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Background: Knowledge of nucleon structure is today ever more of a precision science, with heightened
theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers
between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger equations
[DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models).
Purpose: Seeking to bridge these complementary world views, we explore the potential of a Euclidean constituent
quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector
vertex, which we undertake as a test of the framework.
Method: To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using
the simplified quark + scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving
polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter equation
(BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data.
Results: From this formalism, we define and compute a new quantity—the Euclidean density function (EDF)—
an object that characterizes the nucleon’s various charge distributions as functions of the quark’s Euclidean
momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched
dressing effect on the proton’s axial-singlet charge to be small in magnitude and consistent with zero, while use
of recent determinations of unquenched BSEs results in a large suppression.
Conclusions: The quark + scalar diquark ECQM is a step toward a realistic quark model in Euclidean space,
and needs additional refinements. The substantial effect we obtain for the impact on the axial-singlet charge of
the unquenched dressed vertex compared to the quenched demands further investigation.
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I. INTRODUCTION

Hadronic physics is presently at an important crossroads.
On the one hand, with its advantageous representation of
Minkowski field theory, light-front formalism [1–6] has made
impressive gains in understanding the proton’s flavor and spin
structure [7–10]. At much the same time, techniques grounded
in Euclidean field theory, such as lattice QCD [11,12] and
the methodology of Bethe-Salpeter equations (BSEs) [13–20],
continue to unfold an ever more refined picture of the hadronic
spectrum, as well as its various excitations and transitions.
An effort to reconcile these two families of approaches is
therefore more of a necessity than ever before. The present
analysis represents an initial step to bridge this enduring gap
by formulating a Euclidean constituent quark model (ECQM).

To this end, we craft a simple model in Euclidean space
which binds the constituent quark into the nucleon through
the exchange of a scalar spectator diquark. While the quark-
diquark approach itself is hardly new (such models have an
established history in the analyses of both the deeply inelastic
scattering sector [21–24] and elastic scattering [10]), our
specific formulation of a Euclidean constituent quark model
has not to our knowledge been previously attempted.

Standard light-front theory [25,26] extracts bound state
properties (e.g., elastic form factors, inelastic structure func-
tions) from overlaps of 3-dimensional light-front wave func-
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tions (LFWFs), which are themselves obtained by integrating
a 4-dimensional Bethe-Salpeter amplitude over the “minus”
components of the internal momenta k− ≡ k0 − k3; these in
turn provide a means of obtaining form factors and generalized
parton distributions from constituent quark models [27–30].

Despite the success of methods rooted in constituent quark
models, an uncircuitous means of relating them to Euclidean
approaches remains lacking. That is, although techniques
have been pioneered recently, e.g., involving Euclidean time
projections [31] as well as for projecting the pion’s Bethe-
Salpeter amplitude onto the LF [32], a direct formulation of the
quark model in Euclidean space of the type we describe here
has not yet been put forth. Such an approach would bridge the
complementary worlds of light-front modeling and Euclidean
space methods in that it brings Euclidean field theory to a
description of the nucleon in terms of constituent degrees of
freedom. The latter is typically developed using Fock space
expansions of the nucleon’s wave function on the light front,
but through general covariance we can construct a model in
Euclidean space with the same ultimate ingredients; in the
end, this will permit us to incorporate into the quark-diquark
framework the products of Euclidean DSE analyses such as
the vertex dressing function considered in Sec. IV.

The aim of the present article is to do precisely this,
producing the aforementioned ECQM. However, the imple-
mentation in Euclidean space requires techniques inspired
by hyperspherical QED calculations [33–36], which we
trace in detail in Sec. III below. Following angular integra-
tion of the resulting 4-dimensional amplitudes in Euclidean
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hyperspherical space, the formalism we develop outputs distri-
butions for the quark-level densities of the proton as functions
of the intermediate quark’s Euclidean momentum. These latter
quantities we designate Euclidean density functions (EDFs),
and we carry out their evaluation in the sections below.

