (23)

To determine the form of H̄ od for the U3 transformation,
let us denote low-lying valence particle states as av,bv,cv, . . .
and high-lying nonvalence particle states as aq,bq,cq, . . .. If
we do not distinguish between valence and nonvalence particle
states, we use the labels a,b,c, . . . as before. Performing TDA
in the valence space alone modifies Eq. (18) to∣∣�vTDA

ν

〉 =
∑
avi

X
av

i a†
av

ai |�0〉, (24)

and hence condition (22) is reduced to〈
�bc

jk

∣∣H̄31

∣∣�av

i

〉 = 0, (25)

with the additional requirement〈
�

aq

j

∣∣H̄31

∣∣�av

i

〉 = 0. (26)

These two conditions are met if we choose

H̄ od ∈ {
�aqijav

,�icjk,�bcavk,faqav

} + H.c. (27)

This definition of the off-diagonal terms is significantly
reduced in scope from that of Eq. (21), so we expect that the
loss of unitarity caused by the IMSRG(2) truncation should
be less severe. The right-hand panel of Fig. 2 shows the
schematic form of a successful vTDA-IMSRG(2) decoupling.
A vTDA-IMSRG(2) calculation will not leave the Hamiltonian
block diagonal for all excitation ranks and will limit the
number of states accessible to the calculation. However, if
we are interested in only low-lying states, this calculation
is much more stable than the full TDA-IMSRG(2). We note
here that both TDA-IMSRG(2) and vTDA-IMSRG(2) are
conceptually similar to the similarity-transformed EOM-CC
method, reviewed recently in Ref. [43]. The TDA- and vTDA-
IMSRG(2) evolution is considered converged when all excited
states ν within the decoupled space obey

|Eν(n) − Eν(n − 1)| < ε, (28)

where n labels the time step in s. In the present work, we take
ε = 1 × 10−6 MeV.

C. Equations-of-motion method

The sequential decoupling is designed so that simple
methods, such as TDA in the full 1p1h space or TDA in
the smaller 1v1h valence space, give exact eigenvalues of
H̄21(∞) and H̄31(∞), respectively. However, both methods
degrade the unitary equivalence to the original Hamiltonian
due to the second transformation in which a large number

of matrix elements are driven to zero within the IMSRG(2)
truncation. While we anticipate that the loss of unitarity for the
valence-space TDA should be less severe due to the “gentler”
second transformation, the number of accessible excited states
is much smaller due to the restricted configuration space.

To avoid these limitations, we pursue a third strategy where
we apply EOM techniques to approximately diagonalize the
ground-state-decoupled Hamiltonian, eliminating the need for
a second transformation. Methods such as the TDA and RPA
fall into a more general class of methods known as equations-
of-motion methods [35]. For any excited state, Eq. (1) can
be exactly rewritten in terms of a ladder operator X†

ν and the
correlated ground state

|�ν〉 = X†
ν |�0〉. (29)

X†
ν is formally given by the dyad |�ν〉〈�0| and can be written

as a linear combination of one- to A-body excitation and
deexcitation operators. The energy eigenvalue problem can
then be expressed in terms of the commutator of H and X†

ν :

[H,X†
ν]|�0〉 = ωνX

†
ν |�0〉, (30)

where the excitation energy is ων = Eν − E0. Traditionally,
the strength of EOM methods lies in the ability to make
controlled, computationally feasible approximations on the
form of X†

ν . Given some approximation of the correlated
ground state, the amplitudes of X†

ν can be solved for in
a generalized eigenvalue problem [42]. In principle, the
approximate ground state can then be improved iteratively
using the X†

ν and its Hermitian conjugate, which can then be
used to get an improved X†

ν , and so on.
One might naturally think to couple EOM methods with

the IMSRG since the reference state |�0〉 corresponds to the
ground state of H̄1 ≡ U1(∞)HU

†
1 (∞). Multiplying Eq. (30)

by U1(∞) and recalling that U1(∞)|�0〉 = |�0〉 gives

[H̄1,X̄
†
ν]|�0〉 = ωνX̄

†
ν |�0〉, (31)

where X̄†
ν ≡ U1(∞)X†

νU
†
1 (∞) only contains excitation oper-

ators since the reference state is annihilated by deexcitation
operators. We recover the TDA equations for the ground-state-
decoupled Hamiltonian if we choose

X̄†
ν =

∑
ai

X̄a
i a

†
aai . (32)

Alternatively, we may use a more sophisticated ladder operator
which includes up to 2p2h excitations,

X̄†
ν =

∑
ai

X̄a
i a

†
aai + 1

4

∑
abij

X̄ab
ij a†

aa
†
bajai . (33)

Equation (33) leads to a more complicated eigenvalue problem
than the TDA, but it eliminates the need for a second
transformation because it includes a large portion of the
correlations which are suppressed by U2 or U3. Note that
the EOM calculation with this ladder operator is equivalent
to diagonalizing H̄1 on the space of singly and doubly excited
Slater determinants.

