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Coordinate-space solver for superfluid many-fermion systems with the shifted
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Self-consistent approaches to superfluid many-fermion systems in three dimensions (and their subsequent
use in time-dependent studies) require a large number of diagonalizations of very large dimension Hermitian
matrices, which results in enormous computational costs. We present an approach based on the shifted conjugate-
orthogonal conjugate-gradient (COCG) Krylov method for the evaluation of the Green’s function, from which we
subsequently extract various densities (particle number, spin, current, kinetic energy, anomalous, etc.) of a nuclear
system. The approach eschews the determination of the quasiparticle wave functions and their corresponding
quasiparticle energies, which never explicitly appear in the construction of a single-particle Hamiltonian or needed
for the calculation of various static nuclear properties, which depend only on densities. As benchmarks we present
calculations for nuclei with axial symmetry, including the ground state of spherical (magic or semimagic) and
axially deformed nuclei, the saddle point in the **°Pu constrained fission path, and a vortex in the neutron star
crust, and demonstrate the superior efficiency of the shifted COCG Krylov method over traditional approaches.
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I. INTRODUCTION

Density functional theory (DFT) and other self-consistent
approaches [Hartree-Fock (HF), Hartree-Fock-Bogoliubov
(HFB), or Hartree—de Gennes] have played an essential role
in studying the properties of most nuclei across the nuclear
chart [1]. Present phenomenological nuclear energy density
functionals (EDF) allow for accurate descriptions of many
bulk properties of nuclei such as masses, radii and shapes, tran-
sition matrix elements, potential energy surfaces and related
inertial parameters, and even nonequilibrium properties, when
extended to time-dependent phenomena. The time-dependent
extension is straightforward [2—4] and provides a unified
approach for the study of both structure and reaction dynamics.
While pairing correlations are absent in closed-shell magic
nuclei, there are a lot of nuclear problems where accurate
description of the pairing correlations is crucial. Examples
of such problems include large-amplitude collective motion
of open-shell nuclei and dynamics of vortices in neutron star
crust [5-11].

The evaluation of the nuclear DFT is numerically demand-
ing, particularly if one considers large fermionic systems
in three dimensions (3D) and large deformations, without
any symmetry constraints. Over the years, many iterative
approaches for solving the HFB equations have been proposed,
including successive diagonalizations of the HFB or HF+-BCS
matrices, imaginary time evolution [12,13], and gradient
methods [14,15], which typically need significant memory
requirements and operations of complexity O(N?), where N
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is the dimension of the HFB matrix. For a review of modern
diagonalization software, see Ref. [16].

The most standard approach, via series of direct diago-
nalizations of the HFB Hamiltonian, can be divided into two
main classes. In the first one, the HFB problem is formulated in
the configuration space by expanding the quasiparticle states
of HFB on a discrete basis of orthogonal functions, usually
provided by a (deformed) harmonic oscillator (HO) basis
[17,18]. Although typically very fast, this approach suffers
from truncation errors that typically lead to the incorrect
description of the asymptotic behavior of the system or of
the large deformations of the systems, e.g., when a nucleus
fissions. An HO basis does not usually provide a very effective
coverage of the relevant phase space. Sometimes this can be
improved by introducing wavelets [19] and complex energy
Berggren states [20] to describe the continuum spectrum.
Nuclear systems are adequately described when the phase
space in which the dynamics occurs is properly covered
by the single-particle basis wave functions. This space is
characterized typically by a volume V = L3, where L is a few
times the nucleus radius and by a maximum single-particle
momentum pey = fikey proportional to the Fermi momentum
hkp. The total number of quantum states in such phase space
is

_ 2peul)’
Nps =4 (2nh)3

where the factor 4 arises from accounting for spin and isospin
degrees of freedom; see the discussion in Ref. [21]. The spatial
extension L (that can be different in each Cartesian direction)
is chosen depending on the specific needs. These extensions
in each spatial direction are different for a nucleus with very
extended density tails, for the collision of two nuclei, for the
fission of a heavy nucleus and its split into two fragments, or for
a nucleus in the presence or absence of a vortex in the neutron

o k3 R?, (1)
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star crust. In an HO basis, by increasing the size of the basis
set to cover the required spatial volume, one usually goes well
beyond p.y, leading to an inefficient coverage of the needed
phase space. Pairing correlations typically lead to a filling
of all the momentum states up to p.y. The need to describe
large deformations, the tails of the density distributions, and
particularly the large amplitude dynamics of various nuclear
systems requires large spatial simulation volumes and a large
momentum cutoff, thus resulting in a large number of phase-
space cells Nps.

Another approach is the direct HFB matrix diagonalization
in the coordinate space with a lattice spacing dx = 7/ ke
chosen to ensure an adequate coverage of the phase space
[13,21,22]. Thus, one can obtain numerically accurate results
for weakly bound nuclei and large deformations [23,24]. A
number of coordinate-space HFB solvers have been published
over the years [19,25-30], but solving the HFB equations
in full three-dimensional (3D) coordinate space is still a
challenging problem because of the large dimension of the
HFB matrix discretized in a large box. To put this in perspec-
tive, consider calculations in medium size volume 32 x 32 x
48 fm® with lattice resolution dx = 1 fm corresponding to
Pewt =l /dx ~ 600 MeV/c. Then, the N x N HFB matrix
has N2 = (4 x 32 x 32 x 48)? 2 2000007 matrix elements,
and requires more than 0.5 TB memory just to store it. A
typical diagonalization (which requires O(N?) operations
separately for protons and neutrons) takes about 40 min using
the high-performance linear algebra library SCALAPACK [31]
on the Edison supercomputer at NERSC with 36 864 processor
cores and a charged computational cost of 49 152 CPU
hours [32] (CPU, central processing unit). For self-consistent
convergence ~100 diagonalizations are typically required,
generating an enormous computational cost on the order of
about 10 million CPU hours per converged calculation. After
each diagonalization, the eigenfunctions are reduced to local
densities needed to construct new quasiparticle Hamiltonian
matrix coefficients before the start of a next iteration. The
manner in which new matrix coefficients are constructed
reflects the fact that, for density functional theory, the many-
body wave function contains vastly more information than is
needed in each iteration.

Here we present a new method for extracting densities
directly from the HFB Hamiltonian without calculating wave
functions. The method is especially well suited for large-scale
calculations that inevitably require an efficient use of super-
computers. It is important to compare both the computational
(numerical) complexity of different algorithms that solve the
same problem, and the ease with which the methods can
be partitioned into smaller problems that can be effectively
executed in parallel so that the entire process scales well on
today’s computers. An important indicator that characterizes
this property of an given algorithm is the strong scaling, which
describes how the time to compute a fixed problem depends on
the aggregated scale of the computing resources used to finish
the problem. Ideal (linear) strong scaling for an algorithm is
achieved when the (wall) time to completion can be reduced
by a constant factor k while increasing the aggregated machine
scale by the same factor k. The dense, direct eigenvalue
decomposition based on data decomposing the Hamiltonian
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over a set of processes does not exhibit perfect strong scaling
on modern parallel computers, particularly for very large
matrices, when communication between computational nodes
starts dominating the computational cost. The factorization
requires frequent interruptions both in communicating partial
results and coordinating coarse phases of the algorithm
between computing units, and these synchronizations, coupled
to increasingly smaller work fractions for a fixed problem,
dominate the strong scaling behavior. Eventually more time is
spent managing the computation than evaluating the algorithm.
Moreover, a typical local energy density functional leads
to a sparse HFB matrix in the coordinate representation,
a feature that is not efficiently utilized by the eigenvalue
decomposition with direct methods. The method proposed here
removes these weaknesses. The algorithm can be constructed
in a nearly communication-free manner and thus exhibits
almost prefect strong scaling over the number of points in the
coordinate space offering a near complete reduction of O(N)
in complexity when evaluating the method in parallel. The only
operation that involves the HFB matrix is a matrix-vector (MV)
multiplication, which can benefit easily from matrix sparsity.
In our implementation the MV multiplication is extremely
efficiently implemented using fast Fourier transform (FFT).
The programming method is straightforward in hybrid pro-
cessing models that combine traditional CPUs with hardware
accelerators such as general purpose graphics processing units
(GPUs) [33]. Presently, many leadership class computers are
of this type.

In order to grasp the new method, consider a Hartree-Fock
equation [5]

H(r) = exi(r), @)

where 1 (r) is the wave function corresponding to the energy
level g;. Without loss of generality, we assume that the
eigenvalues &, are positive. Our goal is to compute the particle
number density

p(r) =Y Y)Y (r), 3)

ex<er

where the summation includes only states up to a fixed Fermi
energy e for normal systems. The density can be obtained
from the Green’s function G(z,r;r’), defined by the linear
equation (spin degrees freedom are suppressed here)

(z — H)G(z,r;1") = 8(r — 1), “)

where z is a complex number. Notice that in this equation
r’ can be treated as parameter and thus for a fixed value
of r’ the Green’s function G(z,r;r’) is the solution of an
inhomogeneous Schrodinger equation. The formal solution of
this equation is

Glersrty = 3 O )
k

7 — &

Once we obtain the Green’s function, forcing r = r’, the
particle density can be calculated via a contour integral

1
p(r) = —— f 2 Gt Py ©)
2mi Jo
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A contour can be chosen arbitrarily, but is required to enclose
only the eigenvalues in the the interval [0,& ] on the real axis.
The problem of computing the density for a fixed point r’ is
reduced to the calculation of the Green’s function G(z,r;r’)
for all z’s on the contour, which is equivalent to solving
a set of independent linear equations (4). For any given
local Hamiltonian the density at any given point r can be
extracted independently of any other point, enabling this step
to be executed in parallel, with no communications between
processes. Thus by construction, the present method exhibits
perfect strong scaling up to the number of coordinate points.