In the present paper, we test our formalism by performing
an analysis of the quark helicity’s share of the proton’s spin
by evaluating the flavor-singlet axial charge as spelled out in
later sections. The origin of the proton’s spin in the angular
momentum of its QCD constituents is a problem that has be-
deviled hadronic physics ever since the advent of the so-called
spin crisis in the late 1980s following the revelation [37,38]
by the European Muon Collaboration (EMC) concerning the
small size of the proton’s integrated spin-dependent structure
function,

∫ 1
0 g

p
1 (x) dx = 0.114 ± 0.012 ± 0.026. During the

intervening decades, sufficient progress has been made to
reduce the crisis to a mere spin problem, as it is now more
commonly known. Even so, the exact interplay of the various
relevant dynamics [39–41] remains sufficiently subtle as to
prevent an unambiguous reckoning of the multiple effects
giving rise to the proton’s spin.

Canonically, the spin of the proton is decomposed among
contributions from quark and gluon helicity and orbital angular
momentum as [42–44]

1

2
= 1

2

∑
q

�q + Lq + Jg, (1)

and the contribution from the total quark helicity
∑

q �q
is now understood to represent approximately one third of
the total nucleon spin and has been the focus of intense
experimental and theoretical effort [45–49]. Despite recent
progress [10], obtaining this result in the context of constituent
quark models, including those formulated on the light front,
remains an elusive goal.

For this reason, an assessment of the role played by the ex-
change of nonperturbative gluons in the setting of a constituent
quark model could help weigh whether this effect substantially
alters the spin decomposition of Eq. (1). To accomplish
this, we use the aforementioned hyperspherical ECQM to
incorporate information from BSE analyses on the quark’s
dressed axial-vector vertex [15,50–55], ultimately finding a
minimal effect with the quenched Bethe-Salpeter calculation
appropriate for the isovector vertex, but a potentially large
suppression once unquenching quark loop effects are included.

The remainder of the paper is organized as follows: Sec. II
treats the standard covariant approach, with a description
of the formalism needed to fit current data in the elastic
electromagnetic sector with the bare ECQM in Sec. II A, and
a prediction of the proton’s axial-singlet charge in Sec. II B;
Sec. III describes the hyperspherical formalism. Herein, the
basic properties of EDFs are introduced in Sec. III A, and
the simplest nontrivial calculation—the EDF for the proton’s
charge distribution—is given in Sec. III B. Having thus
completely determined the details of the bare hyperspherical
ECQM, we use it to predict the axial-singlet charge of the
proton in Sec. III C, as well as the distribution of this axial
charge as a function of the struck quark Euclidean momentum
k̃. In Sec. IV we fold the latest numerical estimates for the soft
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FIG. 1. (a) The triangle diagram responsible for the nucleon’s
electromagnetic current Jμ and first nontrivial contribution to
F1,2(̃q 2). (b) The main graph for the quark contributions to the
nucleon’s axial-singlet charge, a0. In both cases, solid internal
lines represent the propagation of the interacting quark, while the
dashed lines are for the scalar spectator diquark. The ovate blobs
symbolize our prescription for the momentum dependence of the
nucleon-quark-diquark interaction as given by ϕ (̃k2) in Eq. (3).

gluon dressing effect on the axial charge of an individual quark
into our formalism and draw our final conclusions in Sec. V.
Lastly, select formulas are postponed to Appendixes A and B.

II. THE BARE MODEL: ELECTROMAGNETIC
STRUCTURE AND SPIN

A. Electromagnetic form factors

In the quark + scalar diquark picture, computing the Pauli
and Dirac form factors F1(̃q 2) and F2(̃q 2) as functions of the
spacelike photon virtuality squared q̃ 2 amounts to evaluating
the leading triangle diagram in Fig. 1(a), which here represents
an amplitude formulated in Euclidean space. For this purpose,
we take the propagators of the scalar diquark (of mass mD)
and quark (of mass m) to be, respectively,

D([p̃ − k̃]2) = 1

[p̃ − k̃]2 + m2
D

,

(2)

