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We discuss the possible factorization of the tensor asymmetry AT
d measured for polarized deuteron targets

within a relativistic framework. We define a reduced asymmetry and find that factorization holds only in plane
wave impulse approximation and if p waves are neglected. Our numerical results show a strong factorization
breaking once final state interactions are included. We also compare the d-wave content of the wave functions
with the size of the factored, reduced asymmetry and find that there is no systematic relationship of this quantity
to the d-wave probability of the various wave functions.
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I. INTRODUCTION

For a long time, the d-wave contribution to the deuteron
has been a matter of interest. Early on, it was determined that
the d wave is responsible in large part for the quadrupole
moment of the deuteron. Early calculations of the deuteron
wave function including the tensor force needed to pro-
duce the d-wave admixture resulted in a considerable range
of values for the d state probability. Eventually it was
argued that the d-wave contribution was not a physical
observable [1–4].

Experimentally, there have been many measurements aimed
at understanding the d wave contribution and the short
range structure of the deuteron. Exclusive electron scattering
from the deuteron, namely (e,e′p) reactions, were initially
motivated by the factorization assumption: if there are no
final state interactions, the 2H(e,e′p) cross section would be
proportional to the single-nucleon cross section multiplied
with the momentum distribution n(p). It has become common
practice to apply some form of the factorization prescription
as described by deForest [5] to measurements of the (e,e′p) re-
action for all nuclei. It soon became clear that the factorization
assumption does not hold in general: final state interactions
and other pieces of the reaction mechanism beyond the plane
wave impulse approximation (PWIA) break factorization and
distort the cross section. Ever since the first experiments at
NIKHEF [6–11] and Saclay [12–15], the hunt has been on
for kinematic regions and observables that might allow us
to extract information on the deuteron’s d wave [16–21].
On the theory side, considerable effort has been expended
to describe the reaction mechanism, including final state
interactions, meson exchange currents, isobar contributions,
and either relativistic corrections or fully-fledged relativistic
descriptions [22–40].

In the search for suitable observables, measurements on
polarized deuteron targets have high potential. Polarization
experiments have much lower count rates than their un-
polarized counterparts, but they hold the promise of much
more sensitive observables. The tensor asymmetry of the
deuteron, accessible with an unpolarized electron beam and a

tensor-polarized target, vanishes if there is no d wave. For the
exclusive reaction we discuss here, one has the best prospect
of disentangling information about the wave function from the
reaction mechanism.

Semi-inclusive reactions on tensor-polarized deuteron have
also been discussed lately, with a view to experiments at a
future electron-ion collider [41–45].

One possible approach that might allow for the determina-
tion of some information about the d state would be if some
region of kinematics could be found where the sensitivity to
the components of the current operator and to the final state
interactions is negligible. This would lead to the factorization
of the polarized deuteron cross sections into an effective single
nucleon part and various polarized momentum distributions.
Appropriate ratios of the cross section can then be defined
where the single-nucleon cross sections cancel and only a
ratio of momentum distributions remains. The objective of
this paper is to address the feasibility of such a process using a
variety of modern high quality wave functions, a selection of
single-nucleon electromagnetic form factors, and two different
parametrizations of the final state interactions.

The motivation for revisiting this problem at this time is
that a new polarized deuterium target is under construction to
be used in Hall C at Jefferson Laboratory for the approved
experiments [46] and [47]. While the first of these is for
inclusive scattering to obtain the b1 structure function for
deep inelastic scattering and the second is to obtain elastic
and inclusive data at kinematics that are not necessarily
favorable for attempting to extract information about the
deuteron d state, the existence of this target allows for the
possibility of experiments more tailored to extracting this in-
formation. The practicality of such an experiment is considered
here.

The paper is organized as follows. First, we briefly
review the general formalism necessary to calculate response
functions for polarized targets, and the definitions of the
asymmetries that can be measured for polarized targets and
beams. Then, we carefully discuss under which conditions
the factorization of the tensor asymmetry may arise in a fully
relativistic framework based on the Bethe-Salpeter equation,
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FIG. 1. Coordinate systems for the 2H(e,e′p) reaction. k and k′ are the initial and final electron four-momenta, q is the four-momentum of
the virtual photon, and p is the four-momentum of the final-state proton.

and which form the asymmetry AT
d takes when it holds. In the

next section, we present our numerical results, in a kinematic
region relevant to experiments at Jefferson Lab. We show the
influence of the different model inputs on the calculations.
With final state interactions included, factorization breaks. We
conclude with a brief summary.

II. FORMALISM

We present a brief review of the formalism for calculating
the differential cross section, response functions, and asym-
metries for target polarization. For a complete discussion, the
reader is referred to [34].

A. Differential cross section

The standard coordinate systems used to describe the
D(e,e′p) reaction are shown in Fig. 1. The initial and final
electron momenta k and k′ define the electron scattering plane
and the xyz-coordinate system is defined such that the z axis,
the quantization axis, lies along the momentum of the virtual
photon q with the x axis in the electron scattering plane and
the y axis perpendicular to the plane. The momentum p of
the outgoing proton is in general not in this plane and is
located relative to the xyz system by the polar angle θp and
the azimuthal angle φp.