For fixed z and r’ the algebraic problem (4) can be solved
using iterative methods. The conjugate-orthogonal conjugate-
gradient (COCG) method is a very efficient algorithm for
solving a set of linear equations Ax = b, assuming that
matrix A is symmetric and complex [34]. Recently, an
extension of the method called the shifted COCG has been
implemented for electron systems [35,36], nuclear shell model
[37], the computation of the level density in nuclei [38], and
other generalized eigenvalue problems [39-41]. The shifted
variant solves simultaneously a family of algebraic problems
(A — 0)x? = b for many shifts ¢ € C simultaneously, essen-
tially with the same speed as standard COCG for a single
shift. In this way, the accuracy of numerical estimation of the
contour integral (6) can be refined to the desired accuracy with
almost no extra calculation cost. Taking as many computing
units as points in coordinate space, the computation time will
be limited only by the time needed to solve this single algebraic
problem.

The purpose of the present work is to introduce the
procedure in the context of solving the HFB equation in
3D coordinate space. The Green’s function G(z,r;r’) of a
HFB equation can be obtained in a similar way as solving
Eq. (4) using the shifted COCG method, but for a generalized
multicomponent system with pairing and spin-orbit coupling.
The calculation of particle density in Eq. (6) will be generalized
to all types of local densities in the realistic nuclear energy
density functional (NEDF) [42,43]. With the aim of taking
advantage of existing and future computational resources, we
developed a highly efficient parallelized GPU code as the
so-called engine of the shifted COCG iteration to replace
the direct parallel diagonalization procedure in the code used
in Refs. [9,44,45]. As a benchmark, full self-consistent HFB
calculations are performed in this work for the ground states
of spherical (magic or semimagic) as well as axially deformed
nuclei. The constrained HFB (CHFB) calculation is also tested
for the saddle point of 2*°Pu in the induced fission studied in
[9]. Finally, we apply the method to generate nontrivial states,
relevant for astrophysical applications, containing quantized
vortices and nuclear defects immersed in a superfluid neutron
matter.

We emphasize that the concept of DFT is extensively
used across many fields dealing with fermionic systems, like
quantum chemistry, solid-state physics, ultracold fermionic
gases, and many others. Here we focus only on the nuclear
case, as typically the nuclear EDF is very complicated in
comparison to functionals encountered in other fields. The
method presented here is general and can be applied to other
fermionic systems as well.
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II. THEORETICAL FRAMEWORK

A. Nuclear DFT within local density approximation

Local density approximation is one of the most successful
concepts introduced to DFT approaches. It was extended to
superfluid systems, namely superfluid local density approx-
imation (SLDA) [46,47], and assumes that energy density
functional (EDF) £ depends on various local densities. In
nuclear systems, a generic EDF is represented as a sum of the
kinetic &y,, the nuclear Eyclear, the Coulomb Ecyy, and the
pairing &, contributions

E =&+ 5nuclear + 8Coul + gpair- (7

The kinetic part depends on the kinetic densities and the
effective nucleon masses

2
Ean(r) = 3 1T ®)

P 2my(r)

In calculations we included the simplest center-of-mass correc-
tion by replacing the bare nucleon mass m withm /(1 — 1/A).
The total particle number is A = N 4+ Z where N and Z are
respectively the neutron (n) and proton (p) numbers. The
Coulomb contribution is composed of the direct part and the
exchange part

gCoul(r) = 5goul(r) + géoul(r)

_ :017("):017(") Br — 3_‘32 i 3 4/3
B ./ |r —r’| " 4 <n> Py (-
9

The pairing energy in SLDA depends on the local anomalous
density,

D7 ey (), (10)
q=n.p

and the effective pairing coupling strength g.(r) is obtained
via a renormalization [46—48] of the bare pairing strength,
typically parametrized as

gpair(r) =

B ]
go(r) = go| 1 — o2 (11)
Lo

where py = 0.16 fm~3 is the saturation density. The parameter
o =0,1,1/2 corresponds to volume, surface, and mixed
pairing respectively [42,49].

The nuclear part is the most complicated. Over the years,
many forms of the nuclear functional have been proposed; see
Refs. [1,50,51] for review. Typically, the functional depends on
various proton and neutron densities, including normal p(r),
kinetic t(r), spin s(r), or spin kinetic energy densities 7'(r).
In a high-accuracy nuclear EDF (NEDF) various currents are
present as well, such as the normal current j(r), and the spin
current densities J(r). In our previous works [9,44,45] we
used the popular parametrization SLy4 [1,43] of the Skyrme
NEDF, that has a rather generic form,

5Skyrme = 5 2+ 5py + 5,0Ap + 5/)1 + 5pvj

= > (Clof +Cl pioy +CI™ pisps
1=0,1
+Cl ot + CY pV - T)), (12)
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where py = p, + p, and p; = p, — p, (and similar for 7o ;
and Jo,) are isoscalar and isovector densities respectively,
and C’s are coupling constants.

Starting from the NEDF defined above, the derived HFB
equation is a 4-component eigenvalue problem:

um um
gl | =g ",
Ukt Ukt
Uk Uk
hyy = hyy 0 A
gl Mt e —A 0
0 A R Au R
A* 0 —hy —h}, +u

13)

where we have suppressed the spatial coordinate r and k is
the label of each quasiparticle wave function [uy, (1), v ()],
where o0 = 1,]. The local particle-hole Hamiltonian % is
obtained by taking the appropriate functional derivatives of
the energy density functional. For the Skyrme functional (12),
it takes the form [5]

2

h
h(r,a/(r) = <_V : %V + U)&r.a’ - lW : (V X a)a.a’»

(14)

where m*(r) is the effective mass, U(r) is the central part of
the mean-field potential, and W(r) is the spin-orbit potential
(for their explicit forms, see Ref. [43]). The local pairing field
A(r) is defined as a function of the anomalous density

A(r) = —gesi (N v(r). s)

The HFB Hamiltonian is a functional of local densities,
which are determined by the quasiparticle wave functions
[t (1), V10 (r)]. The explicit expressions for the most impor-
tant ones are

p(r) =Y v}, (Ve (1), (16)
k,o

v(r) = Y i (P (r), (17
k

T(r) =Y _ Vi, () Vi (r), (18)
k,o

J(r) = %(V — V) X s(r,r) =, (19)

where

se(r.r’) = Y [0p Py (') + g (P (7)),
k
sy(r.r’) =i Y (i (e (') = v (Mver (r)],
k

s:rr) = S Wi (v () — vf, (Mg (1. (20)
k

The summations over k should be performed for quasiparticle
states with quasiparticle energies Ej that satisfy 0 < E} <
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E.y, where Ey is the energy cutoff related to the momentum
cutoff E.y = 1321%2“t (2m) (m stands for the mass of nucleon).
It should be sufficiently large to ensure the convergence of
all observables. This convention is applied to all summations
over k throughout this paper. In the next section, we will
show how to extract these densities directly from the Green’s
function without explicit diagonalization of the HFB matrix.

The method can be extended to other (not listed) densities.

B. Green’s function and local densities

Denoting the 4 x 4 HFB matrix in Eq. (13) as H, the
Green’s function G(r,r’,z) is the solution of a matrix equation,

(zls — H)G(z,r;r) =68(r — )14, 21

where I, stands for a 4 x 4 unit matrix. Now the Green’s
function is a 4 x 4 blocked matrix in the form

upp(r) Ui r)

o 1 ur(r) u:i(l’/)
G(z,r;r') = Xk: 7= E; | ver () vZT(r’) 22)

vy (1) vi, ()

In the above equation the summation over k includes all
eigenstates. As we discussed in Sec. Il A, we need to calculate
the normal, anomalous, kinetic, and spin-orbit densities and
to construct the HFB matrix in the self-consistent iterations.
A closer look at the explicit expressions for the densities
(16)—(20) reveals that we need to extract only 5 of 16
entries, containing {vis(r),vey (1)} @ {UZT(”/)’UZ¢(",)} and
v,’{‘T(r)uk 1(r") products. In the next subsections, we provide
prescriptions for extraction of the local densities assuming
that Green’s function can be efficiently computed. For simpli-
fication of the formulas we introduce the notation

, P (P)Y, (1)

G s(z,r;r) = — 23

gp.yo (Z15T) Xk: p— (23)

for submatrices of the Green’s function, where ¢,y = {u,v}

are wave-function coordinates and p,oc = {1,]} are spin
coordinates.