S( k̃ ) = 1

ĩk/ + m
,

where we in general denote Euclidean 4-vectors as ṽμ, and
the main prescription-dependent ingredient of the ECQM
involves making a formal choice to characterize the binding of
the struck constituent quark into the nucleon. To accomplish
this, it is necessary to stipulate a relativistic vertex factor
for the momentum dependence of the nucleon-quark-diquark
interaction, represented by the blobs appearing in both panels
of Fig. 1. The systematics involved in the implementation
of such phenomenological vertex factors have been explored
in diverse contexts, including in models of nucleon structure
[56–58] and nuclear scattering [59]; in the end, however,
we select for simplicity a minimal choice consistent with
Lorentz covariance: a scalar function of the quark’s Euclidean
4-momentum k̃ with the general form

ϕ(̃k 2) ≡ g

(
�2

k̃2 + �2

)
. (3)

Of course, other analytic forms for the vertex function may also
be used (e.g., multipoles involving higher powers or functions
of the spectator diquark 4-momentum), but these ultimately
lead to qualitatively similar results, and in practice we find
use of Eq. (3) simplifies calculations dramatically. For this
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reason, the remainder of the present analysis is carried out
using Eq. (3).

Structurally, the propagators of Eq. (2) are familiar from the
Euclidean formalism of Dyson-Schwinger theory [20], which
determines the Green’s function of a dressed quark from its
Dyson-Schwinger equation (DSE), leading to

S( k̃ ) = 1

ĩk/A(̃k2) + B (̃k2)
= Z (̃k2)

ĩk/ + M(̃k2)
, (4)

where the nonperturbative dressing functions A(̃k2) and B (̃k2)
are related to the quark’s dynamical mass and wave function
renormalization constant via Z (̃k2) = 1/A(̃k2) and M(̃k2) =
B (̃k2)/A(̃k2). In traditional constituent quark models, dynam-
ical chiral symmetry breaking (DCSB) is realized through
the large constituent masses of the quark and diquark which
emerge effectively after integrating out gluonic degrees of
freedom. As a first approximation, we build on this paradigm
by ignoring the momentum dependence of the dressed quark’s
dynamical mass and make the replacement M(̃k2) → m on

the grounds that our model is dominated by its behavior in the
infrared k̃2 ≈ 0, as will be apparent in Sec. III. If we similarly
ignore the momentum dependence of the renormalization
constant Z (̃k2) and absorb this quantity into the overall
normalization g, we may take the quark propagator to be
S (̃k) → S (̃k); a similar logic carries through to the diquark,
and we therefore proceed with the forms of the propagators
given in Eq. (2).

In light of our choice for the nucleon-quark-diquark vertex
function, the model parameters in our framework are thus
the strength of the nucleon’s couplings to its internal quark-
diquark degrees of freedom g (which acts as an overall
normalization), the constituent masses of the quark and
scalar diquark m and mD , respectively, and the ultraviolet
cutoff parameter �, all of which we take from fits in the
electromagnetic sector. Namely, the form factors F1,2(̃q 2) are
extracted from the triangle diagram shown in Fig. 1, which
gives the extended electromagnetic vertex �μ(p̃′,p̃ ) of the
nucleon as

u(p̃′)γμu(p̃ ) −→ u(p̃′)�μ(p̃′,p̃ )u(p̃ ) = Jμ = 1

(2π )4

∫
d4k̃ u(p̃′)

(
1

ĩk/
′ + m

)
γμ

(
1

ĩk/ + m

)
u(p̃ )

(
ϕ(̃k′2)ϕ(̃k2)

[p̃ − k̃]2 + m2
D

)
, (5)

where p̃ (p̃′) is the initial (final) proton 4-momentum, k̃ ′ = k̃ + q̃, and p̃′ = p̃ + q̃. Using the general form of the photon-proton
vertex given by Eq. (A10) in Appendix A, we compute this latter amplitude using standard techniques [60,61] involving Feynman
parameters and momentum shifts to obtain

F1(̃q 2) =
(

g�2

4π

)2 ∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

∫ 1−x−y−z

0
dw

([
1

�2

]2

+ 2N1(̃q 2)

[
1

�2

]3
)

, (6)

F2(̃q 2) = 2

(
g�2

4π

)2 ∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

∫ 1−x−y−z

0
dw N2(z)