The general form of the 2H(e,e′p) cross section can be
written in the laboratory frame as [48,49](

dσ 5

dε′d�ed�p

)
h

= mp mn pp

8π3 Md

σMott f
−1
rec

× [vLRL + vT RT + vT T RT T + vLT RLT

+h vLT ′RLT ′ + h vT ′RT ′], (1)

where Md , mp, and mn are the masses of the deuteron, proton,
and neutron, pp = p1 and �p are the momentum and solid
angle of the ejected proton, ε′ is the energy of the detected
electron, and �e is its solid angle, with h = ±1 for positive
and negative electron helicity. The Mott cross section is

σMott =
(

α cos(θe/2)

2ε sin2(θe/2)

)2

(2)

and the recoil factor is given by

frec =
∣∣∣∣1 + ωpp − Epq cos θp

Md pp

∣∣∣∣. (3)

The hadronic tensor for scattering from polarized deuterons
is defined as

Wμν(D) =
∑

s1,s2,λd ,λ′
d

〈 p1s1; p2s2; (−)|Jμ|Pλ′
d〉∗〈 p1s1; p2s2; (−)|J ν |Pλd〉ρλdλ′

d
. (4)

The notation (−) in the final state indicates that the state satisfies the boundary conditions appropriate for an “out” state. The
deuteron density matrix in the xyz frame is

ρ = 1

3

⎛⎜⎜⎜⎝
1 +

√
3
2 T10 + 1√

2
T20 −

√
3
2 (T ∗

11 + T ∗
21)

√
3 T ∗

22

−
√

3
2 (T11 + T21) 1 − √

2 T20 −
√

3
2 (T ∗

11 − T ∗
21)

√
3 T ∗

22 −
√

3
2 (T11 − T21) 1 −

√
3
2 T10 + 1√

2
T20

⎞⎟⎟⎟⎠ (5)
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FIG. 2. Feynman diagrams for the impulse approximation.

and the set of tensor polarization coefficients is defined as

D = {U,T10,T11,T20,T21,T22} (6)

with U designating the contribution from unpolarized
deuterons. The kinematic factors vi and the polarized response
functions are listed in Appendix A for convenience.

The expressions above assume that the deuteron target is
polarized along the direction of the three-momentum transfer
q which is defined as the z axis as defined in Fig. 1. However,
since this would require realignment of the target polarization
for each value of q, experiments are performed with the
deuteron polarization generally fixed along the direction of
the electron beam defined by k. This involves a right-handed
rotation of the deuteron density matrix about the y axis through
the angle between q and k denoted by θkq resulting in a
new set of polarization coefficients T̃JM . This rotation is
described in detail in Appendix B. Equation (B8) relates TJM

to T̃JM .

B. Asymmetries

Conventionally, target polarization in deuteron electrodis-
integration is measured in terms of four single asymmetries

AV
d = vLRL(T̃10)+vT RT (T̃10)+vT T RT T (T̃10)+vLT RLT (T̃10)

T̃10�
,

AT
d = vLRL(T̃20)+vT RT (T̃20)+vT T RT T (T̃20)+vLT RLT (T̃20)

T̃20�
,

AV
ed = vLT ′RLT ′(T̃10) + vT ′RT ′(T̃10)

T̃10�
,

AT
ed = vLT ′RLT ′(T̃20) + vT ′RT ′(T̃20)

T̃20�
, (7)

where

� = vLRL(U ) + vT RT (U ) + vT T RT T (U ) + vLT RLT (U ).

(8)

Here, Ri(T̃10) and Ri(T̃20) denote the response functions where
only T̃10 is nonzero or only T̃20 is nonzero. Ri(U ) denotes the
unpolarized response functions. In Eq. (7) the superscripts V
and T refer to vector and tensor polarizations. The subscript d
indicates that all of these asymmetries are defined for polarized
deuterons. The subscript e denotes the case where the electron
beam is also polarized.

C. Factorization

The Feynman diagrams representing current matrix element
deuteron electrodisintegration for the Bethe-Salpeter equation
are shown in Fig. 2. Figures 2(a) and 2(b) have plane wave
(PW) final states while Figs. 2(c) and 2(d) include final state
interactions (FSI). Figures 2(e) and 2(f) contain two-body
currents with plane wave final state and FSI, respectively.

Any attempt to evaluate the effects of d-state contributions
to the deuteron wave function require that the cross section can
be factored into an effective single-nucleon cross section and a

044001-3



SABINE JESCHONNEK AND J. W. VAN ORDEN PHYSICAL REVIEW C 95, 044001 (2017)

FIG. 3. Feynman diagram representing the half-off-shell vertex
function.

momentum distribution. This can only occur if Figs. 2(b)–2(f)
make negligible contributions to the current matrix element.

The plane wave contribution to the current matrix element
represented by Fig. 2(a) can then be written as

〈 p1s1; p2s2|Jμ
(1)|Pλd〉a = −ū( p1,s1)�μ(q)G0(P − p2)

×�T
λd

(p2,P )ūT ( p2,s2), (9)

where the nucleon propagator is

G0(p) = γ · p + mN

m2
N − p2

(10)

and the one-body nucleon electromagnetic current operator is
chosen to be of the Dirac-plus-Pauli form

�μ(q) = F1(Q2)γ μ + F2(Q2)

2mN

iσμνqν. (11)

The deuteron vertex function with particle 2 on shell, as
required by Fig. 2(a) is shown in Fig. 3 and is given in general
by