1. Normal and anomalous density

The simplest products in the Green’s function are the
normal density p(r) in Eq. (16) and the anomalous density
v(r) in Eq. (17). For p(r), one needs to extract the G, ,4+ and
G, v, components from the G matrix and add them. Next, by
performing the contour integral, like in Eq. (6), we obtain the
normal density for a selected r’ point

1
N=— d GUUUO' ’ ;r/ r=r's 24
p(r') nggcz o (@i 24)
where the contour integral encompasses the interval [0, E¢y]

of the real axis. The expression for the anomalous density
requires only the G, ,+ component and by analogy reads

1
N=— d Gu v T ' r=r'- 25
v(r') 5 fé 272Gy (z,r;r) (25)

The extension to spin densities (20) is straightforward.
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2. Kinetic density

Without losing generality, we suppress the spin degrees of
freedom in the equations and write the (normal) Eq. (16) and
the kinetic energy densities Eq. (18) in a simplified form:

p(r)y =Y Y E)(r),
k

T(r) =Y VYir) - V(). (26)
k

In order to evaluate 7(r), we first calculate the Laplacian of
the number density:

Ap(r) =2Re [Z V(O AY(r) + Vi(r) - Vl/fk(r)j|-
k

27)

Then 7(r) can be obtained via
1
T(r) = 3 Ap(r) — Re (; w,:‘<r>Awk<r>>. (28)

Now the problem is reduced to the calculation of the quantity
> Vi) A (r). Recall that

1
S i) = 5 b dGr) @9
Tl Jc

k

and if we apply the Laplacian A on r on both sides of the
equation and set r = r’ we obtain

1
P yf dzAG(.rir ). (30)
k c

Computation of the derivatives of the Green’s functions intro-
duces significant numerical costs. We avoid the calculation of
the Laplacian by taking advantage of an integration by parts

AGZ,r P )|pmp = /dré(r —r)AG(z,r;r")

= /dr(A(S(r—r/))G(z,r;r’) 3D

where the second equality uses the boundary condition
lim,_, oo G(z,r;r’) = 0. Finally

D V@AY
k

= L dz/dr[AS(r — MGz, r;r), (32)
2mi C

which is a contour integral of a convolution. Therefore, to
obtain the total kinetic energy density Eq. (18), one just
needs to extract G4 4 and G, ,;, components from the G
matrix, and calculate the kinetic energy density T = 74 + 1
based on Egs. (28) and (32). When implemented numerically
AS(r — r’) is the numerical implementation of the Laplacian
applied to the § function on the lattice.
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3. Spin-current density

The spin-current density Eq. (19) can be written in the
explicit form:

Ju(ry=Tm)_ [v* (r)ivm(r) T (r)i|
x - kl 9y Kt dy 1
+Re) [v;: ()L (1) — ] (r)ivmr)]
— |1 "8z oz
RN N
Jy(r) = Im Xk: [va(r)ava(r) + Vi )7k (1)

3 d
- v,fi(r)avm(r) - vZT(r)a—Zvu(r)],

J(r)=Im)_ [in(r)iva(r) + v,;(r)ivkl(r)}
. dy dy

+Re) [v* (F) 0y () — v, () (r)]
~ Ky M Yk ket (1) 5~ Ukl )

(33)

which are combinations of the quantities ), ¥V, for
different spin combinations. The evaluation procedure in this
case is similar to the one we used for the density ), ¥; Ay
and we obtain

D VOV
k

= —L¢ dz / dr[Vé(r — r1G(z,r;r), (34)
2ri Je

where V represents the gradient operator on . One needs to
extract all spin components G, ,, from the G matrix and form
the appropriate combinations.

III. NUMERICAL IMPLEMENTATION
A. Shifted COCG method

Throughout our theoretical framework, the core problem
is to solve Eq. (21) for all z’s on the contour. We solve
these equations separately for each coordinate point . When
discretized, this problem is reduced to the linear equations for
a given set of contour points z,, (m = 0,1, ... ,mmnax). These
linear equations are called shifted linear equations or shifted
linear systems because the matrices z,, — H are connected by
scalar shifts. We solve this problem by using the shifted COCG
method [35,36], which is an iterative method for solving
large-scale shifted linear systems with symmetric matrices.
The details of this algorithm are available in Ref. [35,36] and
here we give only a brief review and illustrate how to apply it
to the HFB matrix in Eq. (13).

For a given symmetric matrix A, we want to solve the linear
equation

Ax = b, (35)
which is called the reference system, and its shifted equations

(A+oDx® =b, (36)

044302-5
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where o is a scalar complex shift and x is the solution of the
corresponding shifted system. The reference system is solved
by the COCG method [34]. We define x,, as the approxi-
mate solution in the nth iteration, r, as the corresponding
residual vector r, = b — Ax,, search direction vector p,, and
other coefficients «,,B,. With the initial condition xo = 0,
ro=b,po=b,a_; =1,5_; =0 we have to perform the
following iterations:

A

n—1
Uyl = ————, (37)
py{_] : Apnfl
Xp = Xp—1 + Qp—1Pn-1, (38)
rpn ="rp— _an—lApn—l, (39)
rlr,
By = 2T (40)
rn—l “TFn—1
Pn="y+ Ianlpnfl (41)

where the T represents transpose only, without complex
conjugation, and - stands for the implied scalar product
between left and right vectors. Note, the evaluation of Ap,_;
is the most computationally consuming part of an iteration, as
it requires a matrix-vector multiplication. The residual vector
measures the accuracy of solution in the nth iteration and it is
used as a breaking condition for iterations.

Shifted systems Eq. (36) can also be solved by COCG
algorithm. For each shifted equation we introduce the cor-
responding vectors x§, ry, and p? and coefficients o, and

, and initialize them with the same initial conditions as the
reference system. However, the iterations (37)—(41) for the
shifted systems can benefit from their collinearity, meaning
that the residuals vectors for the reference and shifted systems
are connected [35]

- 1
r,=—=rn 42)
nﬂ
where the proportionality constant in each iteration is given by
(g =72 =1)

o :3n72 o ;3'172 o
T, = <1 +a,_10 +a,_1 )nnl — 0y—1 Ty 5
Op—2 Qp—2

(43)

Thus, for the shifted systems, instead of evaluating the time-
consuming Eq. (39) one can evaluate the simpler Eq. (42).
Moreover, the coefficients «® and 87 are also connected with
corresponding coefficients of the reference system

7.’:0

a;;f] = n;lanil’ (44’)
o 7T7[17—1 ?
.Bn_l = = lgn—l- (45)
Ty

These equations replace Egs. (37) and (40). Often the reference
system is called the seed system as it “seeds” data for
shifted systems. The iterations are executed simultaneously for
all systems and they end when the desired accuracy is achieved
for all equations. Since when evaluating the density we set
r = r’in the Green’s function in the vector Eq. (42), one needs
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to evaluate only one component, and not the entire vector; see
also Sec. IIIE.

Assume for a moment that the HFB matrix is symmetric.
This is the case when the spin-orbit term in the nuclear
density functional is ignored and the pairing potential is real.
Then we can straightforwardly let A = zo/ — H, where zg is
selected point from contour. Shifts are given by o,, = z,,, — 2o.
We solve the problem on a Cartesian mesh grid with a
lattice size N, x N, x N, and lattice spacing dx = dy = dz.
After discretization, the HFB matrix has dimensions N x N
with N = 4N, N, N_, but in this case spin-up and spin-down
components are decoupled and the matrix size is effectively
2N NyN,. For a fixed spatial point r’ function 8(r —r’)
becomes vector, where all N elements are zeros except one
[= 1/(dxdydz)], corresponding to the selected position. We
denote this vector by &,-(r). Since we do not need all elements
of G matrix, it is sufficient to solve problems Ax; = b,
and Ax, = b, (together with shifted counterparts), where
b, = (0,0,8,,,0)" and b, = (0,0,0,8,/)”. Then solutions x;
and x, are third and fourth columns of Eq. (22).

In general, the HFB matrix is a Hermitian but not a
symmetric matrix, which cannot be solved using the shifted
COCG method directly. However, one can use the COCG
method designed for symmetric matrices in the case of Hermi-
tian matrices by performing a simple matrix transformation.
Assume that H is an arbitrary Hermitian matrix which can be
divided into real and imaginary parts: H = H, + i H,, with
obvious symmetry properties H, = H and H, = —H . If
we also divide the eigenvectors of H into real and imaginary
parts as ¥ = x + iy. The eigenvalue problem Hvyr = Ay will
be converted to

(Hy +iHy)(x +iy) = Mx +iy). (46)

After collecting the real and imaginary terms it will become
an equivalent eigenvalue problem:

H, —H,\(x\ ,[x
<Hy Hx)(y)_k@’ @7

but now the matrix on the left-hand side is real symmetric. The
Green’s function G = G, +iG, of a general HFB matrix H
is then the solution of the equation [equivalent to Eq. (21)]

)
aonl@)-(3)

r_ Hx _Hy “4) __ -
H _<Hy Hy), P =s(r—rY®IL,.  (49)

where

As before we need to solve two linear equations A’x} = b} and
A'x, = b, (and their shifted equation) with A’ = zI — H' in
doubled space. Now, vectors of length 2N need to be set for
b} = (0,0,5,1,0,0,0,0,0)" and b, = (0,0,0,5,,0,0,0,0)”.