In general, the EOM ladder operator may have any
excitation rank up to ApAh, which would constitute an exact
diagonalization of H̄1. Similarly, the level of truncation of
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the IMSRG equations can in principle be increased to the
IMSRG(A) level, where the unitary equivalence of H̄1 and H
is exact. Therefore, EOM-IMSRG approximations are system-
atically improvable, allowing for EOM(m)-IMSRG(n) calcu-
lations, which are simply referred to as EOM-IMSRG(m,n).
The calculations in the present work are carried out in the
EOM-IMSRG(2,2) approximation.

As a result of the vanishing deexcitation piece of X̄†
ν ,

Eq. (31) has the advantage that it may be solved as a traditional
eigenvalue problem using power-iteration methods such as the
Lanczos algorithm. Such methods only require knowledge of
matrix-vector products. If X̄†

ν is taken to be an eigenvector, the
corresponding matrix-vector product is given by

[H̄1,X̄
†
ν] = {H̄1X̄

†
ν}C, (34)

where the subscript C denotes connected terms.
An EOM-IMSRG(2,2) calculation proceeds as follows:

(1) Choose a reference state |�0〉.
(2) Decouple the ground state via the IMSRG(2) with H̄ od

defined as in Eq. (14).
(3) Solve Eq. (31) using a ladder operator with single and

double excitations, Eq. (33).

Note that ladder operators are spherical tensors of rank J
with definite parity, because they must connect the ground
state to excited states of any desired spin Jπ . For this reason,
EOM-IMSRG calculations are more computationally demand-
ing than both TDA-IMSRG and vTDA-IMSRG calculations.
However, the relatively small rotation of the ground-state
decoupling U1 makes the EOM-IMSRG equations far more
numerically stable compared with both sequential decoupling
approaches, which require a large secondary rotation U2,3.

D. Perturbative triples correction

A straightforward correction to the EOM-IMSRG(2,2)
spectra can be included via Rayleigh-Schrödinger perturbation
theory that accounts for omitted triple-excitation terms in the
ladder operator, Eq. (33). The order-zero wave function is
taken to be the solution of the EOM-IMSRG(2,2),∣∣�̃(0)

ν

〉 = |�̄ν〉 = X̄†
ν |�0〉. (35)

Using Epstein-Nesbet partitioning of the Hamiltonian, the
zero-order energy is

E(0)
ν = E0 + ων, (36)

and the first-order energy correction is zero by definition. The
second-order energy correction is then given by

E(2)
ν = 〈

�̃(0)
ν

∣∣H̄1
Q̂

E
(0)
ν − H̄ (0)

H̄1

∣∣�̃(0)
ν

〉
, (37)

where Q̂ is the complement space projector

Q̂ = |�0〉〈�0| +
∑
μ �=ν

|�̄μ〉〈�̄μ|

+ 1

36

∑
ijkabc

∣∣�abc
ijk

〉〈
�abc

ijk

∣∣ + · · · . (38)

Note that Q̂ = 1 − P̂ , where P̂ = |�̄ν〉〈�̄ν | projects onto the
particular solution of the EOM-IMSRG(2,2) for which we
are calculating the perturbative correction. Since couplings
between |�̄ν〉 and the reference state or npnh excitations with
n � 4 are zero in a ground-state-decoupled framework, and
since couplings with |�̄μ �=ν〉 vanish due to the approximate di-
agonalization performed in the EOM-IMSRG(2,2) calculation,
the triply excited terms of Eq. (38) give the first nonvanishing
contribution and Eq. (37) becomes

E(2)
ν = 1

36

∑
ijkabc

〈�0|X̄νH̄1

∣∣�abc
ijk

〉〈
�abc

ijk

∣∣H̄1X̄
†
ν |�0〉

E
(0)
ν − 〈

�abc
ijk

∣∣H̄1

∣∣�abc
ijk

〉 . (39)

Equation (39) amounts to a perturbative energy correction
that approximates the full EOM-IMSRG(3,2) energy, which is
prohibitively expensive due to its N5

uN3
o scaling, where No and

Nu refer to the numbers of occupied and unoccupied single-
particle orbitals, respectively, and the need to store three-body
matrix elements. In practice, we write Eq. (39) as

E(2)
ν = 1

36

∑
ijkabc

|Wabcijk|2
D

ijk
abc

, (40)

where

D
ijk
abc = ων − 〈

�abc
ijk

∣∣H̄ ∣∣�abc
ijk

〉
(41)

and

Wabcijk = [H̄ ,X̄†
ν]abcijk. (42)

Storage of three-body matrix elements is not needed because
Eqs. (40)–(42) need only be calculated once for each excited
state with manageable N4

uN3
o scaling. In the following, the

inclusion of perturbative triples on top of EOM-IMSRG(2,2)
is referred to as the EOM-IMSRG({3},2) approximation.