�λd
(p2,P ) =

[
g1
(
p2

2,p2 · P
)
γ · ξλd

(P ) − g2
(
p2

2,p2 · P
)p2 · ξλd

(P )

mN

−
(

g3
(
p2

2,p2 · P
)
γ · ξλd

(P ) − g4
(
p2

2,p2 · P
)p2 · ξλd

(P )

mN

)
γ · (P − p2) + m

mN

]
C, (12)

where ξλd
(P ) is the deuteron polarization four-vector, C is the charge conjugation matrix, and the invariant functions gi(p2

2,p2 · P )
are given by

g1
(
p2

2,p2 · P
) = (2EpR

− Md )(pR�3(pR) − mN�4(pR))
4
√

πpR

, (13)

g2
(
p2

2,p2 · P
) = mN (2EpR

− Md )(
√

2EpR
�1(pR) − mN�3(pR) − pR�4(pR))

4
√

πp2
R

, (14)

g3
(
p2

2,p2 · P
) = −EpR

mN�4(pR)

4
√

πpR

, (15)

g4
(
p2

2,p2 · P
) = m2

N

4
√

πMdp
2
R

(−2E2
pR

�3(pR) + EpR

(
Md�3(pR) + 2

√
2mN�1(pR)

)

+
√

2Md (pR�2(pR) − mN�1(pR))
)
, (16)

where

pR =
√

(P · p2)2

P 2
− p2

2 (17)

is the relative momentum of the nucleons in the rest frame of
the deuteron and

�1(pR) = u(pR) +
√

2w(pR), (18)

�2(pR) = −
√

3vs(pR), (19)

�3(pR) =
√

2u(pR) − w(pR), (20)

�4(pR) = −
√

3vt (pR). (21)

Here, u(p) is the s-wave radial wave function, w(p) is the
d-wave radial wave function, and vs(p) and vt (p) are singlet
and triplet p-wave radial wave functions.

It is convenient to define a half-off-shell wave function as

ψλd,s2 (p2,P ) = G0(P − p2)�T
λd

(p2,P )ūT ( p2,s2). (22)

We choose to normalize this wave function such that in the
deuteron in any frame∑

s2

∫
d3p2

(2π )3

m

Ep2

ψ̄λd ,s2 (p2,P )γ μψλd,s2 (p2,P ) = P μ

Md

, (23)

which is correct only in the absence of energy-dependent
kernels. This results in the normalization of the radial wave
functions in the deuteron rest frame being

1 =
∫ ∞

0

dpp2

(2π )3

[
u2(p) + w2(p) + v2

t (p) + v2
s (p)

]
= 1

3

∫ ∞

0

dpp2

(2π )3

[
�2

1 (p) + �2
2 (p) + �2

3 (p) + �2
4 (p)

]
(24)
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In the deuteron rest frame we choose the four-momenta
such that

p1 = pp = (
Ep1 , p1

)
, (25)

p2 = (Ep, − p), (26)

P = (Md,0), (27)

q = (ν,q). (28)

The four-momentum of the struck nucleon is given by

l = P − p2 = (Md − Ep, p) = (Ep, p) + (Md − 2Ep,0)

= p + �, (29)

where

p = (Ep, p) (30)

is on shell and

pR = | p|. (31)

The of-fshell contribution to the momentum of the struck
nucleon is

� = (Md − 2Ep,0) = (δ,0). (32)

The PWIA response tensor is then

Wμν
aa =

∑
s1,s2,λd ,λd′

ψλd′ ,s2
(p2,P )�μ(−q)u( p1,s1)ū( p1,s1)

×�ν(q)ψλd,s2 (p2,P )ρλd,λd′

= Tr[�μ(−q)�+( p1)�ν(q)N (p2,P )], (33)

where the momentum distribution operator is given by

N (p2,P ) =
∑

s2,λd ,λd′

ψλd,s2 (p2,P )ρλd,λd′ ψλd′ ,s2
(p2,P ). (34)

The deuteron density matrix can be written as

ρD = 1

3

[
2∑

J=0

TJ0τ J0 +
2∑

J=1

J∑
M=1

(�(TJM )τ�
JM

+ 	(TJM )τ	
JM

)]
. (35)

where T00 = 1 and the matrices τ JM are defined as

τ 00 =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠, τ 10 =
√

3

2

⎛⎝1 0 0
0 0 0
0 0 −1

⎞⎠,

τ 20 = 1√
2

⎛⎝1 0 0
0 −2 0
0 0 1

⎞⎠,

τ�
11 =

√
3

2

⎛⎝ 0 −1 0
−1 0 −1
0 −1 0

⎞⎠, τ	
11 =

√
3

2

⎛⎝ 0 i 0
−i 0 i
0 −i 0

⎞⎠,

τ�
21 =

√
3

2

⎛⎝ 0 −1 0
−1 0 1
0 1 0

⎞⎠, τ	
21 =

√
3

2

⎛⎝ 0 i 0
−i 0 −i
0 i 0

⎞⎠,

τ�
22 =

√
3

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠, τ�
22 =

√
3

⎛⎝0 0 −i
0 0 0
i 0 0

⎞⎠. (36)

Note that these matrices are all hermitian. The polarization
coefficients can be extracted from the density matrix using

TJ0 = Tr
[
τ�

JMρD
]
, (37)

�(TJM ) = 1
2 Tr

[
τ�

JMρD
]
, (38)

	(TJM ) = 1
2 Tr

[
τ	

JMρD
]
. (39)