B. The form of the integration contour

Before a further discussion of the shifted COCG method,
we should provide a clear definition of the contour, which
determines the shifted systems and is fundamental for the
convergence behavior and error control of the whole algorithm.
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0 R J Re (B)

continuum

FIG. 1. The ellipse contour C :z(¢) in Eq. (50) adopted to
perform the contour integral. The thick solid line represents the
positive energy continuum quasiparticle states with £ > —pu, while
the crosses represent the positive energy discrete bound quasiparticle
states 0 < E; < —u. Density of integration points is larger for parts
of the contour close to the real axis (depicted by blue and red colors)
and decreases as we go far away from the real axis (depicted by green
color).

We need to calculate an integral of the form 5= . dzf(2)
where the contour encloses exactly a segment of the real axis
[0, Ecye]. It is natural to choose the contour to be symmetric
with respect to the real axis since the poles (the HFB spectrum)
are real. We can parametrize the contour as z(¢) and a simple
choice of its form is an ellipse:

Ecul Ecut

2+2

— Eoy cos? % +ihsing, (50)

72(p) = cos + ihsing

where 0 < ¢ < 27 and the height of ellipse 4 is the parameter
that should be chosen carefully; see Fig. 1.

The integrand function behaves smoothly, only for points
that are far away from real axis. As the contour approaches real
axis, the function f(z) ~ ), ﬁ as a function of z starts to
exhibit fast oscillations, making accurate numerical integration
difficult. For this reason, we choose nonuniformly distributed
integration points along the contour. The density of points
distribution depends on distance from the real axis with more
points closer to the real axis, and less far away from the real
axis. The height /4 of the eclipse is set to be significantly
larger than the expected average separation between poles,
and we compute the integrand function for angles ¢ given by
a distribution function (u and the [ subscript corresponds to
upper and lower parts of the contour with respect to the real

axis)
%{1 + tanh [oztan <¢ — %):H,

0<op<m,

(pu

(51)
o=@, +m,

where « is a parameter (usually @ ~ 1-5) and the integral over
¢ is discretized with a set of evenly distributed points ¢, in
the interval [0,77] with step size A¢. Thus the contour integral
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can be converted into an weighted sum

1 ~
%ﬁ def@= Y flelpa@)]) wo@)Ad.  (52)

o=u,l;n

Typically, the number of integration points does not exceed
10*, and further increases do not improve the numerical result.
The computation of the integrand along the contour is very fast
and represents a very small fraction of the entire calculation
time, which is dominated by the calculation of the Green’s
function at the reference point.

C. Convergence behavior

The norm of the residual vectors r, at the reference and of
the shifted systems r? quantify the error of the approximate
solution x,, and x{, in each iteration. Since we need to calculate
the Green’s functions G(z,r;r’) for all z’s on the contour
defined in Sec. III B, the convergence behavior on the contour
needs to be studied.

As a simple but nontrivial test case, we consider only
neutrons, and choose a phenomenological Wood-Saxon (W-S)
model [5,52]. The central part of the single-particle Hamilto-
nian Eq. (14) is given by U(r) = V,, f(r), where f(r) has the
symmetrized W-S form:

1) L exp (57) (53)
r)=

[1+exp () ][1 +exp (=77)]
and Vy=-50 MeV, r=,x2+y2+(z/B)?* Ry=

1124, —0.864," fm, Ag =100, a=0.54 fm. By
varying the parameter 8, we calculate the densities in a W-S
potential in both spherical and axially deformed cases. The
spin-orbit potential W (r) is chosenas W(r) = AVU (r), where
A = —0.5 fm?, and the effective mass is set to be the bare mass
of neutron mc? = 939.565MeV. The self-consistent pairing
field A(r) in Eq. (15) should be determined by the anomalous
density v(r), but here we still use a phenomenological W-S
potential shape A(r) = 12/ A(l)/ z f(r). In the test, the chemical
potential is fixed at © = —7 MeV. The numerical tests are
performed in a cubic box of size Ly =L, =L, =20 fm
for the spherical W-S model (8 = 1), and a rectangular
box of size Ly = L, =20,L, =25 fm for the deformed
W-S model (8 = 1.5). In both cases, the lattice constant
dx =dy =dz=1.25 fm. The number of lattice points is
N, = L,/dx and respectively for y and z directions. The
energy cutoff is set to Eo, = 100 MeV.

We find that the convergence properties of the algorithm
are strongly correlated with the density of particles for a given
point. For points with higher particle densities, the method
needs more iterations to converge. This behavior can be easily
understood if we recall that the starting point for iterations
is xo = 0; see Sec. IIT A. For the points where the density is
higher, the convergence is noticeably slower. In the following
tests, we consider the convergence properties of the method
for the points requiring the highest number of iterations. These
points are located close to the center of the simulation box.

Results for the spherically symmetric case (8 = 1) are
presented in the top row of Fig. 2. Figure 2(a) shows the
distribution of ||r7| on the semiellipse z(¢),0 < ¢ < 7 on

044302-7



JIN, BULGAC, ROCHE, AND WLAZL.OWSKI

PHYSICAL REVIEW C 95, 044302 (2017)

10° 10%° 10°
1070
0
_ L0 2
) 20 1w -5
L 10 5 - 10
= = =
1690 -/ 10 —p=0
o=
p=m/2
1074 ‘ ‘ : 10740 : : ‘ 107°
0 /4 /2 3n/4 w 0 1000 2000 3000 4000 0 1000 2000 3000 4000
® Iteration number (n) Iteration number (n)
(a) (b) ()
10° 1020 10°
-10
10
10%k ] 10° e
— x 2 imee
S -20 | e > A 4
=1 / S < s
1020, =0 1 1070}
10730 ¥
—p=7
p=m/2
10-40 10-40 10—15 . . .
0 /4 /2 3n/4 w 0 1000 2000 3000 4000 0 1000 2000 3000 4000
© Iteration number (n) Iteration number (n)

(d)

(e) ®

FIG. 2. The convergence behavior of the shifted COCG method for the HFB equation with W-S potential. The top and bottom rows show
results for spherically symmetric and deformed W-S potentials respectively. The spherically symmetric problem was solved on lattice 163,
while the deformed problem used a lattice 16 x 20. In both cases, the lattice spacing is dx = 1.25 fm. Panels (a) and (d) show the distribution
of the norms of the residual vectors || || on the semiellipse contour z(¢) for iteration number n = 4000. Three colors (red, green, blue)
correspond to different parts of the contour, as depicted on Fig. 1. Panels (b) and (e) show the convergence behavior of ||r¢ || for three points
z(0) (red), z(r/2) (green), and z(rr) (blue) as a function of iteration number. Panels (c) and (f) show the difference between the value obtained
from COCG method in the nth iteration and the exact value for the normal (red) and anomalous (blue) densities.

the upper half complex plane, for iteration number n = 4000,
and fixed position r’ located close to center of the box. In
the lower half plane (7 < ¢ < 2m), the behavior is identical
due to the reflection symmetry of the integration contour.
The shifted system converges most quickly in the middle
part of the contour (represented by the color green), more
slowly near the left end of contour z(r) = O (represented by
the color blue), and very slowly near the right end of the
contour z(0) = E¢ (represented by the color red). A closer
look at the convergence behavior at the representative points
in these three parts, respectively z(m/2), z(m), and z(0), is
shown in Fig. 2(b). Besides the rapid convergence of the
middle point z(;r/2), the residual at the origin z(w) = 0 also
has a stable decrease with iterations. However, the iterations
for the right end z(0) = E fail to converge, and ||r{ || keeps
oscillating around 10~2. Consider the convergence analysis of
the conjugate gradient (CG) method [53], in which case the
convergence ratio depends on the 2-norm condition number «

of the matrix A:
—1\"
Il <2<ﬁ )
llroll Vi +1

where the condition number k(A) = |A(A)|max/|A(A)|min 1S
the ratio of maximum and minimal absolute value of the

(54)

eigenvalues of matrix A. From Eq. (54) it is clear that a larger
k leads to a slower convergence. The order of magnitude of the
condition number for matrix A = zI — H can be estimated as
%, where Ej are eigenvalues of the HFB matrix from
interval [0, Ey]. Definitely, the condition number decreases
as the imaginary part of z increases, thus confirming the
finding that the convergence is fastest in middle part of the
semiellipse. The largest values of k occur at points close to
the real axis. We know that the spectrum of a HFB matrix
is discrete if |Ey| < |u| and continuous otherwise [23,54].
Around z = 0 there is a gap in the spectrum and therefore
for z > 0 k = O(E./A), where A is average value of the
pairing gap in the system. When z — Ey, min |z — Ej| can
be arbitrarily small (only set by lattice resolution), and in the
limit of zero lattice spacing dx the condition number diverges.
This quasisingular matrix equation is hard to solve within
a reasonable iteration number. However, these continuous
states near the energy cutoff have very small occupation
probabilities (<1073) and make negligible contributions to
the local densities. While it is possible that preconditioning the
COCG method can help [55-58], our efforts in this direction
did not yield any advantages.