III. SYSTEMS AND INTERACTIONS

Before presenting the results of our calculations of excited
states in 2D parabolic quantum dots and 16,22O nuclei, we
present some details of our implementations for both systems.

A. Quantum dots

Parabolic quantum dots consist of A electrons confined by
a harmonic oscillator potential in two dimensions. In atomic
units, the Hamiltonian is given by

H =
A∑

i=1

[
1

2
p2

i + 1

2
ω2r2

i

]
+ 1

2

A∑
i �=j

1

|ri − rj | . (43)

Quantum dots provide an excellent testing ground for approx-
imate many-body methods, as the strength of many-body cor-
relations can be controlled by varying ω, with smaller values
corresponding to stronger correlations, and comparisons can
be made to exact FCI calculations in sufficiently small bases.
In the present work, all calculations are performed for the
six-electron system.

Figure 3 depicts the orbital scheme used to define the
single-particle basis. The orbitals for this system are the
solutions to the one-body piece of Eq. (43), i.e., solutions
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FIG. 3. Orbital scheme for a six-electron two-dimensional quan-
tum dot in a model space consisting of four major shells. Each
orbital has a distinct orbital angular momentum projection ml and
spin projection ms .

of the two-dimensional isotropic harmonic oscillator
problem, and are characterized by the projection of orbital
momentum and spin quantum numbers, given by ml and ms ,
respectively, and the usual principal quantum number n. The
single-particle energy of a given orbital is EN = ω(N + 1),
where N = 2n + |ml|. For FCI calculations, the full
configuration space is composed of all possible A-body Slater
determinants within the chosen single-particle basis. In this
work, we truncate the single-particle basis to orbitals N � 3,
as we are only concerned with having exact FCI results to
compare against for our approximate vTDA-IMSRG(2) and
EOM-IMSRG(2,2) calculations. For the latter two methods,
the Hartree-Fock (HF) equations are solved by expanding
the unknown HF orbitals in the truncated N = 3 oscillator
basis. The Hamiltonian in Eq. (43) is then written in the
self-consistent HF basis and normal ordered with respect
to the ground-state Slater determinant for the A = 6 case.
Finally, the in-medium zero-, one-, and two-body pieces of the
normal-ordered Hamiltonian are used as initial conditions for
the numerical solution of the relevant IMSRG(2) equations.

B. Finite nuclei

In our calculations of the 16,22O nuclei, we start with the
intrinsic A-body Hamiltonian

H =
(

1 − 1

A

)
T (1) + T (2) + V (2), (44)

where the center-of-mass (c.m.) kinetic energy is subtracted
out, leading to a two-body kinetic energy piece T (2) as well
as the A dependence of the one-body term; see Ref. [36].
Since the primary purpose of the present work is to perform
proof-of-principle calculations with the EOM-IMSRG(2,2)
method, and not to make detailed comparisons to experiment,
we neglect three-nucleon (NN) interactions for simplicity
and consider the N3LO (500 MeV) input nucleon-nucleon
potential of Entem and Machleidt (EM) [44], softened by
free-space SRG evolution at the two-body level to two different
resolution scales, λ = 2.0 fm−1 and λ = 3.0 fm−1. As with the
quantum dot calculations, the Hartree-Fock equations are first
solved by expanding the unknown HF orbitals in a spherical
harmonic oscillator basis truncated to oscillator states obeying
2n + l � emax, where emax is sufficiently large so that the

results are approximately independent of the h̄ω value of
the underlying oscillator basis. Once a converged solution is
obtained, the Hamiltonian is normal ordered with respect to the
ground-state Slater determinant, and the resulting in-medium
zero-, one-, and two-body operators supply the initial values
for the IMSRG(2) flow equations.

Since nuclei are self-bound objects governed by a trans-
lationally invariant Hamiltonian, an exact solution of the
Schrödinger equation must factorize into the product of a wave
function for the physically relevant intrinsic motion times a
wave function for the c.m. coordinate,

|�〉 = |ψ〉in ⊗ |ψ〉c.m.. (45)

There are two strategies to rigorously guarantee this
factorization: one can work in a translationally invariant basis
from the outset, or one can work in a so-called full Nh̄ω
model space comprised of all A-particle harmonic oscillator
Slater determinants with excitations up to and including
Nh̄ω. Neither choice is optimal since the former is limited
to light nuclei due to the factorial scaling of the required
antisymmetrization, while the latter limits the choice of the
single-particle orbitals to the harmonic oscillator basis and
does not carry over to methods such as coupled-cluster
theory and the IMSRG where it is more natural to define
the model space via an energy cutoff (e.g., 2n + l � emax) on
the single-particle states. In the case of calculations with an
emax cutoff, there is no analytical guarantee that the c.m. and
intrinsic wave functions factorize.