[
1

�2

]3

, (7)

in which

N1(̃q 2) = (m + zM)2 − (x + w)(1 − x − z − w)̃q 2, (8)

N2(z) = 2M(1 − z)(m + zM), (9)

�2 = (x + w)(1 − x − z − w)̃q 2 + (x + y)m2 + zm2
D

− z(1 − z)M2 + (1 − x − y − z)�2. (10)

Above, M is the mass of the on-shell nucleon, and we have
made use of the Euclidean Gordon identity given by Eq. (A9)
to decompose the amplitude of Eq. (5) into separate Pauli and
Dirac components à la Eq. (A10).

With these explicit expressions for F1 and F2, it is simple to
construct the familiar Sach’s parametrization of the nucleon’s
electromagnetic form factors:

GE (̃q 2) ≡ F1(̃q 2) − q̃ 2

4M2
F2(̃q 2) ,

(11)
GM (̃q 2) ≡ F1(̃q 2) + F2(̃q 2) ,

and we may determine the model parameters by fitting these
expressions to experimental data on the proton. For this
purpose, we treat the phenomenological parametrization of
Kelly [62] as a proxy for the world’s experimental data and
global fits thereof [63,64], rather than preferencing individual
sets; we may then minimize the numerical badness-of-fit

measure

χ2 ≡ 1

2np

np∑
i=1

[
GE

(
q̃ 2

i

) − G
phen.
E

(
q̃ 2

i

)
G

phen.
E

(
q̃ 2

i

) ]2

+
[

GM

(
q̃ 2

i

) − G
phen.
M

(
q̃ 2

i

)
G

phen.
M

(
q̃ 2

i

) ]2

. (12)

This analysis is intended as a demonstration of the basic
foundations of a ECQM, and hence we restrict our attention to
the proton. Evaluating the Ward identity based upon the trian-
gle diagram of Fig. 1(a) gives q̃ · J = 0, thus proving gauge
invariance and guaranteeing the conservation of charge within
the quark-diquark picture. In the model under consideration,
wherein a quark interacts with an external electromagnetic
current while the scalar diquark is a recoiling spectator, the
struck quark carries the full charge of the proton, and the
formulation as presented here is sufficient. On the other hand,
to describe experimental information on the neutron and proton
simultaneously, a more elaborate spin-flavor wave function is
necessary, as well as additional axial-vector modes for the
spectator diquark as studied on the light front in Ref. [10], for
instance. We regard such embellishments as beyond the scope
of this article, and delay them for future analysis.
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TABLE I. The collection of parameters that follow from con-
straining our model to the proton electromagnetic form factors GE

and GM at low q̃ � 1 GeV as given by Ref. [62]. The parameters
given in the first enclosed box are fitted directly, while those in the
open box at the far right are predicted by the fitted model. Note that
the interaction strength g and bare axial-singlet charge a0 determined
in Sec. II are dimensionless, while the final two columns give the first
moments of the electric and axial-singlet quark charge EDFs M1

f 1

and M1
a0

in GeV2; units elsewhere are in GeV unless otherwise noted.

χ 2 m mD � g μp (μN ) a0 M1
f 1

M1
a0

0.00297 0.637 0.947 0.228 79.104 2.843 0.784 0.1985 0.08125

We note that to ensure the numerical validity of the
hyperspherical Euclidean space formalism given later in
Sec. III, we in practice find it necessary to constrain the
value of the diquark mass to be no less than that of the
proton, mD � M , while the other parameters are allowed to
float freely over a broad range. This condition is a generic
artifact of hyperspherical techniques as applied to massive
theories [35], and for QED can be circumvented with an
appropriate deformation of the integration contour in the
complex k̃2 plane. For the amplitudes under consideration
here, however, such an approach meets further complications
due to the presence of quark denominators ∼ (̃k2 + m2)−2,
which can produce singularities in the timelike region k̃2 < 0
into which the contour over k̃2 is deformed; we therefore opt
for the simpler mD � M condition in this initial study. We
note of course that this procedure confers the added benefit
of simulating the effects of a confining potential in the sense
that the nucleon is thereby prohibited from decaying into its
constituents (m + mD � M , for any choice of m).