Figure 2(c) tracks the error of the particle density p
and anomalous density v obtained by the calculated Green’s
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FIG. 3. Comparisons were made between the local densities calculated by shifted COCG iteration and the direct diagonalization approaches
along z axis for fixed x = 0 and y = 0 coordinates with three different lattice constants dx. In the case with spherical symmetric potential (top
row) the system size is Ly = L, = L, = 20 fm, and in the deformed case (bottom row) the system size is L, = L, =20 and L, = 25 fm.
The left column shows differences for the normal density 80 = |0cocg — Pdiag.|> and the right column shows them for the anomalous density

v = |Ucocg - Vdiag.l-

function in each iteration. The exact value of these two
densities py (~10~") and vy (~10~?) are calculated by direct
diagonalization of the same HFB matrix via SCALAPACK. It
shows that the particle density p can converge to an accuracy of
108 within 1000 iterations, and this accuracy will not improve
as the iteration goes past that. The anomalous density v will
converge to an accuracy of 10~® within the same iteration
count, which is quite acceptable, since the contribution to
the energetics of a nucleus from the pairing field is much
smaller in absolute terms. The pairing field is almost two
orders of magnitude smaller than the single-particle potential.
This behavior of the anomalous density is due to the fact
that the high-energy quasiparticle continuum states contribute
with significant weights as the anomalous density diverges
when the energy cutoff is increased [46,48,54]. The same tests
for deformed W-S model are presented in Figs. 2(d)— 2(f).
They show a similar pattern of the residual distribution on
the contour. The local densities can reach the same accuracy
but with more iterations, because of the slower convergence
of points near £ = 0. In both the spherical and deformed
cases, the convergence behavior at £ = 0 can represent the
convergence behavior of the final local densities, and thus is
chosen to be the breaking condition for the iterations.

Until now our discussion of the convergence behavior has
been for a fixed spatial point in the lattice system. To have
a comprehensive view of the accuracy of this method, we

also compare the difference between the local densities p
and v calculated with the shifted COCG method and with
the direct diagonalization method on all lattice spatial points.
Figure 3 displays the differences for spherical and deformed
W-S model along the z axis for fixed x =0 and y =0
coordinates. Because the local densities on this spatial line
have the largest magnitude throughout the box, we will also
get the largest errors on this line. To study the influence of
the lattice constants on the accuracy, besides the previous
dx = 1.25, we also performed calculations with smaller lattice
constants dx = 1.0 and dx = 0.8333. From the figures one
can see the global maximum error of p and v are respectively
10~% and 107, which matches the convergence behavior of
Fig. 2. The kinetic and spin-current densities are calculated
with similar accuracy as achieved for the calculation of normal
density. Moreover, the accuracy is little affected by the value
of the lattice constant, a fact which can be expected, as argued
in Sec. I; see also Refs. [21,22].

D. Exploiting symmetries

Densities on each spatial point in the system are calculated
independently. The number of points to be processed is equal
to the number of lattice points NyN,N,. This number can
be easily reduced if the system exhibits symmetries, like
reflection symmetries, axial symmetry, or spherical symmetry.
For axially or spherically symmetric systems, one can argue
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that it is more profitable to exploit this symmetry directly on
the level of HFB equations, i.e., assume the correct symmetry
for the wave functions and solve the constrained HFB problem.
However, if the solution of HFB problem will be used as initial
point for an unconstrained 3D simulation, then this approach
is not accurate enough. Typically, the solutions obtained from
a solver which explicitly uses spherical or axial symmetries
once discretized on a 3D spatial lattice are no longer orthogonal
to each other and do not represent self-consistent eigenstates
(with the necessary numerical accuracy for a stable numerical
integration in time). Self-consistent iterations in full 3D space
are still required to get a high-quality state. We demonstrate the
utilization of axial symmetry for reducing the computational
cost, while the underlying HFB matrix is defined in the full
3D coordinate space.

Consider the scalar local densities represented in cylindrical
coordinates (r,¢,z):

p(r) = p(r,z),
v(r) = v(r,z),

o(r) = t(r,2).

We only need to calculate the densities on the points with
different values of (7,z)’s in the system. This reduces the
number of points to be calculated to approximately 1/8 of
the total number of points in the full 3D lattice system, as only
the points with 0 < x < y < L/2(L =L, = L)) need to be
explicitly considered. Thus the performance will improve by
a factor of 8. A reflection symmetry along the z axis can add
another factor of 2, thus an overall speedup of 16.

We re-expand the vector density J(r) along the three unit
directions of the cylindrical coordinate system as J,., Jy, J;,
which can be related to the Cartesian components J,, J,, J;
by the transformation

Ji(r,z) = Jecos¢p + J,sing,
Jp(r,z) = Jycosp — J,sing, (55)
J(r,z) =/,
and reversely
Jy = J.cosp — Jysing,
Jy = J,sing + Jycos @,
J. = J,. (56)

The components J,, Jy, J; have axial symmetry, i.e., all of
them depend only on r and z, while the Cartesian components
Jy, Jy, and J. depend on all three spatial coordinates. In our
approach, we first calculate the Cartesian components J,, Jy,
J, for the set of points with different (r,z), we transform them
into the cylindrical components J,, Jy, J; via Egs. (55), and
using the axial symmetry we cover all the equivalent points in
Cartesian space via reverse transformation using Egs. (56).
Numerically, we found that the axial symmetry is not
strictly realized due to the finite size of the lattice constant.
In the tests discussed above for a spherical or deformed W-S
model, we start from a HFB Hamiltonian with strict axial
symmetry and calculate the local densities on all points of the
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lattice system without enforcing any symmetry constraints.
In theory, for example, the scalar densities (p, v, T) on the
point of Cartesian coordinates (in fm) (0,5,0) should have
the same value as on the point (3,4,0), but numerically they
are different due to the cubic symmetry of the simulation
box. The relative difference between the scalar densities on
these pairs of pseudoequivalent points varies from 1072 to
10~* as the lattice constants decreases from dx = 1.25fm to
dx = 0.8333 fm. In order to fix this issue, we include all points
in these pairs into the calculation, with a small increase of the
total number of lattice points needed to be calculated.

This lattice effect becomes more pronounced when one
calculates the cylindrical components of the vector density
J(r). The components J, and J, can be treated in the same
manner as the scalar densities, but Jy, which is expected
theoretically to vanish, suffers from a numerical noise, which
oscillates around zero. The average magnitude of this noise
decreases from 107 to 1077 as dx decreases from 1.25 fm to
0.8333 fm and for simplicity we just force them to be zero,
which will bring some discrepancy in the calculation of J(r)
when comparing the COCG and the direct diagonalization
approaches. We will discuss this discrepancy in realistic
calculations for finite nuclei in Sec. IV and show that it
vanishes, as naturally expected, as the lattice constant goes to 0.

E. Computational cost

The computational cost of the shifted COCG iteration is
set by the cost of solving the reference system, as it involves
matrix-vector (MV) multiplication between the matrix A =
zo — H and the vector p, of size 2N, where N = 4N, N, N..
The nonlocality in the HFB matrix (see the Appendix for
explicit form) comes from the Laplacian or gradient operators.
When discretized, the gradient or the Laplacian of a function
(vector) can be obtained either via a finite difference formula
or through the Fourier transform. In both cases the operation
is represented by a sparse matrix. Exploiting the sparsity
accelerates the MV operations significantly. We compute
derivatives using Fourier transforms, as it is a more accurate
method than using finite difference formulas [22]. Moreover,
we advocate the direct use of fast Fourier transforms (FFT) due
to a manageable complexity O (N log N). The computation of
derivatives with FFT is expected to be faster than accurate mul-
tipoint finite difference algorithms [59]. For shifted systems,
the collinear theorem insures that there is no need to evaluate
MYV products. The vector-scalar arithmetic in Eqgs. (38), (41),
and (42) for o # 0 makes a considerable contribution to the
total computational cost if all 2Nm elements of x{, p7,
r? are calculated, where m is the number of points on the
contour. However, in order to obtain the local densities on
a fixed spatial point 7', we do not need to know the Green’s
function G(z,r; r’) for all spatial points r in the system. This is
because integrand function f(z) requires either G(z,r;r’)|,_,
or overlap of Green’s function with V8(r — r’) or AS(r — r’).
Derivatives of 8(r —r’) have only / = N, + Ny, + N, —2
nonzero elements (which are located on three lines in x,y,z
directions that cross at r’). The vector-scalar arithmetic can
be executed only for elements required by the integrand

functions. Finally, the size of x{, p{, r¢ is reduced to the
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order 2/m, which is a small number when compared with
N for the reference system. The cost related to solving the
shifted systems turns out to be negligible. Therefore, the
theoretical upper bound of the computational cost within one
full self-consistent iteration of shifted COCG method at N
coordinates is determined by the FFT operation [O(N log N)]
and the maximum number of COCG Krylov iterations M
required to converge each point in the reference system. The
number of Krylov iterations to converge is problem dependent
and theoretically it scales as O(N), but in all of our realistic
calculation we find that M & 4000 is sufficient to get a
high-accuracy solution for nuclear problems. Final numerical
complexity scales as O(M N?1log N) where in practice M <
N, but in the worst case M can be of the same order as N. On
the other hand, the direct diagonalization scales like O(N?).
It is not a priori clear that the COCG approach is preferred.
It is at this point that leveraging the strong scalability feature
of the COCG approach wins. Let us use a distinct parallel
process for each point in the reference system reducing the
calculation to the cost O(M N log N). Thus, within the errors
of the converged results we present, the COCG approach gains
a clear advantage for larger dimensional systems.