In Ref. [45], Hagen and collaborators gave an ingenious
prescription to diagnose whether or not Eq. (45) is satisfied
in such calculations. The basic idea is to assume that the
factorized c.m. wave function is a Gaussian and is therefore
the ground state with eigenvalue zero of the shifted c.m.
Hamiltonian Hc.m.(ω̃),

Hc.m.(ω̃) = P2

2mA
+ 1

2
mAω̃2R2 − 3

2
h̄ω̃, (46)

where m is the average nucleon mass, and P and R are
the center-of-mass momentum and position operators, respec-
tively. Note that ω̃ �= ω in general, where ω is the frequency
of the underlying oscillator basis. The prescription to find ω̃
involves solving a quadratic equation

h̄ω̃ = h̄ω + 2
3Ec.m.(ω) ±

√
4
9 [Ec.m.(ω)]2 + 4

3h̄ωEc.m.(ω),
(47)

where

Ec.m.(ω) ≡ 〈�|Hc.m.(ω)|�〉 (48)

= lim
s→∞〈�|H̄c.m.(ω; s)|�〉, (49)

and H̄c.m.(ω; s) is the consistently evolved c.m. operator.
Because there are two roots of Eq. (47), we choose the one
that gives a smaller value for Ec.m.(ω̃) in the ground-state
IMSRG calculation. Once ω̃ is obtained from the ground-state
calculation, we follow the Lawson-Gloeckner prescription
[46] for the EOM-IMSRG calculations by adding the following
term to the bare intrinsic Hamiltonian:

HL = βHc.m.(ω̃), (50)
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and performing the IMSRG(2) ground-state evolution and the
subsequent EOM calculation. Note that β is an adjustable
parameter used to shift spurious c.m. excitations in the EOM-
IMSRG spectrum to irrelevantly high energies.

IV. RESULTS

A. Full configuration interaction analysis of TDA-IMSRG(2)
and vTDA-IMSRG(2)

The sequential TDA-IMSRG decoupling discussed in
Sec. II B is designed so that a 1p1h configuration interaction
calculation is exact for a subset of eigenvalues. If the IMSRG
evolution is carried out without truncation, the transformation
is unitary and the eigenvalues of the evolving Hamiltonian are
invariant throughout the flow. However, since both stages of
the decoupling are carried out in the IMSRG(2) approximation,
exact unitary equivalence with the initial Hamiltonian is lost
due to the neglect of induced three- and higher-body terms.
One way to assess the loss of unitarity is to perform FCI
calculations using the evolved Hamiltonian at different values
of the flow parameter. If no truncations are made, then the
transformation is exactly unitary and the FCI spectra are s
independent. Therefore, the degree of s dependence in the
spectra provides a measure of the truncation errors associated
with the IMSRG(2) approximation.

Figure 4 demonstrates the behavior of FCI as a function of s
for a few low-lying energy levels of the six-electron quantum
dot system, with the single-particle model space truncated
to the first four oscillator shells. The FCI calculations are
performed using the evolved Hamiltonian at intermediate steps
in the sequential decoupling defined in Eq. (20), where the
first stage of the IMSRG evolution decouples the ground state,
and the second stage decouples the particle-hole excitations.
The vertical black line in Fig. 4 indicates the end point of
the ground-state decoupling U1, and the beginning of the
secondary 1p1h decoupling U2. The ground state and first
(ML,MS) = (1,0) excited state are only weakly dependent on
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Ground State

FIG. 4. Ground-state and low-lying (ML,MS) = (1,0) excited
states of a six-electron quantum dot in an ω = 1.0 trap. The
FCI calculations are performed using the flowing TDA-IMSRG(2)
Hamiltonian in an N = 3 model space.
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FIG. 5. (ML,MS) = (1,0) excited states of a six-electron quantum
dot in an ω = 1.0 trap with an N = 3 model space. Three FCI
calculations are shown: two using the flowing TDA-IMSRG(2) and
vTDA-IMSRG(2) Hamiltonians corresponding to each choice of the
secondary decoupling Ux(s) (where x = 2 or 3), and one using the
bare Hamiltonian.

s for both transformations, indicating that the loss of unitarity
from the IMSRG(2) is small.

If we zoom in on the second and third excited states in Fig. 5,
however, we see a more pathological behavior. For reference,
the FCI results using the initial Hamiltonian are indicated by
the horizontal dotted lines. In the second stage of the transfor-
mation (i.e., to the right of the vertical line), dashed lines show
FCI results for the flowing H̄21(s) during the TDA-IMSRG(2)
decoupling, while solid lines show FCI performed for the
flowing H̄31(s) during the vTDA-IMSRG(2) decoupling. Here,
the valence space includes all 1p1h excitations into the N = 2
shell. Apart from a small region in s after the second U3

evolution is initiated, the H̄31(s) FCI spectra show minimal
s dependence, and the calculation has numerically converged
at s ≈ 11.5. However, the H̄21(s) spectra behave erratically;
the two levels cross and exhibit significant s dependence
during most of the U2 evolution. This is consistent with
our naive expectations that the IMSRG(2) truncation errors
should be smaller for the valence 1p1h decoupling since
fewer matrix elements are being driven to zero. While this
does not conclusively prove that induced many-body terms
are always less problematic for the U3 evolution, we note
that, in calculations of larger systems, the TDA-IMSRG(2)
decoupling often leads to nonconvergent energies and numer-
ical instabilities, which again is consistent with our intuition
that induced many-body interactions are more problematic
for the “stronger” U2 transformation. Until these instabilities
are better understood, it appears the vTDA-IMSRG(2) is the
preferred sequential decoupling method to target excited states.