Also, for the sake of describing the nucleon axial-singlet
charge (which is defined at q̃ 2 = 0) we concentrate our fits at
low photon virtualities, and hence only constrain them with

experimental information for q̃ � 1 GeV. Doing so, we find
that fitting our scalar diquark model to the Kelly prediction
for GE and GM at 5 uniformly chosen points in the domain
0 � q̃ � 1 GeV [i.e., np = 5 in Eq. (12) above] results in
the description plotted in Fig. 2, which corresponds to a χ2

per datum of 0.003 for the specific parameter values given
in Table I. The numerical values of the fitting parameters
imply a mass for the diquark comparable to that of the nucleon
(consistent with Faddeev equation studies, e.g., Ref. [65]), and
a rather large constituent quark mass m ∼ 600 MeV.

In particular, the two panels of Fig. 2 compare this fitted
model to the parametrization of Ref. [62] for the proton, both at
the level of the separate form factors GE and GM themselves
[Fig. 2(a)], as well as for the instructive ratios [Fig. 2(b)]
with respect to the one-parameter dipole approximation [62]
GD (̃q 2) ≡ (1 + q̃ 2/�2

D)−2, with �2
D = 0.71 GeV2—the latter

serving to draw attention to subtleties in the form factors’
behavior at larger q̃ 2. In both panels also, solid curves represent
the output of our fitted model, while dashed lines are the
prediction of Ref. [62].

For the region of interest (̃q 2 � 0), fitted results agree
especially well with GM , matching its qualitative dependence
on q̃ 2 quite closely; for GE , however, the agreement is
somewhat weaker, as especially highlighted by the relatively
steep downturn of the solid-black curve of Fig. 2(b). At the
same time, we adjudicate the better than ∼10% agreement at
lowest q̃ 2 � 0.2 GeV2 for GE and percent-level agreement
for GM to be fully adequate for our demonstration of the
hyperspherical formalism here, which we pursue in the
following sections only for quantities defined in the real limit,
q̃ 2 = 0, including the axial charge a0.

B. Axial-singlet charge

The total quark helicity contribution to the nucleon spin
in Eq. (1) may be identified with the matrix element for the
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FIG. 2. (a) A plot of the fitted electromagnetic form factors GE,M (̃q 2), where we constrain fits with the phenomenological parametrization
of Kelly [62] for q̃ � 1 GeV. Here, solid lines give the result of our fitted model for the parameters listed in Table I, while the dashed lines are
the phenomenological fits of Ref. [62], with GE given in black and GM in red in both cases. (b) A similar comparison, but in this case for the
form factor ratios with respect to the well-known dipole parametrization [62] GD (̃q 2) ≡ (1 + q̃ 2/�2

D)−2, where �2
D = 0.71 GeV2.
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axial-singlet charge of the proton [66], a0 = ∑
q �q, which

we write explicitly as

2MS̃μa0 ≡ 	q〈p̃,s|qγμγ5q |p̃,s〉,
(13)

S̃μ ≡ 1

2M
u(p̃ )γμγ5u(p̃ ),

in which S̃μ represents the nucleon’s Euclidean spin 4-vector,
which obeys S̃ · p̃ = 0 and S̃2 = −1. For the nonpointlike
proton basis states consistent with the bare quark + diquark
picture, the matrix element of Eq. (13) can be realized
diagrammatically in a triangle graph akin to that which
produced Eqs. (6) and (7) for the proton’s electromagnetic
substructure—albeit with the appropriate ∼γμγ5 operator
entering at the axial current-quark vertex. This is shown
explicitly in Fig. 1(b), wherein p̃ ′ = p̃, as is relevant for the
axial-singlet charge defined at q̃ = 0. Using our established
Euclidean conventions, this then gives the amplitude

2MS̃μa0 = 1

(2π )4

∫
d4k̃ u(p̃ )

(
1

ĩk/ + m

)
γμγ5

×
(

1

ĩk/ + m

)
u(p̃ )