We have also investigated other algorithms that can be
applied to nonsymmetric shifted linear systems, the shifted
BiCG-Stab(l) [60] and the shifted GMRES [61]. In these
algorithms, we do not need to play the tricks described in
Sec. III A for the Hermitian matrix H and the size of matrix A
will not be increased by a factor of two. But, these algorithms
require two sequential matrix-vector (MV) products in each
iteration; thus in total there is no profit per iteration. Among
the tested methods, the COCG method exhibits so far the best
convergence properties.

Finally, we emphasize that the presented method can
efficiently utilize heterogeneous computers. In our imple-
mentation we perform calculations both using CPUs as well
as highly efficient multithreaded GPUs. In our experience,
the GPU implementation of shifted COCG is more than
50x faster than its CPU counterpart. Table I compares the
charged core hours between our GPU code implementing
the shifted COCG method and the CPU code using the
direct diagonalization method (SCALAPACK) for two problems
with different lattice dimensions. On supercomputers, this is
the most relevant quantity to be compared as it essentially
represents the cost that a user has to pay for calculations.
For shifted COCG method, the axial symmetry described in
Sec. III D is implemented. These timing tests were performed
at OLCF Titan [62] and NERSC Edison [32] supercomputers.
In both problems, shifted COCG is faster than diagonalization,
and this advantage becomes more pronounced in the problem
with larger dimension (no. 2).

IV. BENCHMARK EXAMPLES

In this section, the Green’s function and the shifted
COCG method, which we denote XCOCG, is benchmarked by
solving the self-consistent HFB equation in 3D coordinate
space and compared with the codes used in Refs. [9,44,45],
which we denote XDIAG. The XDIAG code extracts wave
functions of HFB Hamiltonian (13) in the discrete variable
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TABLEI. Timing comparison between the shifted COCG method
and diagonalization method using SCALAPACK for solving two prob-
lems with different dimensions N's in each self-consistent iteration.
The first case is for finite nuclei **°Pu in the lattice of dimension
20 x 20 x 40 (the extra factor of 4 is included for spin orbit and
pairing). The second case is for the study of a nucleus immersed in a
neutron superfluid sea of dimension 50 x 50 x 40, where spin orbit
is ignored (the extra factor of 2 is for pairing only). In both problems,
feocg and tgipe denote the charged core hours of the GPU code using
shifted COCG method and the CPU code using SCALAPACK in one
self-consistent iteration. The capital letter in parentheses denotes the
computing facility where the timing test is performed: “T” represents
Titan and “E” represents Edison [32,62] and the CPU hours were
determined in units of CPU hours according to the corresponding
policy for these supercomputers. On Titan an hour using a single
computing node, which has 16 CPUs and one GPU, is charged as
30 CPU h. On Edison an hour using a CPU is charged as 2 CPU h.
For problem 2 the estimated charge in case of using Titan for direct
diagonalization is about 87 500 CPU h.

No. N feocg (CPU h) f4iag (CPU h)
1 20 x 20 x 40 x 4 649.23 (T) 1,547.71 (T)
2 50 x 50 x 40 x 2 9,318.4 (T) 46,694.4 (E)

representation (DVR) basis [21] via a direct diagonalization.
The diagonalization procedure is executed parallel using
SCALAPACK library [31]. Next, densities are formed from the
wave functions using formulas (16)—(20). These operations
form a single self-consistent iteration. We mix the intermediate
solutions during the iteration process using a linear or a
Broyden mixing algorithm [63]. The XCOCG code is a modified
version of the XDIAG code where parallel diagonalization
procedure and computation of densities is replaced by the
COCG method. Densities are extracted according formulas
provided in Sec. II B. The COCG part is ported to GPUs. Both
codes provide the same results up to the accuracy specified in
Sec. III C.

We performed tests on the nuclei with axial symmetry,
including spherical and axially deformed nuclei. In all of
these realistic tests, the Skyrme NEDF SLy4 [43] is used
in the p-h channel, and the SLDA treatment [46,47] for
the pairing interaction is used in the p-p channel with bare
coupling strength go(r) = go = —233 MeV (volume pairing)
and energy cutoff E.,; = 100 MeV. These are typical values
used in realistic calculations. We conclude this section by
presenting states generated by the shifted COCG method used
for studies of interaction between quantized vortices and nuclei
in neutron start crust [11]. These calculations are not feasible
for XDIAG code in a reasonable time.

'Direct methods yield the exact solution if the precision is unlimited
whereas indirect methods may be even more accurate and are often
more efficient depending on system details. Also, iterative methods
more tend to naturally damp out roundoff errors that accumulate and
become difficult with large N problems evaluated directly.
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TABLE II. Results of HFB + SLy4 calculations for *®Pb using
XCOCG in a cubic box of size 32% fm? with lattice constants dx =
1.25,1.0,0.8 fm. Results obtained with the spherical 1D code HFBRAD
are presented for comparison. All energies are in MeV.

dx =125fm dx =10fm dx =0.8fm HFBRAD
Eyin 3868.984 3866.098 3866.187 3866.163
E,  —22401.965 —22383.542 —22384.385 —22384.462
Eyy 14548.826 14536.219 14536.840 14536.890
Epnp 315.563 315.236 315.286 315.288
E,. 1332.134 1330.147 1330.208 1330.216
Eyvy —96.592 —96.451 —96.446 —96.446
Ecou 796.848 796.600 796.607 796.645
Eio —1636.202  —1635.693  —1635.703  —1635.707

A. Spherical limit: Doubly magic nuclei >**Pb, ’Ca
and semimagic nucleus 2Ni

A common approach to testing the accuracy of a 3D
coordinate solver is to compare the 3D results for a spherical
nucleus with the results obtained by a 1D spherical code that
also represents the single-particle wave functions in coordinate
space. We can choose extremely fine lattice constants for the
1D solver and its results can be considered to be very accurate.
Instead of a benchmark with XDIAG, we compute the double
magic nucleus **Pb using our XCOCG code in a cubic box
of size 323 fm> with lattice constants dx = 1.25,1.0,0.8 fm,
and compare them with the results obtained with the HFBRAD
code [26] code (the lattice constant dx = 0.05 fm). In Table II
we compare various contributions to the total energy Eio,
computed as volume integrals from corresponding terms in
NEDF for 2®Pb in these situations. From dx = 1.25 to
0.8 fm, the difference of total energy between XCOCG and
HFBRAD decreases from 0.5 MeV to 4 keV. In particular,
from dx = 1.0 to 0.8 fm, the values of the energy terms have
a steady convergence to those solved by HFBRAD with the
maximum difference <100 keV. This numerical accuracy and
convergence pattern is similar to the results in Ref. [22], which
uses Lagrange-mesh representation [64] in the calculation of
spatial derivatives. The Lagrange-mesh method is equivalent
to the DVR method using FFT on a 3D spatial lattice.
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The benchmarking with XDIAG starts with the case of
spherical nuclei. We solve the HFB problem for the doubly
magic nucleus “°Ca and semimagic nucleus ®*Ni to demon-
strate the accuracy of our solver in the cases with and without
pairing. In both cases, we use a cubic lattice of size 20° fm*
with different lattice constants dx = 1.25,1.0,0.8333 fm. In
Table III we compare various contributions to the total energy
of “°Ca calculated by XCOCG and XDIAG methods respectively.
The main source of differences between the results of the
two solvers is due to the neglect of the azimuthal component
of the spin-orbit density J4(r) when we utilize the axial
symmetry of the system. This lattice effect vanishes as the
lattice constant decreases. In particular, when dx < 1fm, the
difference between the total energies is less than 10 ke V. Notice
also that the XCOCG energies are always lower than the XDIAG
energies and we attribute this to the fact that J4(r) =0 in
XCOCG. The same kind of calculations are performed for the
semimagic nucleus ®*Ni with nonzero neutron pairing; see
Table IV. Compared to *“°Ca, the difference of total energy is
larger in dx = 1.25 case (0.175 MeV). This is due to the much
larger magnitude of the spin-orbit contribution, which brings
larger error in J caused by the finite lattice effects. Similarly
to *°Ca, as the lattice constant becomes finer, this lattice effect
vanishes and the difference of total energy drops to values
below 10 keV when dx < 1 fm.

