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Scrutinizing the evidence for N(1685)
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The helicity-dependent observable E for the reaction γ d → ηn(p) with a spectator proton was recently
measured by the A2 Collaboration at MAMI in Mainz. The data were interpreted as further evidence for a
narrow resonance with spin and parity J P = 1/2+ (P11 wave). However, a full partial-wave analysis without any
narrow resonance leads to an excellent description of the data. Imposing a narrow resonance with the properties
suggested by the A2 Collaboration leads to a significant deterioration of the fit quality: there is no need for a
narrow resonance.
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A narrow structure was observed at a mass of about
1685 MeV in the γ d → ηn(p) excitation function [1–7]. The
structure was interpreted [8,9] as the nonstrange member of
the antidecuplet of pentaquarks with spin-parity JP = 1/2+
predicted by Diakonov, Petrov, and Polyakov [10]. In 2012,
the observations reported in Refs. [1,3,6] were introduced into
the Review of Particle Properties (RPP) under the heading
of a new one-star nucleon resonance, N (1685) [11], but
was removed from the listings in the most recent issue of
the RPP [12]. The interpretation of the structure as narrow
resonance was supported by further studies [13–16]; the
results reported in Ref. [17] were ambiguous. In a study of
the helicity asymmetry of the reaction γp → ηp, no evidence
for N (1685) was found [18].

However, also coupled-channel and interference effects
of known nucleon resonances have been discussed in the
literature to explain the narrow structure. The Gießen group
interpreted the narrow dip in the γ d → ηn(p) excitation func-
tion as the N (1650)1/2− and N (1710)1/2+ coupled-channel
effect [19]. Shyam and Scholten [20] assign the dip to inter-
ference effects between the N (1650)1/2−, N (1710)1/2+, and
N (1720)3/2+ resonances; alternatively, the dip could be pro-
duced due to effects from strangeness threshold openings [21].

The narrow dip can, however, also be explained naturally
by interference effects in the JP = 1/2− wave [17,22–24]. In
Ref. [24], the precise data reported by the A2 Collaboration
at the Mainz Microtron accelerator (MAMI) [4,5] were used
to study the structure. It was found that it can be explained
quantitatively by interference of the two nucleon resonances
N (1535)1/2− and N (1650)1/2− within the JP = 1/2− partial
wave. Fits which included a narrow JP = 1/2+ resonance
returned a zero production strength. If the properties of the
narrow JP = 1/2+ resonance as reported in Refs. [4,5] were
imposed, the fit deteriorated significantly.

Recently, the A2 Collaboration at MAMI reported a
measurement of the helicity-dependent double polariza-
tion variable E of the γ d → ηn(p) reaction [25], where
E = (σ1/2 − σ3/2)/(σ1/2 + σ3/2), with σh being the cross sec-
tion for γ d → ηn(p) with neutron and photon spins aligned
(helicity h = 3/2) or opposite (h = 1/2). Exploiting the data
on the differential cross sections from Refs. [4,5], the two

helicity components were determined. The data show clearly
that the structure originates from the h = 1/2 contribution.
The authors fitted the angular distributions (five data points
per energy interval) with third-order Legendre polynomial
functions and found a narrow dip at 1650 MeV in the first-order
Legendre coefficient. They concluded the following: The
extracted Legendre coefficients of the angular distributions
for σ1/2 are in good agreement with recent reaction model
predictions assuming a narrow resonance in the P11 wave as
the origin of this structure. In this paper we show that their
conclusions are incompatible with the data.

As a first step, we repeated the fit with Legendre polyno-
mials. Figure 1 shows the first-order Legendre coefficients
A

σ1/2

1 , A
σ3/2

1 , and A
σtot
1 as functions of the invariant mass

W for fits to the angular distributions of σ1/2, σ3/2, and
σtot = (σ1/2 + σ3/2)/2. The coefficients A

σ1/2

0 , A
σ3/2

0 , and A
σtot
0

are similar to the corresponding total cross sections; the
coefficients A2 and A3 for the cross sections σ1/2 and σ3/2

are shown in Ref. [25]. In the coefficient A
σ1/2

1 there is indeed
a narrow dip at about 1650 MeV. Since the JP = 1/2− partial
wave dominates the reaction, significant contributions to A

σ1/2

1
have to come from the interference between the JP = 1/2−
partial wave and P -wave contributions. Indeed, a comparison
of A