Figure 6 demonstrates the utility of the vTDA-IMSRG(2)
sequential decoupling in TDA calculations for the same
six-electron quantum dot. For comparison, flowing and bare
FCI calculations for the ground state and first excited state
are included, in addition to the flowing zero-body component
of the Hamiltonian Eref(s). At s = 0, Eref(0) and ETDA(0)
are rather poor approximations to the exact ground- and
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FIG. 6. FCI and TDA calculations of the first (ML,MS) = (1,0)
excited state using the flowing vTDA-IMSRG(2) Hamiltonian for a
six-electron quantum dot with N = 3 and ω = 1.0. For reference, the
flowing zero-body part of the Hamiltonian Eref(s) and the FCI results
for the bare Hamiltonian are also shown.

excited-state energies, since they correspond to the Hartree-
Fock and Tamm-Dancoff approximations calculated with the
bare Hamiltonian. As s increases, more and more many-body
correlations are resummed into the flowing Hamiltonian,
and the corresponding Eref(s) and ETDA(s) become better
approximations to the exact results. By s ≈ 5.4, the ground-

state decoupling is complete and Eref(s ≈ 5.4) is in excellent
agreement with the exact ground state, while ETDA(s ≈ 5.4)
gives a significantly improved estimate of the excited state.
As the secondary decoupling progresses, ETDA(s) approaches
the flowing FCI calculation and is a very good approximation
of the exact bare FCI calculation. Note that the ground-state
energy is unaffected by U3 because the reference state remains
decoupled from the higher particle-hole sectors throughout.
The diagonalization of the valence 1p1h block is much less
computationally demanding than the full Hamiltonian matrix
of FCI, despite similar quality of results. Despite the success of
the TDA-IMSRG(2) method, it produces useful results only for
states that have exceedingly strong 1p1h character. Restricting
ourselves to a valence space limits the number of accessible
states even further. Therefore, we turn now to the more versatile
EOM-IMSRG.

B. Quantum dots energy spectra using EOM-IMSRG
and TDA-IMSRG

Figure 7 shows vTDA-IMSRG(2), EOM-IMSRG(2,2), and
EOM-IMSRG({3},2) (labeled TDA31, EOM1, and EOM{3}1,
respectively) spectra for two different quantum dots, along
with FCI calculations performed for the bare Hamiltonian
(FCI0) and FCI calculations using the ground-state-decoupled
Hamiltonian H̄1 (FCI1). The length of the lines indicates the

FIG. 7. Selected excitation spectra of six-electron quantum dots for ω = 1.0 (a) and ω = 0.5 (b) performed in an N = 3 single-particle
basis. The quantum numbers of the various states are color coded as (ML,MS) = (0,0) (red), (1,0) (black), (2,1) (blue), and (3,0) (green).
The calculated spectra are displayed for five different many-body approaches, where the subscript indicates which Hamiltonian the respective
method is applied to. For example, FCI0 and FCI1 denote FCI calculations on the bare and ground-state-decoupled Hamiltonians, respectively,
TDA31 denotes a TDA calculation on the vTDA-decoupled Hamiltonian, etc. The lengths of the plotted energy levels indicate the 1p1h content
of the state as defined in Eqs. (51)–(54).
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1p1h content of a given state, which we define as

n(1p1h)FCI0 =
∑
ph

∣∣Cp
h

∣∣2
, (51)

n(1p1h)FCI1 =
∑
ph

∣∣(C̄1)ph
∣∣2

, (52)

n(1p1h)EOM1 =
∑
ph

∣∣(X̄1)ph
∣∣2

, (53)

n(1p1h)TDA31 =
∑
vh

∣∣(X̄31)vh
∣∣2 = 1. (54)

Note that this quantity is defined differently depending on
the particular unitary transformation, so a direct one-to-one
comparison can be misleading. For instance, in the vTDA-
IMSRG calculations, the excited states are completely 1p1h
in the unitarily transformed frame; hence, all of the lines in
the TDA31 column are the maximum possible length. Since
FCI1 and EOM1 are performed for the same operator, H̄1,
a direct comparison of Eqs. (53) and (52) is consistent. We
note that EOM-IMSRG({3},2) partial norms are corrected by
normalizing with the wave function corrected to first order in
perturbation theory, resulting in a slight decrease.