B. Axially deformed nucleus: '2Zr

The advantage of solving the HFB equation in a coordinate
space basis is that it can correctly describe the asymptotic
behavior of quasiparticle wave functions of nuclei with large
deformations and weak binding energies [24]. Following
Refs. [28-30], we choose the neutron-rich Zr isotope 1027,
which has a large prolate deformation, as the testing ground
and we choose a rectangular box of size 22.5 x 22.5 x 30 fm?
to fit its large deformation. As in Sec. IV A, we compare the
XCOCG and XDIAG results with different lattice sizes dx = 1.25
and 0.9375 fm. These are shown in Table V. The quadrupole
moment O, of the nucleus is also listed in each case, where

0 = (0) = / Q2 =2 — ) (57)

and ,0(") = ,On(") + ,Op(")-

TABLEIII. Results of spherical HFB + SLy4 calculations for “’Ca using the XCOCG and XDIAG approaches with a cubic 3D lattice of size
L, = 20fm with different mesh size dx. All energies are in MeV. In the column of AE, “<0.001” means |AE| is less than 1 keV and can be

negligible.
dx =1.25fm dx =1.0fm dx = 0.8333fm
XDIAG XCOCG AE XDIAG XCOCG AE XDIAG XCOCG AE

Exin 623.983 624.115 0.132 624.755 624.781 0.026 624.836 624.837  <0.001
Ep —3714.569 —3714.702 —0.133 —3722.988 —3722.977 0.011 —3723.483 —3723.483  <0.001
E,v 2396.941 2396.967 0.026 2403.198 2403.190 —0.008 2403.555 2403.554  <0.001
E,np 106.284 106.368 0.084 106.957 106.957 <0.001 106.992 106.992  <0.001
E,. 173.227 173.122 —0.105 173.725 173.712 —0.013 173.746 173.746  <0.001
E vy —1.233 —1.267 —0.033 —1.279 —1.287 —0.008 —1.282 —1.282  <0.001
Ecoul 71.483 71.484 <0.001 71.532 71.532 <0.001 71.535 71.535  <0.001
Ey —343.885 —343.914 —0.029 —344.100 —344.093 0.007 —344.101 —344.101 <0.001
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TABLE IV. Same as Table III, but for ®*Ni.

dx =1.25fm dx =1.0fm dx = 0.8333 fm
XDIAG XCOCG AE XDIAG XCOCG AE XDIAG XCOCG AE
Exin 1092.413 1092.737 0.324 1090.235 1090.293 0.058 1090.107 1090.122 0.015
E, —6335.819 —6336.367 —0.547 —6319.916 —6320.133 —0.218 —6318.595 —6318.650 —0.055
E,y 4134.013 4134.153 0.140 4122.721 4122.864 0.143 4121.738 4121.775 0.037
E,np 150.018 150.256 0.238 150.031 150.055 0.024 149.967 149.971 0.004
E,. 341.670 341.492 —0.178 339.456 339.460 0.005 339.326 339.329 0.003
E vy —52.747 —52.819 —0.072 —52.371 —52.380 —0.010 —52.367 —52.365 0.001
Ecou 129.928 129.917 —0.011 129.761 129.762 <0.001 129.751 129.751 <0.001
Epir —3.834 —3.904 —0.070 —3.989 —4.000 —-0.011 —3.986 —3.994 —0.009
Eio —544.358 —544.534 —0.175 —544.073 —544.080 —0.007 —544.058 —544.061 —0.003

The difference in the total energy is 0.3 MeV between
XCOCG and XDIAG for dx = 1.25, which almost equals to the
difference in the spin-orbit energy 0.27 MeV. This error in
the spin-orbit energy contribution will affect the position of
the HFB minimum, leading to a difference in the quadrupole
moment Qy in the ground state of 3 fm? and in the energy
terms E 2, E,» of 1-2 MeV between XCOCG and XDIAG. For
dx = 0.9375 fm, the errors are significantly smaller, <1keV
for the total energy and 0.16 fm? for the quadrupole moment.

C. Constrained HFB: saddle-point of >**Pu fission

Induced fission of 2**Pu is a frequent benchmark for many
implementations based on DFT methods [9,65-67]. In a
constrained HFB calculation in Ref. [9] the nucleus is brought
to a shape and an energy near the outer saddle point of the
fission barrier (at zero temperature), used as the initial state of
a time-dependent SLDA (TDSLDA) simulation. In this work,
we use our XCOCG code to reproduce the configuration on this
saddle point and compare with that obtained via the XDIAG
code.

To obtain a nucleus with a given quadrupole moment
(0) = Qo, we need to minimize the Routhian

E' = Equ + c({Q) — Qo) (58)

which is equivalent to adding a Lagrange multiplier in the
single-particle Hamiltonian: 2’ = h + 2¢({Q) — Q) 0. In the
self-consistent calculation, the constraint strength ¢ will be
updated in each iteration using the augmented Lagrangian
method [68]. This saddle-point configuration of **°Pu is
prepared in a rectangular box of size 25 x 25 x 50 fm?,
with lattice spacing dx = 1.25 fm. Following paper [9], the
quadrupole moment constraint is set to Qp = 16500 fm?
and an additional auxiliary external field is turned on for the
formation of the neck in this configuration.

In Fig. 4 we show the density profile for the converged
solution. Table VI compares the XCOCG and XDIAG results
for the saddle-point configuration of **°Pu. As we discussed
earlier, the lattice effects in the calculation of J cause the
change of the HFB minimum, which results in large differences
in the energy terms Eyiy, E,2, E,v, and Eya,. In this case,
because of the strong pairing, and extremely large deformation
of the heavy nucleus, any minute change of HFB minimum will
result in larger difference in various energy terms than in the
cases of the nuclei we tested earlier. On the other hand, the
larger amplitude of J, which is reflected by the absolute value
of E,v,, also makes the lattice effects more pronounced. In
principle, these differences will reduce and eventually vanish
as dx — 0 as we demonstrated in the earlier sections. But the
large dimension of this system and the considerable number
of self-consistent iterations in the constrained HFB problem

TABLE V. Results of HFB + SLy4 calculations for '®Zr using XCOCG and XDIAG in a rectangular box of size 22.5 x 22.5 x 30 fm® with

lattice constants dx = 1.25 and 0.9375 fm. All energies are in MeV and the quadrupole moment Qy is in fm?.
dx =1.25fm dx = 0.9375 fm

XDIAG XCOCG AE(AQ) XDIAG XCOCG AE(AQ)
Exin 1841.034 1841.444 0.410 1838.435 1838.438 0.003
Ep — 10 381.846 — 10 383.607 —1.760 —10364.579 — 10 364.463 0.115
E,v 6715.556 6716.620 1.064 6702.965 6702.865 —0.100
E,np 209.650 210.055 0.405 208.432 208.427 —0.005
E,. 592.475 592.366 —0.109 590.686 590.669 —0.017
E vy —63.446 —63.716 —0.270 —62.429 —62.422 0.008
Ecou 230.311 230.288 —0.023 230.359 230.358 —0.001
Epir —3.067 —3.083 —0.016 —3.231 —3.233 —0.002
Eo —859.333 —859.632 —0.299 —859.361 —859.360 0.001
O 1077.44 1080.62 3.18 1047.81 1047.65 —0.16
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FIG. 4. Total density distribution p(r) = p,(r) + p,(r) for the
saddle-point configuration of **Pu in the y = 0 plane.

will make the calculation on a finer lattice grid more expensive
with the current computational resources.

D. A nucleus immersed in a neutron superfluid sea

We used the shifted COCG method to generate initial
states for studies of quantum vortex dynamics in a neutron
star crust [11]. The stationary state is a superfluid neutron
medium containing a quantum vortex and an immersed nucleus
located in the vicinity of the topological defect or vortex.
The calculations were performed with the FaNDF® nuclear
density functional constructed by Fayans et al. [69,70], which
is particularly well suited for these type of studies. The bare
pairing coupling constant in Eq. (10) was chosen to reproduce
the rescaled BCS 'S, pairing gap in neutron matter; for more
details, see Ref. [11].

For these studies we used a simulation volume of size
75 x 75 x 60 fm® with a lattice spacing dx = 1.5 fm. The
energy cutoff was chosen to be 75 MeV. In the box, we place
a tube (simulated by a flat-bottomed external potential) that
we fill with superfluid neutrons of density n = 0.014 fm~> or
0.031 fm~2. The problem has been simplified by dropping the
spin-orbit term, which is not expected to play a major role in
vortex pinning. The simplification results in an HFB matrix
(13) with a simpler block structure (h4), =h 4 =0) and a

TABLE VI. Results of HFB 4 SLy4 calculations for the saddle
point of **°Pu using XCOCG and XDIAG in a rectangular box of
size 25 x 25 x 50 fm> with mesh size dx = dy = dz = 1.25 fm. All
energies are in MeV.