σ1/2

1 with results from BnGa fits to the data of Refs. [4,5]

-1

-0.5

0

0.5

1600 1700 1800
W (MeV)

A1       σ1/2

1600 1700 1800
W (MeV)

A1      σ3/2

1600 1700 1800
W (MeV)

A1      σtot

FIG. 1. Legendre coefficients A1 of the angular distributions of
σ1/2, σ3/2 [25], and σtot for the reaction γ d → ηn(p), where σtot is
calculated as (σ1/2 + σ3/2)/2 as functions of the invariant mass W .
The experimental results (red circles) are compared to a BnGa fit to
the data of Refs. [4,5] without a narrow resonance (solid curve) or a
fit imposing a narrow resonance (dotted curve).
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FIG. 2. Excitation functions σ1/2 and σ3/2 for five bins in cos θ∗
η

for the reactions γ d → ηp(n) (top 2 rows) and γ d → ηn(p) (bottom
2 rows). Statistical and systematic errors are added quadratically.
The solid curves represent the new BnGa fit (which include the data
from Ref. [25]) without an additional narrow resonance; the dashed
lines represent a fit in which a narrow resonance is imposed with the
properties given in Ref. [4]. The two numbers give the χ 2 contribution
of the bin, the upper number without and the lower number including
the narrow resonance.

shows that a model assuming no N (1685) (Fig. 1, solid
curve) does not reproduce the narrow dip while a model
which includes a narrow N (1685) (Fig. 1, dotted curve) gives
qualitative agreement between data and prediction. These
observations are the basis for the conjecture in Ref. [25] that
a narrow resonance has been observed. There are, however, a
few arguments that disagree with this conjecture.

The dip in A
σ1/2

1 is—with a few standard deviations—
statistically significant. Relative to the solid line [representing
the fit with no N (1685)], the dip in A

σ1/2

1 has a mean deviation of
−0.24 ± 0.04 and contributes χ2 = 15.9 for two data points.
There are, however, arguments that imply that the dip cannot
be a real effect. The dip could be caused by a small systematic
deviation of the observable E from its true value. In this case,
the dip in A

σ1/2

1 would be accompanied by a peak in A
σ3/2

1 .
Indeed, there is an unexpected peak in A

σ3/2

1 as well, at the
same mass and of similar size and shape as the dip in A

σ1/2

1 . The
peak deviates from the solid line by +0.25 ± 0.04, contributes
χ2 = 12.7, and is thus of similar importance as the dip. This
peak cannot originate from the same narrow resonance as the
dip: the interference of any partial wave with the dominant
JP = 1/2− wave produces effects in h = 1/2 only. If the dip
in A

σ1/2

1 had a physical significance, there would be no peak
in A

σ3/2

1 , and the dip should be seen in A
σtot
1 with a strength as

given by the dotted line in Fig. 1, but it is not. The coefficient
A

σtot
1 follows precisely the fit with no N (1685), the data are

compatible with the fit with χ2 = 2.1 for the two data points.
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FIG. 3. The total cross sections σ1/2 and σ3/2 for the reactions
γ d → ηp(n) (top panels) and γ d → ηn(p) (bottom panels) and new
BnGa fits. The solid lines represent a fit without a narrow resonance,
and the dashed lines in the bottom figure represent a fit in which a
narrow resonance is imposed with the properties given in Ref. [4].

There is hence the strong suspicion that the dip is false and
does not represent real physics.

To scrutinize the possibility further that there could be a
narrow resonance with JP = 1/2+ we performed new fits.
In these fits most particle properties were frozen to the
values derived from fits to pion and photo-induced reactions
off protons. For γ n reactions we used the data listed in
Ref. [24] and, in addition, the new MAMI data [25]. The
latter data are shown in Figs. 2 and 3; the solid line is our fit
without introduction of a narrow resonance. For the differential
cross sections from Refs. [4,5,25], the fit returns χ2

MAMI =
1205 for 1150 data points. Obviously, there is no need to
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FIG. 4. Increase of χ 2 when a narrow resonance with mass M =
1670 MeV, width � = 30 MeV, and J P = 1/2+ is imposed as a
function of the signal strength ã = √

Br(ηn)A1/2
n . The number of

data points is 1150.