Using Eqs. (35), (36), and (39), the momentum distribution
operator can be written as

N (p2,P ) =
2∑

J=0

NJ0(p2,P )TJ0

+
2∑

J=1

J∑
M=1

[�(NJM (p2,P ))�(TJM )

+	(NJM (p2,P ))	(TJM )]. (40)

This is an operator in the four-dimensional Dirac spinor space
and can be expanded in terms of γ matrices such that, for
J = 0 or J = 2,

NJM (p2,P ) = 1

8π

[Ntv(p2,P )nJM
tv ( p) + Nsv(P,p2)nJM

sv ( p)

+Ns(p2,P )nJM
s ( p)

]
, (41)

where

Ntv(p2,P ) = 1

2

P · p2

M2
dmN

γ · P, (42)

Nsv(p2,P ) = 1

2

(
P · p2

M2
dmN

γ · P − γ · p2

mn

)
, (43)

Ns(p2,P ) = 1

2
, (44)

and, for J = 1,

N1M (p2,P ,s) = 1

8π

[Ntav(p2,P ,s)n1M
tav ( p)

+Nsav(p2,P ,s)n1M
sav( p)

+Nat (P,p2,s)n1M
at ( p)

]
, (45)

where

Ntav(p2,P ,s) = 1

2

P · s

M2
d

γ · Pγ5, (46)

Nsav(p2,P ,s) = 1

2

(
γ · s − P · s

M2
d

γ · P

)
γ5, (47)

Nat (p2,P ,s) = − i

2

mN

P · p2
σαβPαsβγ5, (48)

and

s =
( | p|

mN

,
Ep

mN

p̂

)
(49)

is the spin-four-vector for rest-frame spin aligned along p̂.
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The nine momentum distributions are given by

n00
tv (p) = 1

3

(
�2

1 (p) + �2
2 (p) + �2

3 (p) + �2
4 (p)

)
, (50)

n00
sv(p) = 1

3

((
�2

1 (p) − �2
2 (p) + �2

3 (p) − �2
4 (p)

)
+ 2

mN

p
(�1(p)�2(p) − �3(p)�4(p))

)
, (51)

n00
s (p) = 1

3

((
�2

1 (p) − �2
2 (p) + �2

3 (p) − �2
4 (p)

)
+ p

mN

(2�3(p)�4(p) − 2�1(p)�2(p))
)

,

n1M
tav ( p) = − ηM

3

√
2π

((
�2

3 (p) − �2
4 (p)

)
− 2

mN

p
�3(p)�4(p)

)
Y1M (�p), (52)

n1M
sav( p) = − ηM

3

√
2π

(
�2

3 (p) + �2
4 (p)

)
Y1M (�p), (53)

n1M
at ( p) = − ηM

3

√
2π

((
�2

3 (p) − �2
4 (p)

)
+ 2

p

mN

�3(p)�4(p)

)
Y1M (�p),

n2M
tv ( p) = − ηM

3

√
2π

5

(
2�2

1 (p) + 2�2
2 (p) − �2

3 (p)

− �2
4 (p)

)
Y2M (�p), (54)

n2M
sv ( p) = − ηM

3

√
2π

5

((
2�2

1 (p) − 2�2
2 (p) − �2

3 (p)

+ �2
4 (p)

) + 2
mN

p
(2�1(p)�2(p)

+ �3(p)�4(p))
)

Y2M (�p), (55)

n2M
s ( p) = − ηM

3

√
2π

5

((
2�2

1 (p) − 2�2
2 (p) − �2

3 (p)

+ �2
4 (p)

) − 2
p

mN

(2�1(p)�2(p)

+ �3(p)�4(p))
)

Y2M (�p), (56)

where

ηM =
{

1 for M = 0
2 for M > 0 . (57)

If the p waves are neglected then �2 → 0 and �4 → 0.
The momentum distributions then simplify to

n00
+ = n00

tv (p) = n00
sv(p) = n00

s (p) = 1

3

(
�2

1 (p) + �2
3 (p)

)
,

(58)

n1M
+ ( p) = n1M

tav ( p) = n1M
sav( p) = n1M

at ( p)

= −ηM

3

√
2π�2

3 (p)Y1M (�p), (59)

n2M
+ ( p) = n2M

tv ( p) = n2M
sv ( p) = n2M

s ( p)

= −ηM

3

√
2π

5

(
2�2

1 (p) − �2
3 (p)

)
Y2M (�p). (60)

These can be rewritten in terms of u and w using

1
3

(
�2

1 (p) + �2
3 (p)

) = u2(p) + w2(p), (61)

1
3�2

3 (p) = 1
3 (2u(p)2 − 2

√
2u(p)w(p) + w(p)2), (62)

1
3

(
2�2

1 (p) − �2
3 (p)

) = w(p)(2
√

2u(p) + w(p)). (63)

These are in agreement with the usual nonrelativistic polarized
momentum distributions up to a factor determined by our
choice for the normalization of the wave functions [50,51].