In Fig. 7 we show four sets of states with the indicated
quantum numbers chosen to demonstrate the robustness of the
EOM-IMSRG method. For odd-parity states such as (ML,MS)
= (1,0) and (3,0), we see that those which are strongly of
1p1h nature are well described by both vTDA-IMSRG and
EOM-IMSRG methods. We also note that the EOM-IMSRG
reproduces the FCI1 partial norms nicely for these states,
indicating that the EOM-IMSRG(2,2) is a good approximation
to the full diagonalization of H̄1. The EOM-IMSRG spectra
degrade somewhat for even-parity states, since the sizable shell
gap at the Fermi level tends to suppress the 1p1h dominance
for such states, and at higher excitation energies. However, it
bears repeating that the EOM-IMSRG is significantly more
flexible than the vTDA-IMSRG, as the latter is intrinsically
unable to access even-parity and/or higher excited states
without expanding the model space to include the entire
1p1h configuration space, which often leads to numerical
instabilities and/or erratic convergence.

Another advantage of the EOM-IMSRG approach is that it
can be systematically improved. EOM-IMSRG({3},2) correc-
tions significantly reduce the errors in the EOM-IMSRG(2,2)
approximation at a manageable computational cost. Excitation
energies, which are consistently overestimated by the EOM-
IMSRG(2,2) calculation, are consistently reduced by the
perturbative triples correction, bringing results into better
agreement with the FCI1 and FCI0 spectra. The quality of
EOM-IMSRG({3},2) energies is still dependent on higher
excitation rank content, but 1p1h and 2p2h states are described
well in this approximation.

The quality of IMSRG results degrades as the importance
of correlation in the system increases. This is seen clearly in
the right-hand panel of Fig. 7 for the smaller trap frequency
ω = 0.5. Nevertheless, the perturbative triples correction
still gives substantial improvement. One can easily spot a
correlation between the errors of either method and the
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FIG. 8. Absolute difference between quantum dot excitation
energies calculated via IMSRG methods and those calculated with
FCI on the bare Hamiltonian. Each point corresponds to an EOM or
TDA energy level in Fig. 7.

bare FCI 1p1h amplitudes. Figure 8 shows the absolute
difference between the FCI0 excitation energy and those
calculated via EOM-IMSRG(2,2) or TDA-IMSRG(2), plotted
against the bare FCI partial norm for each state. A clear
inversely proportional relationship can be seen. Accessible
TDA-IMSRG(2) results are generally more accurate than
EOM-IMSRG(2,2). This is expected, because a successful
TDA-IMSRG calculation should fully decouple the relevant
excited states from truncated terms in the configuration
expansion, whereas EOM-IMSRG(2,2) ignores some nonzero
couplings by definition. This difference is for the most part
erased by the EOM-IMSRG({3},2) triples correction. The
root-mean-square deviations from the FCI results are 0.095
hartree for EOM-IMSRG(2,2) and 0.031 hartree for EOM-
IMSRG({3},2).

In larger spaces, FCI calculations are not feasible, so we
should also consider the relationship between the error and
the EOM1 partial norm of Eq. (53). Figure 9 demonstrates
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FIG. 9. Same as Fig. 8, except energies are plotted with respect
to EOM-IMSRG(2,2) partial norms.

044304-10



Ab INITIO EXCITED STATES FROM THE IN- . . . PHYSICAL REVIEW C 95, 044304 (2017)

this relationship, using the same states displayed in Fig. 8. It
is evident that EOM-IMSRG overestimates the 1p1h content
of calculated states; however, there is a modestly linear
relationship between the error and the EOM partial norm.
This is a useful tool to gauge the reliability of EOM-IMSRG
calculations in larger spaces, because EOM amplitudes are
immediately available after solution of Eq. (30).

C. Results in nuclear physics

Applying both the vTDA-IMSRG(2) and EOM-
IMSRG(2,2) to finite nuclei, we find a clear preference for
the latter method. Unfortunately, the promising results of
vTDA-IMSRG(2) calculations in quantum dots do not carry
over to nuclei, because uncontrolled numerical instabilities
in the secondary transformation render the vTDA-IMSRG
unusable for systems with strong correlations. Until these
instabilities are better understood and overcome, sequential
decoupling appears to be appropriate only for computations in
doubly magic nuclei. Figure 10 depicts the lowest excitation
energies of 16O calculated at several different angular momenta
and parities. We find that the vTDA-IMSRG(2) tracks well
with EOM-IMSRG(2,2) for low-lying 1p1h dominant states,
but is nonconvergent for all others. In the left-hand column,
the 1p1h partial norm [Eq. (53)] of the EOM wave function is
listed above the corresponding energy for that state. While the
0+ state has strong 1p1h content in the EOM calculation, the
vTDA-IMSRG(2) fails to converge beyond the three lowest
excited states.1 In nuclei with subshell closures such as 22O,
the vTDA-IMSRG(2) fails to converge even for most low-lying
1p1h dominant states. For this reason, we restrict ourselves
to the EOM-IMSRG(2,2) formalism in the remainder of this
work.