035211-2



SCRUTINIZING THE EVIDENCE FOR N (1685) PHYSICAL REVIEW C 95, 035211 (2017)

TABLE I. Helicity amplitudes determined from a fit without a narrow N (1685) resonance. The T -matrix couplings are the quantities that
are listed in the RPP; K-matrix couplings are given in addition. The new results are compared to those obtained in Ref. [24], which are listed
in small numbers. The comparison shows the impact of the new data from Refs. [25] and [26].

N (1535)1/2− N (1650)1/2− N (1535)1/2− N (1650)1/2−

T matrix 0.093 ± 0.009 0.032 ± 0.006 GeV−1/2 T matrix −0.088 ± 0.004 0.016 ± 0.004 GeV−1/2

[24] 0.114 ± 0.008 0.032 ± 0.007 GeV−1/2 [24] −0.095 ± 0.006 0.019 ± 0.006 GeV−1/2

Phase 8◦ ± 4◦ 7◦ ± 7◦ Phase 5◦ ± 4◦ −28◦ ± 10◦
p n

[24] 10◦ ± 5◦ −2◦ ± 11◦ [24] 8◦ ± 5◦ 0◦ ± 15◦

K matrix 0.112 ± 0.008 0.075 ± 0.006 K matrix −0.160 ± 0.030 −0.052 ± 0.005
[24] 0.096 ± 0.007 0.075 ± 0.007 [24] −0.120 ± 0.006 −0.052 ± 0.006

introduce N (1685). When N (1685) was enforced in the fit with
properties as given in Ref. [4], i.e., with M = 1670 MeV, width
� = 30 MeV, and

√
Br(ηn)A1/2

n = ã = 12.3 GeV− 1
2 10−3, the

fit returned χ2
MAMI = 1834. The χ2 values for the new data

from Ref. [25] are shown in Fig. 2 for each angular bin of σ1/2

for γ d → ηn(p); the sum is χ2 = 187.9 for the fit without
narrow resonance and 265.8 when it is imposed.

If the production strength was fitted freely, it reduced to
1.2 [GeV− 1

2 10−3] and the total χ2 improved by 12 units to
1193. This production strength corresponds to a contribution
which is about 100 times smaller than the contribution claimed
in Refs. [4,5]. Figure 4 shows how the χ2 increases with the
strength of an imposed narrow N (1670).

The new data on E for the reaction γ d → ηp(n) in
Ref. [25]—with a spectator neutron—differ significantly from
the first BnGa fits which were performed before the data
on double-polarization observables on γp → ηp on protons
became available [18,26]. To explore this discrepancy, we
included the new MAMI data for η production off protons
(bound in deuterons) [25] in the fits. The data are very similar
to data for η production off free protons showing that effects
due to final-state interactions with the spectator nucleon
are small. Figures 2 and 3 show that the new data can be
included in the fit without any problems, after a slight tuning
of the parameters. In Table I, we show the helicity amplitudes
obtained in the new fit in comparison to the fit presented in
Ref. [24]. The changes in the photocouplings of N (1535)1/2−
and N (1650)1/2− for protons are likely due to the inclusion
of the new data on γp → ηp [26].

In Ref. [27] it is argued that the T -matrix photocou-
plings of N (1650)1/2− for protons and neutrons imply that
N (1650)1/2− must have a very large φN coupling. The
photocouplings of N (1650)1/2− are strongly influenced by
the 	K and 
K thresholds; it may hence be more appropriate
to use the “undressed” K-matrix photocoupling. Using the
formulas given in Ref. [27], we find from the K-matrix
couplings that the branching ratio for N (1650)1/2− → φN
vanishes when the Nω coupling has about half the strength of
the Nρ coupling.

Summarizing, we have studied the new data on the helicity
dependence of the reaction γ d → ηn(p) with a spectator
proton measured by the A2 Collaboration at MAMI in
Mainz [25]. We cannot confirm the conclusions of the authors
that the dip in the first-order Legendre coefficient in an
expansion of the angular distributions of σ1/2 is due to a narrow
JP = 1/2+ resonance. First, the dip is accompanied by a peak
in the first-order Legendre coefficient of σ3/2 of the same shape,
suggesting that the dip is due to a statistical fluctuation in the
measurement of E. Second, a partial wave analysis without
a narrow JP = 1/2+ resonance is excellent; the inclusion of
it with the reported properties leads to a significantly worse
description of the data.
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