Since all of the momentum distributions are now the same
for each J and M , these can now be factored out and leave the
combinations of operators

Ntv(p2,P ) + Nsv(p2,P ) + Ns(p2,P ) = �+( p) (64)

for J = 0,2 and

Ntav(p2,P ) + Nsav(p2,P ) + Nat (p2,P )

= 1

2

[
γ · s − i

2

mN

P · p2
σαβPαsβ

]
γ5 (65)

for J = 1:

N (p2,P ) = 1

8π

{
�+( p)

[
n00

+ (p) + n20
+ ( p)T20

+
2∑

M=1

[�(n2M
+ ( p))�(T2M )+	(n2M

+ ( p)))	(T2M )]

]

+ 1

2

[
γ · s − i

2

mN

P · p2
σαβPαsβ

]
γ5

× [n10
+ ( p)T20 + �(n11

+ ( p))�(T11)

+ 	(n11
+ ( p))	(T11))]

}
. (66)

The factored cross section can then be written as

dσ 5

dε′d�ed�p

= mp mn p1

8π3 Md

σMott f
−1
rec

{[
vLr

(I )
L + vT r

(I )
T

+ vT T r
(I )
T T cos 2φ + vLT r

(I )
LT cos φ

]
×

[
n00

+ ( pm) + n20
+ ( pm)T20

+
2∑

M=1

[�(n2M
+ ( pm))�(T2M )

+ 	(n2M
+ ( pm))	(T2M )]

]
+ h

[
vLT ′r

(II )
LT ′ cos φ + vT ′r

(II )
T ′

]
× [

n10
+ ( pm)T10 + �(n11

+ ( pm))�(T11)

+ 	(n11
+ ( pm))	(T11)

]}
, (67)
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where the effective reduced single-nucleon response functions
are listed in Appendix C and are related to the conventional
deForest CC2 prescription [5] up to normalization factors.
Note that contributions from vector polarization of the
deuteron contribute to the factored cross section only when

the electron beam is also polarized. The single-nucleon
contributions for unpolarized electrons are the same for both
unpolarized and tensor polarized deuterons.

Assuming that T̃JM �= 0 only for J = 2 and M = 0 and
using Eq. (B8) the tensor asymmetry for the factored cross
section can be written as

(AT
d )factored = n20

+ ( pm)T20 + �(n21
+ ( pm))�(T21) + �(n22

+ ( pm))�(T22)

n00+ ( pm)T̃20

=
n20

+ ( pm) 1
4 (1 + 3 cos 2θkq) + �(n21

+ ( pm))
√

3
8 sin 2θkq + �(n22

+ ( pm))
√

3
32 (1 − cos 2θkq)

n00+ ( pm)

= −
√

2π

5

2�2
1 (pm) − �2

3 (pm)

�2
1 (pm) + �2

3 (pm)
�(θm,φ,θkq), (68)

where the factored effective single-proton cross section is canceled since it is the same for both the numerator and denominator.
The angular factor is defined as

�(θm,φ,θkq) =
[

1

4
(1 + 3 cos 2θkq)Y20(�p) +

√
3

2
sin 2θkq�(Y21(�p)) +

√
3

8
(1 − cos 2θkq)�(Y22(�p))

]

=
√

5

64π

[
1

4
(1 + 3 cos 2θkq)(1 + 3 cos 2θm) − 3 sin 2θkq sin 2θm cos φ + 3

4
(1 − cos θkq)(1 − cos θm) cos 2φ

]
.

(69)

If we define a reduced tensor asymmetry as

aT
d = AT

d

�(θm,φ,θkq)
. (70)

Then the factored reduced tensor asymmetry is

(
aT

d

)
factored = −

√
2π

5

w(pm)(2
√

2u(pm) + w(pm))
u2(pm) + w2(pm)

(71)

independent of all kinematical variables except the missing
momentum pm. If Eq. (71) correctly represents the reduced
asymmetry aT

d then this expression can be solved to obtain the

ratio of s to d state wave functions. This solution requires that

−2

√
2π

5
� aT

d �
√

2π

5
. (72)

If p− is defined such that

aT
d (p−) = −2

√
2π

5
(73)

and p+ is defined such that

aT
d (p+) =

√
2π

5
, (74)

then

u(pm)

w(pm)
=

⎧⎪⎪⎨⎪⎪⎩
−√

5
√

−5aT
d

2−√
10πaT

d +4π−2
√

5π

5aT
d

for 0 � pm < p− or pm > p+
√

5
√

−5aT
d

2−√
10πaT

d +4π−2
√

5π

5aT
d

for p− � pm � p+

. (75)

In Sec. III, we investigate numerically the behavior of the
reduced asymmetry when it is calculated using final state
interactions, and various versions of commonly use d-wave
functions and form factor parametrizations. We will observe
there that factorization breaks down, and that the use of
Eq. (71) is unrealistic.

III. RESULTS

Independent of the dynamical model for the description
of the �H 2(e,e′p) reaction, every calculation needs a wave
function, nucleon form factor parametrizations, and nucleon-
nucleon amplitudes as inputs. We list the model inputs used in
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TABLE I. Model inputs to the calculation.

Final state interactions Form factors Deuteron wave function

IIB [63]
WJC 1 [64]

Regge GKex05 [59,60] WJC 2 [64]
[53–55] AV18 [65]
SAID AMT [61] CD Bonn [66]
[56–58] MMD [62] NIMJ 1 [67]

NIMJ 2 [67]
NIMJ 3 [67]

our calculations in Table I. The reasons for these choices are
discussed in more detail in [52].