As discussed in Sec. III, spurious c.m. excitations are treated
via the Lawson-Gloeckner method [46], with an augmented
intrinsic Hamiltonian

H = Hint + βHc.m.(ω̃), (55)

where ω̃ is determined with the method of Hagen et al. [45,47].
Assuming that the intrinsic and c.m. wave functions factorize,
the use of the Lawson term in Eq. (55) should remove spurious
excitations from the low-lying spectrum as β is increased. An
example is shown in Fig. 11 for the 1− spurious state, which
gets shifted out of the spectrum for nonzero values of β. The
weak residual β dependence of the remaining states indicates
that the c.m. factorization is approximately satisfied for these
states. We expect this factorization to improve with weaker
β dependence as we go to higher excitation levels and larger
bases, as was empirically observed in Refs. [45,48].

An important litmus test for the EOM-IMSRG(2,2) method
will be the ability to produce results that are comparable
to analogous EOM-CC calculations. As with ground-state

1We are not attaching any physical meaning to states at such
unphysical high excitation energies. Rather, our point is to illustrate
that obtaining converged, stable calculations in the EOM-IMSRG
is relatively foolproof for a wide range of states, whereas the
vTDA-IMSRG calculations are fraught with numerical difficulties.

FIG. 10. Lowest 16O excitation energies plotted for various
quantum numbers, calculated with EOM-IMSRG(2,2) and vTDA-
IMSRG(2) starting from the N3LO (500 MeV) NN interaction
of Entem and Machleidt (EM) [44], softened by free-space SRG
evolution to λ = 2.0 fm−1. The single-particle basis is given by
h̄ω = 24.0 MeV and emax = 8. Above each plotted energy level
from the EOM-IMSRG(2,2) calculation is the 1p1h partial norm of
Eq. (53).

coupled-cluster theory, EOM-CC methods originated in nu-
clear physics [49–51] but were largely ignored for many
years due to convergence issues arising from the “hard cores”
found in most NN potential models, while going on to enjoy
great success in quantum chemistry [7,52]. In recent years,
EOM-CC methods have had a resurgence in nuclear physics
due to the development of softer chiral EFT interactions and
RG methods to soften them further, providing unprecedented
access to ab initio calculations of ground- and excited-state
properties for medium-mass nuclei in the vicinity of closed
shells [30,31,33,53–55].

Owing to similar truncations being made, we expect the
EOM-IMSRG(2,2) to produce results that are comparable
to EOM-CC calculations truncated at single and double
excitations (EOM-CCSD). In Fig. 12 we show calculations
of the low-lying spectra of 22O performed on the intrinsic
Hamiltonian, as well as the Lawson Hamiltonian with β = 5.0.
In each panel, the left-hand column shows the excited states
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FIG. 11. Low-lying states of 22O at h̄ω = 28.0 MeV and emax =
11 for several values of the Lawson parameter β, using the N3LO
(500 MeV) NN interaction of EM [44], softened by free-space SRG
evolution to λ = 3.0 fm−1. The c.m. frequency h̄ω̃ = 17.28 MeV.

calculated in the standard EOM-IMSRG(2,2) approximation,
while the right-hand column shows a slightly different approx-
imation that we call EOM-IMSRG(2,2*).

The latter is based on the observation that, in terms of
low-order MBPT content, the IMSRG(2) differs from CCSD
by undercounting a class of fourth-order quadruple-excitation

contributions to the correlation energy by a factor of 1/2
[56,57]. This difference explains the empirical observation that
IMSRG(2) ground-state energies tend to fall in between CCSD
and CCSD(T) calculations for a wide range of single-reference
systems, as the undercounting mimics the partial cancellation
that occurs between repulsive quadruple-excitation contribu-
tions and the attractive triples corrections. In Ref. [57], the
IMSRG(2*) approximation was developed where a class of
terms which are neglected in the the strict NO2B truncation
are restored, bringing the counting of the quadruple-excitation
diagrams into full agreement with CCSD. In the present work,
the EOM-IMSRG(2,2*) utilizes the IMSRG(2*) ground-state-
decoupled Hamiltonian as input for the EOM calculation. The
spectra calculated using either Hamiltonian are rather similar,
with qualitative agreement between the EOM-IMSRG and
EOM-CC methods for all investigated quantum numbers.

On a technical note, c.m. frequencies ω̃ are calculated
independently for the IMSRG(2) and IMSRG(2*) methods,
and corresponding Lawson terms are constructed. The Lawson
term is constructed in the CCSD calculations using the
frequencies calculated in the IMSRG(2*) formalism, which
we expect to be a good approximation given the similar
perturbative content of both methods. The relevant frequencies
are given in Table I. The removal of spurious center-of-mass
excitations is consistent in all three approaches.