XDIAG XCOCG AE
Eyin 4418.132 4419.125 0.993
E» —25104.582 —25109.048 —4.467
E,y 16 238.995 16 241.781 2.786
E np 408.182 409.032 0.850
E, 1465.062 1464.900 —0.161
E, v, —111.516 —112.088 —0.572
Ecou 901.083 901.062 —0.021
E i —8.801 —8.818 —0.017
Eo —1793.439 — 1794.054 —0.615
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smaller dimension 2N, N, N_:

(hm ) 1z *A )(ukT> _ Ek<”“>. (59)

A —h}, + )\ Vky
After this reduction, the HFB matrix has the size 200 000 x
200000 and it still represents a very demanding problem for
the traditional approaches to determine the stationary states;
see Sec. III E and Table I. We solved this problem successfully
with moderate computational costs to achieve self-consistency
using GPUs and the COCG approach described here on the
Titan supercomputer [62]. Only after the final iteration do we
use a diagonalization to generate the wave functions on the
Edison supercomputer [32].

In Fig. 5 we present stationary configurations (with
constraints) for two background neutron densities: n =
0.014 fm™ and 0.031 fm~>. The nuclear defect consists of
Z = 50 protons. Two mutual configurations were considered:
(1) a quantum vortex attached to the nucleus (pinned case)
and (2) a nucleus outside the vortex core (unpinned case).
The position of nucleus in the box was fixed by adding a
constraint to the density functional for the center of mass
of the protons, in a similar fashion as it was done for the
quadrupole moment Eq. (58) and for the for saddle point in
240py test case. The vortex was generated by imprinting the
correct phase pattern for the pairing field A in the neutron
channel A(p,z,¢) = |A(p,z)| exp(i¢p), where p = /x2 + y?
is the distance from the center of the tube and ¢ = tan~" f—(
In the pinned case, we took advantage of the axial symmetry
of the problem and of the reflection symmetry with respect to
one plane in the unpinned configuration.

From the energetics of these systems we determine that
for both densities the configuration with the nucleus located
outside the vortex core has a lower energy per particle than
the pinned configuration by about 6 and 4 keV respectively
for densities n = 0.014 fm~> and 0.031 fm~>. Thus one can
expect that the effective vortex-nucleus interaction is repulsive
in nature, which was further confirmed by studying the motion
of the vortex in dynamical simulations [11].

V. FURTHER EXTENSION

A. Linear response

The free linear response of a many-fermion system can be
evaluated using the same COCG approach. For simplicity we
will illustrate this procedure here only for a normal system,
as the extension to the superfluid case is straightforward. The
free polarization operator is defined as [71,72]

Mo(,r,r') = Y Y (r')
k

x [G(ex + w,r,¥)+ G(g; — w,r,r")], (60)

where Yy (r) and G(r,r’,z) were defined in Egs. (2) and
(4), and the summation is over occupied levels. In practice,
the polarization operator is evaluated for a complex energy
w + iy, since the spreading width T'V is either not accounted
for in the random phase approximation, or in order to imitate
to some extent the imaginary part of the optical potential.
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FIG. 5. The lowest energy states generated by shifted COCG method for neutron background density n = 0.014 fm™ [panels (a) and (b)]
and 0.031 fm~° [panels (c) and (d)]. In each box of size 75 x 60 fm? we show the absolute value of the neutron pairing potential A(r) (upper
half) and the total density distribution p(r) (lower half). The black lines separating blue and red regions correspond to a value 1 MeV for the

paring and of 0.07 fm™ for the density respectively.

The spreading width accounts for the fragmentation of the
particle-hole transition strength due to the coupling to more
complex states. If the complex integration contour in Eq. (6)
is chosen so that [Im z| < y one can easily show that

1
HO(CU+ iyvrvr/) = _f G(Z7r7r/)[G(Z + o+ i%’""/)
2mi C

+G(z —w—iy,r.r). 61)

It remains to be established if this method for the evaluation
of the free polarization operator Ily(w + iy,r,r’) and the
subsequent determination of the full response is competitive
and under what conditions with the finite-amplitude method
[73-78] and/or the time-dependent approach [44,45] for
deform open-shell nuclei.

B. Extraction of eigenvalues and eigenvectors using
the shifted COCG Krylov method

The shifted COCG Krylov method can be used also to
determine the eigenvalues and the eigenvectors using the
approach described in Refs. [39—41]. In this approach one
has at first to evaluate the moments

(z —e)
2711% ;z—sn

where € is located inside the contour I" enclosing a segment on
the real axis with a known number N of the eigenvalues and
where ¢, are eigenvalues. Once these moments are computed

k=0,1,....2N -1, (62)

the eigenvalues are obtained by solving a generalized eigen-
value problem for two matrices of size N x N. The number
of eigenvalues in a given interval is not known a priori and
some eigenvalues could also be degenerate. In the presence
of degeneracies one has to disentangle the corresponding
eigenvectors. If the degeneracy is due to spherical or axial
symmetry, one can introduce slightly different lattice constants
dx, dy, and dz or a very weak external field and lift the
degeneracies at a level that has no noticeable consequence
on the physics studied. Subsequently, the solution of the
Schrodinger equation for the corresponding eigenvector v, in
the case of a known nondegenerate eigenvalue (H —¢,)¥,, =0
is a trivial linear algebra problem. In the case of Kramers
degeneracies, one can easily separate the two degenerate
eigenvectors. The unknown number N of eigenvalues in a
given energy interval can be determined by evaluating the
trace (integral over all coordinates and summation over all four
components) of the Green’s function of the Hamiltonian (13)

| 1
N=Tr[— ¢ d . 63
f(zmﬁ Zz—H) (63)

Thus the need to use diagonalization of very large matrices
can be completely eschewed.

VI. CONCLUSIONS

In this paper, we describe a new approach for solving the
HFB type of equations in a coordinate representation that is
different from the traditional approaches based typically on

044302-15



JIN, BULGAC, ROCHE, AND WLAZL.OWSKI

direct diagonalizations. In the present approach, there is no
need to evaluate the individual single-particle wave functions
and their energies, but instead we calculate the Green’s
function of the HFB equations, from which we extract various
densities after evaluating a contour integral. The Green’s
functions are obtained by solving a set of linear equations
with scalar shifts using the iterative shifted COCG Krylov
method. We demonstrate the high accuracy of the iterative
shifted COCG approach by solving typical nuclear problems
with and without complicated constraints, such as the fission
outer saddle point of **°Pu and a quantum vortex state in a
neutron star crust. A notable advantage of this algorithm is its
suitability for efficient parallelization and effective utilization
of heterogeneous computing platforms. The method becomes
computationally superior for large spatial lattice sizes that
are otherwise computationally very expensive for standard
approaches, such as a direct diagonalization.

J
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APPENDIX: EQUATION OF GREEN’S FUNCTION FOR HFB EQUATION

For the HFB Hamiltonian H in Eq. (13), the single-particle Hamiltonian in Eq. (14) reads

2
h=-V

" 2m*(r)

V+U@r)—iW(r)-(V x o),

(AD)

where the kinetic energy term is represented by a real symmetric operator in numerical implementations 7. When discretized,
besides the local term U(r),,, = U,8,m, the nonlocal term 7" and spin-orbit terms require more attention. For 7', since

2 1 2 72 12
-V. 2m*(r)Vv(r) = _E[Zm*(r) Vzv(r) + V2<2m*(r) U(r)) — <V2 2m*(f)>v(r)i|, (A2)
we have
Tom = (— v. LV) - —l(vz)nm<i L ) n l(v2 i ) S, (A3)
2m*(r) i 2 2m¥ - 2m¥ 2 2m* J,

where the Laplacian operator V? is a symmetric matrix in the discrete variable representation (DVR) basis [21] and
my, ., = m*(rp/m). A similar symmetrization is also performed for the spin-orbit term

W(r) - (Vxo)= %{W(r) -(Vxao)+ V. [ox W]}, (A4)

where the gradient operator V = {9,,d,,d.} is an antisymmetric operator in each spatial direction in the DVR representation. In
the p-p channel, the complex pairing field A(r) is diagonal when discretized, A(7),,, = A, 8, Finally, after separating the real
and imaginary parts of the HFB Hamiltonian H = A + i B, the equation of Green’s function G = G, + i G, for a HFB equation
is

Gy 8@ , A —B
and where
T+U W9, — W, 0, 0 ReA
W.9, — W.o, T+0 —ReA 0
A= T N (A6)
0 —ReA -T-U W, 0, — W,0,
ReA 0 W.o, — W0, —T—U
Woo - Wi, W.a,— W, 0 ImA
B W.0, — W,9, W9, — W,0; /;ImA/v - 0 | (A7)
0 ImA Wyo, — W,d,  W.0, — W,0,
~ImA 0 W.0, — Wyo, Wyd, — W,d,
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withU = U — w and VVTB/J the anticommutator of W; and 0;:
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Wi, = Y(Wid; + 9, Wo), i) = x,y.2.0 # . (A8)

One can show that A = A" and B = —B”. In the shifted COCG method, we do not need to construct these 4Ny, X 4Ny,
matrices explicitly because we only need the MV product between these matrices and the vectors x,, p, (see Sec. Il A).
Among the MV product operation, the product between the local part of H and the vectors can be regarded as a vector-vector
product. The product between the vectors and the nonlocal part of H, due to the Laplacian and gradient operators, can be

performed using the fast Fourier transform.
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