We start out by showing the influence of the different wave
functions on the factored, reduced asymmetry aT

d , as defined by
Eq. (71), in Fig. 4. Note that the factored, reduced asymmetry
does not depend on the nucleon form factors, so the only model
input necessary is the wave function. For missing momenta
larger than 0.3 GeV, the curves start to deviate from each
other, and they fan out considerably for pm ≈ 0.6 GeV and
larger. Most wave functions lead to similar asymmetries, with
the exception of the CD Bonn that has a slightly different
shape, peaking at high pm, and the Nijmegen 3 wave function
that leads to the lowest values for the factored, reduced aT

d at
the high pm. This indicates that constraining the interactions to
fit NN scattering up to just above the π -production threshold
and to give the correct deuteron binding energy is insufficient
to uniquely determine the wave function above pm � 0.3 GeV.
The corresponding s to d ratios are shown in Fig. 5.

When comparing the results shown in Fig. 4 to the numbers
for the d wave content of the various wave functions in Table II,
it is obvious that there is no direct relationship between
the d-wave content and the size of the reduced asymmetry
calculated with a particular wave function. Depending on the
missing momentum, e.g., the CD Bonn wave function result
is either below the others (for pm < 0.6 GeV), or above the

FIG. 4. The factored, reduced asymmetry aT
d calculated for the

eight different wave functions used in our calculations.

FIG. 5. The ratio u(p)/w(p) calculated for the eight different
wave functions used in our calculations.

others around pm ≈ 0.9 GeV. CD Bonn has the lowest d state
probability of all considered wave functions. Nijmegen 2 and
Nijmegen 3 have almost identical d wave contents—5.68%
versus 5.65%—but are rather different, with Nijmegen 2
leading to a much smaller asymmetry than Nijmegen 3 for
pm > 0.5 GeV.

A more realistic calculation includes the Born approxima-
tion graph, where the photon couples to the neutron, and final
state interactions. At this point, the parametrizations of the
nucleon form factors and of the nucleon-nucleon amplitudes
enter. As eight wave functions, three form factor parametriza-
tions, and two nucleon-nucleon amplitude parametrizations
lead to 8 × 3 = 24 possible combinations for PWBA and
to 8 × 3 × 2 = 48 possible combinations for the DWBA
(henceforth referred to as FSI) and therefore lead to very
busy plots, we only show the envelope of the PWBA and
FSI calculations in the figures.

We remark in passing that the differences between PWIA
and PWBA calculations for the same choice of model inputs
is tiny. The difference is apparent in the numbers, but does
not show up on a plot of the scale we use for the figures in
this paper. The use of different form factor parametrizations
in PWBA leads to a relatively larger, but absolutely still very
small difference that is not visible at the scale used.

The difference between the PWBA and the factored version
of the PWBA, which excludes p waves, is small but visible

TABLE II. Wave function probabilities.

s wave d wave Triplet p wave Singlet p wave

IIB 94.82% 5.11% 0.06% 0.01%
WJC 1 92.33% 7.34% 0.11% 0.21%
WJC 2 93.60% 6.38% 0.01% 0.01%
AV18 94.24% 5.76% 0.00% 0.00%
CD Bonn 95.15% 4.85% 0.00% 0.00%
NIJM 1 94.25% 5.75% 0.00% 0.00%
NIJM 2 94.32% 5.68% 0.00% 0.00%
NIJM 3 94.35% 5.65% 0.00% 0.00%
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FIG. 6. The envelopes of the reduced asymmetry aT
d calculated

in PWBA and with FSI, for x = 1.00, Q2 = 2.4 GeV2, ε = 8.3 GeV,
and φ = 165◦. The horizontal dashed lines indicate the limits required
by Eqs. (73) and (74).

at medium and high missing momentum when plotted for
relativistic wave functions. The non-relativistic wave functions
still show a difference between factored and unfactored
PWBA, but this is tiny as it is practically the difference between
PWIA and PWBA.

In Fig. 6 we show the envelopes for the PWBA and
FSI calculations for x = 1.00. The differences in the PWBA
calculations mainly stem from the different wave functions
used, and the PWBA envelope shown mainly corresponds
to the PWIA curves of Fig. 4. Once FSIs are included, the
asymmetry changes shape, and the dip moves to lower values
of the missing momentum, as observed already in [34]. For
FSI, the different model inputs now lead to a significant spread
for missing momenta above 0.35 GeV, as well as in the dip of
the asymmetry at lower pm. For high missing momentum, the
uncertainties introduced by the model inputs in FSI are more
than twice as large as for PWBA.

We now consider kinematics at x = 1.35, away from the
quasielastic peak. Our results are shown in Fig. 7. As for
x = 1.00, the FSI calculation envelope shows a much larger
spread due to the model inputs than the PWBA envelope, in
particular for missing momenta larger than 0.7 GeV. While in
the factored version of the calculation, i.e., in PWIA without
p waves, the results are completely independent of x, it is
obvious from comparing Figs. 6 and 7 that FSIs introduce a
quite drastic dependence on kinematic variables beyond the
missing momentum.

IV. SUMMARY AND OUTLOOK

In this paper, first we considered the tensor asymmetry AT
d

within a relativistic framework. We investigated the conditions
under which this asymmetry can be factored. We defined a
reduced asymmetry aT

d that factors in PWIA when the p waves
are neglected. The factored version of the reduced asymmetry

FIG. 7. The envelopes of the reduced asymmetry aT
d calculated in

PWBA and with FSI, for x = 1.35, Q2 = 4.25 GeV2, ε = 11 GeV,
and φ = 165◦. The horizontal dashed lines indicate the limits required
by Eqs. (73) and (74).

depends on the missing momentum only. It agrees with the
well-known nonrelativistic version.