Figure 13 displays a similar comparison for a “harder”
interaction at λ = 3.0 fm−1. Differences between the EOM-
IMSRG(2,2*) and CCSD are more notable here, but qualitative

FIG. 12. Selected excitation spectra of 22O at h̄ω = 20.0 MeV and emax = 11 using the N3LO (500 MeV) NN interaction of EM [44],
softened by free-space SRG evolution to λ = 2.0 fm−1. (a) The excitation energies calculated with the intrinsic Hamiltonian, and (b) the result
of adding a Lawson center-of-mass term H = Hint + βHc.m.(ω̃), with β = 5.0. Different colors indicate different J �.
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TABLE I. Values of h̄ω̃ in MeV, used in center-of-mass Hamilto-
nian for Lawson calculations of 22O energy spectra.

Method λ = 2.0 fm−1 λ = 3.0 fm−1

IMSRG(2) 18.19 17.28
IMSRG(2*) 18.05 17.50
CCSD 18.05 17.50

agreement is still intact. The EOM-IMSRG(2,2) excitation en-
ergies are generally shifted up from their CCSD counterparts.
This is indicative of the increasing effect of missing fourth-
order quadruples for harder interactions. This is consistent with
observations of increasing differences between IMSRG(2) and
CCSD ground-state energies for interactions with larger λ
values [36].

V. SUMMARY AND OUTLOOK

In this work we presented two new approaches for per-
forming ab initio calculations of excited states in closed-shell,
medium-mass nuclei. Both approaches are based on combining
the IMSRG method with simple many-body methods com-
monly used to target excited states, such as the Tamm-Dancoff
approximation (TDA) and equations-of-motion (EOM) tech-
niques. In the first method, a two-step sequential IMSRG(2)
decoupling is used to drive the Hamiltonian to a form where

a simple TDA calculation (i.e., diagonalization in the space of
1p1h excitations) becomes exact for a subset of eigenvalues.
This is accomplished by performing a second IMSRG(2)
evolution after the initial ground-state decoupling has been
achieved to eliminate matrix elements between the desired
1p1h block and the rest of the Hilbert space. In the second
approach, which we refer to as the EOM-IMSRG(2,2) method,
standard EOM techniques with single- and double-excitation
operators are applied to ground-state IMSRG(2) calculations
to access excited states.

We introduced two variants of the sequential decoupling
approach, TDA-IMSRG(2) for the case where the entire 1p1h
block is decoupled, and vTDA-IMSRG(2) for the case where
the particle orbital is restricted to lie in a valence shell. The
results for the sequential decoupling approaches are typically
more accurate than the corresponding EOM-IMSRG(2,2) cal-
culations when they converge, but they lack the versatility and
numerical stability of the latter. This was demonstrated in detail
for parabolic quantum dots in two dimensions, where correla-
tions could be controlled by changing the trapping frequency
ω, and comparisons against exact FCI calculations could be
made for sufficiently small single-particle bases. Moreover,
the EOM-IMSRG calculations are systematically improvable,
as evidenced by the EOM-IMSRG({3},2) quantum dot spectra
that contain perturbative corrections for the neglected triple-
excitation components in the EOM ladder operator.

For calculations of 16,22O nuclei, the differences in numer-
ical stability were even more stark, as the vTDA-IMSRG(2)

FIG. 13. Selected excitation spectra of 22O at h̄ω = 28.0 MeV and emax = 11 using the N3LO (500 MeV) NN interaction of EM [44],
softened by free-space SRG evolution to λ = 3.0 fm−1. (a) The excitation energies calculated with the intrinsic Hamiltonian, and (b) the result
of adding a Lawson center-of-mass term H = Hint + βHc.m., with β = 5.0. Different colors indicate different J �.
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approach only converged for the doubly magic 16O nucleus,
while the TDA-IMSRG(2) failed to converge at all. In
contrast, all of our EOM-IMSRG calculations were free of
numerical issues, with calculated spectra in good qualitative
agreement with analogous EOM-CCSD calculations. We
view the qualitative agreement with the EOM-CCSD spectra
as an important “proof of principle” of the EOM-IMSRG
method that paves the way for more interesting applications
in the near term, such as comparisons of EOM-CCSD(T)
and EOM-IMSRG({3},2) spectra in nuclei, calculations of
consistently evolved observables such as electromagnetic
strength functions and nuclear matrix elements, and extensions
of the EOM-IMSRG to nuclei within one or two nucleons of
a closed shell by generalizing the EOM ladder operator to
include particle-number nonconserving terms.

As discussed in the introduction, the Hermiticity of the
EOM-IMSRG might bring some modest technical advantages
over analogous EOM-CC methods. However, the ultimate ad-
vantage of the EOM-IMSRG lies in an eventual multireference
formulation, which, owing to the relative simplicity (both

technical and formal) of the MR-IMSRG compared to MR-CC,
has the potential to extend calculations well into the open-shell
regime, while avoiding the “curse of dimensionality” that
ultimately limits large-scale shell-model calculations.
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