Then, we presented numerical results for the reduced tensor
asymmetry aT

d and compared these results to the factored
version (ad

T )factored. While we have shown analytically and
numerically that factorization holds in PWIA in the absence
of p waves, the numerical results imply that factorization is
broken thoroughly once FSIs are included. The inclusion of
FSIs leads to changes in shape of the reduced asymmetry, in
particular at high missing momentum. The FSIs also introduce
a significant dependence on x (and other kinematics variables)
besides the missing momentum, thus making the breaking of
factorization obvious. This is consistent with [34,35]. The only
region where the factorization holds approximately is at very
low missing momenta of 200 MeV or less.

We also have demonstrated numerically that there is no
systematic relationship of the form of (aT

d )factored to the d-wave
probability of the various wave functions.

We would like to point out that the tensor asymmetry is
a special case: the vector asymmetry AV

d as defined in [34]
does not factorize at all, not even in PWIA without p-waves.
Therefore, we feel that the tensor asymmetry AT

d is the best
observable for the exploration of the d wave, unless one wishes
to consider experiments with polarized target and polarized
beam. These double-polarization are much harder to perform,
though.

Our results imply that extracting any information on the
d-wave content of the wave function—which is, after all, not
an observable—from the tensor asymmetry AT

d will require
an extremely careful treatment of the reaction dynamics, and
will carry a theoretical uncertainty due to the many, equally
valid model inputs necessary. It is important to keep in mind
that, completely apart from which contributions to the reaction
mechanism are evaluated in a theory calculation, and in which
way, the model inputs will always generate a considerable
uncertainty. Theoretical results should therefore always be
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given as an envelope to fairly represent the uncertainties, not
as single curves. The kinematics at large x and medium values
of pm might be best suited to any attempt to learn about the
d-wave content.
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APPENDIX A: KINEMATIC FACTORS AND RESPONSE
FUNCTIONS

The leptonic coefficients vK are

vL = Q4

q4
, (A1)

vT = Q2

2q2
+ tan2 θe

2
, (A2)

vT T = − Q2

2q2
, (A3)

vLT = − Q2

√
2q2

√
Q2

q2
+ tan2 θe

2
, (A4)

vLT ′ = − Q2

√
2q2

tan
θe

2
, (A5)

vT ′ = tan
θe

2

√
Q2

q2
+ tan2 θe

2
. (A6)

The response functions in the xyz frame are given by

RL(D) = R
(I )
L (D) = W 00(D),

RT (D) = R
(I )
T = W 11(D) + W 22(D),

RT T (D) = R
(I )
T T (D) cos 2φ + R

(II )
T T (D) sin 2φ,

(A7)
RLT (D) = R

(I )
LT (D) cos φ + R

(II )
LT (D) sin φ,

RLT ′(D) = R
(I )
LT ′(D) sin φ + R

(II )
LT ′ (D) cos φ,

RT ′(D) = R
(II )
T ′ = −2�(W 12(D)),

where
R

(I )
T T (D) cos 2φ = W 22(D) − W 11(D),

R
(II )
T T (D) sin 2φ = 2�(W 12(D)),

R
(I )
LT (D) sin φ = 2

√
2�(W 01(D)),

(A8)
R

(II )
LT (D) cos φ = − 2

√
2�(W 02(D)),

R
(I )
LT ′(D) sin φ = − 2

√
2	(W 01(D)),

R
(II )
LT ′ (D) cos φ = − 2

√
2	(W 02(D)).

APPENDIX B: ROTATIONS

The form of the differential cross section given by Eq. (67)
assumes that the deuteron is polarized relative the direction
of the momentum transfer q. As a practical matter, polarized
deuteron targets are generally polarized along the direction of
the incident beam parallel to k. Re-expressing the cross section
for polarization to lie along the beam simply requires that the
density matrix be rotated from q to k. This involves a rotation
of the density matrix through an angle θkq , where

θkq = cos−1 |k| − |k′| cos θl

|q| . (B1)

The components of the density matrix are given by the
matrix elements of the density matrix operator ρ̂d as

ρD
λdλ′

d
= 〈λd |ρ̂D|λ′

d〉. (B2)

The density matrix operator ˆ̃ρ Aligned along k is obtained by
a right handed rotation about the y axis through the angle θkq

which can be written as

ˆ̃ρD = R̂(ŷ,θkq)ρDR̂−1(ŷ,θkq). (B3)

The inverse of this expression is

ρ̂D = R̂−1(ŷ,θkq) ˆ̃ρDR̂(ŷ,θkq) = R̂(ŷ, − θkq) ˆ̃ρDR̂(ŷ,θkq).

(B4)

So the matrix element of density operator is related to the
rotated operator by

ρD
λdλ′

d
=

∑
λ′′

dλ′′′
d

d1
λdλ′′

d
(−θkq)ρ̃D

λ′′
dλ′′′

d
d1

λ′′′
d λ′

d
(θkq). (B5)

The density matrix can be related the density matrix
polarized relative to k can be obtained using Eq. (B5), where

d1(θ ) =

⎛⎜⎝
1
2 (1 + cos θ ) − 1√

2
sin θ 1

2 (1 − cos θ )
1√
2

sin θ cos θ − 1√
2

sin θ
1
2 (1 − cos θ ) 1√

2
sin θ 1

2 (1 + cos θ )

⎞⎟⎠ (B6)

and representing the rotated density matrix by

ρ̃D=1

3

[
2∑

J=0

T̃J0τ J0+
2∑

J=1

J∑
M=1

(�(T̃JM )τ�
JM+	(T̃JM )τ	

JM

)]
.

(B7)

The polarization coefficients can then be extracted using
the properties of the matrices (36) to give the polarization
coefficients in terms of the rotated polarization coefficients
yielding

T10 = cos θkq T̃10 −
√

2 sin θkq�T̃11,

�(T11) = 1√
2

sin θkq T̃10 + cos θkq�T̃11,

	(T11) = 	T̃11,

T20 = 1

4
(1 + 3 cos 2θkq)T̃20 −

√
3

2
sin 2θkq�T̃21

+
√

3

8
(1 − cos 2θkq)�T̃22,
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�(T21) =
√

3

8
sin 2θkq T̃20 + cos 2θkq�T̃21 − 1

2
sin 2θkq�T̃22,

	(T21) = cos θkq	T̃21 − sin θkq	T̃22,

�(T22) =
√

3

32
(1 − cos 2θkq)T̃20 + 1

2
sin 2θkq�T̃21

+ 1

4
(3 + cos 2θkq)�T̃22,

	(T22) = sin θkq	T̃21 + cos θkq	T̃22. (B8)

APPENDIX C: SINGLE NUCLEON OFF-SHELL RESPONSE FUNCTION

The effective single-nucleon off-shell response functions are given by

r
(I )
L = 1

64πm4
N

{ − 4F 2
1 (Q2)m2

NQ2 − 8F1(Q2)F2(Q2)m2
N (ν2 + Q2) + 4E2

p

(
4F 2

1 (Q2)m2
N

+F 2
2 (Q2)Q2

) + 4Epν
(
4F 2

1 (Q2)m2
N + F 2

2 (Q2)Q2
) + F 2

2 (Q2)
(
ν2Q2 − 4m2

N (ν2 + Q2)
)

− 2δ(2Ep + ν)
( − 4F 2

1 (Q2)m2
N + F 2

2 (Q2)(2Epν + ν2 − Q2)
)

+δ2
[ − 4E2

pF 2
2 (Q2) + 4F 2

1 (Q2)m2
N − 12EpF 2

2 (Q2)ν + F 2
2 (Q2)(−5ν2 + Q2)

] − 4δ3F 2
2 (Q2)(Ep + ν) − δ4F 2

2 (Q2)
}
,

(C1)

r
(I )
T = 1

64πm4
N

{
4
[
4F1(Q2)F2(Q2)m2

NQ2 + F 2
2 (Q2)

(
2m2

N + p2
⊥
)
Q2 + 2F 2

1 (Q2)m2
N (2p2

⊥ + Q2)
]

− 16δF1(Q2)(F1(Q2) + F2(Q2))m2
Nν + δ2

(
8E2

pF 2
2 (Q2) − 8F 2

1 (Q2)m2
N + 8EpF 2

2 (Q2)ν

− 2F 2
2 (Q2)Q2

) + 4δ3F 2
2 (Q2)(2Ep + ν) + 2δ4F 2

2 (Q2)
}
, (C2)

r
(I )
T T = −4p2

⊥
(
4F 2

1 (Q2)m2
N + F 2

2 (Q2)Q2
)

64πm4
N

, (C3)

r
(I )
LT = 1

64πm4
N

4
√

2
{
(2Ep + ν)p⊥

(
4F 2

1 (Q2)m2
N + F 2

2 (Q2)Q2
)

+ δp⊥
[
4F 2

1 (Q2)m2
N + F 2

2 (Q2)(−2Epν − ν2 + Q2)
] − δ2F 2

2 (Q2)νp⊥
}
, (C4)

r
(II )
LT ′ =

√
2p⊥q

16πm4
Np

[
E2

pF 2
2 (Q2)ν − 4EpF1(Q2)m2

N (F1(Q2) + F2(Q2)

+F2(Q2)ν
(
2F1(Q2)m2

N + F2(Q2)
)(

m2
N − p2

) + δEpF 2
2 (Q2)(2Ep + ν) + δ2EpF 2

2 (Q2)
]
, (C5)

r
(II )
T ′ = 1

16πm4
Np

[(
E2

pp‖
(
4F 2

1 (Q2)m2
N + F 2

2 (Q2)Q2
) + 4EpF1(Q2)m2

Nνp‖(F1(Q2) + F2(Q2))

− 4F 2
1 (Q2)m2

N

(
m2

Np‖ + p2(p‖ + q)
) + 2F1(Q2)F2(Q2)m2

N (p‖Q2 − 2p2q)

+F 2
2 (Q2)p‖Q2

(
m2

N − p2
)) + δEp

(
F 2

2 (Q2)(−2Epνp‖ + 2p2q + p‖Q2
)

+ 4F 2
1 (Q2)m2

Np‖ + 4F1(Q2)F2(Q2)m2
Np‖

) + δ2F2(Q2)
(−EpF2(Q2)νp‖ + 2F1(Q2)m2

Np‖ + F2(Q2)p2q
)]

, (C6)

where p = pm, p⊥ = p sin θm, and p‖ = p cos θm.
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