[
|ϕ(̃k2)|2

[p̃ − k̃]2 + m2
D

]
. (14)

Thus we can follow a procedure similar to that used in the
electromagnetic sector to compute the bare (i.e., undressed)
quark + scalar diquark model prediction for the proton’s axial-
singlet charge, keeping in mind that we will ultimately match
our ECQM formalism to the standard calculation in Sec. III C,
constituting a vital test. We find

2MS̃μa0 = �(5)
g2�4

(2π )4

∫
d 4̃l

(̃l2 + �2)5

∫
dxdydz

× xyδ(1 − [x + y + z]) u(p̃ )[−i (̃l/ + zp̃/) + m]

× γμγ5[−i (̃l/ + zp̃/) + m]u(p̃ ); (15)

again using textbook [60] covariant methods, this can be
manipulated to yield

a0 = −
(

g�2

4π

)2 ∫ 1

0
dy

∫ 1−y

0
dz y(1 − y − z)

×
[(

1

�2

)2

− 2(m + zM)2

(
1

�2

)3
]
, (16)

where here the explicit expression for the denominator in terms
of masses and Feynman parameters is

�2 = (1 − y − z)m2 + y�2 + zm2
D − z(1 − z)M2 , (17)

and we have implemented the shift k̃μ → l̃μ = k̃μ − z p̃μ and
made use of Eq. (A8). Thus, Eq. (16) is fully defined and
may be computed with the model parameters determined in
the electromagnetic sector—i.e., the values contained within
the inner box of Table I. Inserting these, we get a0 = 0.784,
which we also report in the rightmost partition of Table I.
We reproduce this value via hyperspherical techniques in
Sec. III C.

III. HYPERSPHERICAL FORMALISM

A. Euclidean density functions

Here we introduce the framework necessary to obtain 4-
dimensional Euclidean quark-level densities—for the proton’s
electromagnetic charge in Sec. III B, and its axial-singlet
charge in Sec. III C.

Formally, we seek 4-dimensional densities dependent on the
interacting quark’s Euclidean momentum k̃. Such quantities
would be analogous to the squares of Bethe-Salpeter wave
functions �(k; p) from which LFWFs can be derived via the
appropriate integral over

∫
dk− at fixed LF time [25,26] as

described in Sec. I. Properly formulated, in our case these
density functions will allow the recovery of bulk properties of
the nucleon from radial integrals in Euclidean space governed
by the parameters of a constituent quark model. That is, the
total nucleon charge and axial-singlet charge follow from the
zeroth moment of the Euclidean density functions (EDFs)
f 1(̃k2) and a0(̃k2), respectively,

F1
(
q̃ 2 = 0

) =
∫

dk̃ 2 f 1(̃k 2), (18)

a0 =
∫

dk̃ 2 a0(̃k 2), (19)

where the integrations over
∫
dk̃2 remain after summing over

angles, and EDFs for other charges may also be constructed. In
fact, inasmuch as EDFs enjoy the proper support (in this case,
vanishing at k̃2 = 0 and in the limit k̃2 → ∞), their lowest
moments in k̃2 may also be computed:

Mn
f̄1

≡
∫

dk̃ 2 (̃k 2)n f 1(̃k 2), (20)

Mn
ā0

≡
∫

dk̃ 2 (̃k 2)n a0(̃k 2), (21)

for which the choice (n = 0) corresponds to the expressions
in Eqs. (18) and (19), while the nontrivial first moments
(n = 1), corresponding to M1 ∼ 〈̃k2〉, provide information on
the mean k̃2 of the electromagnetic and axial-charge densities.
We determine these explicitly in Secs. III B and III C below,
and ultimately plot their associated integrands in Fig. 3.

Pending this more detailed calculation, the proton’s
charge EDF f 1(̃k2) may be described to first approximation
in the spirit of Feynman et al. [67], using a Euclideanized
Gaussian wave function ψ (̃k2) ∼ exp(−R2 k̃2/2):

F1
(
q̃ 2 = 0

) = 1

(2π )4

∫
d4k̃ |ψ (̃k 2)|2 = 1

→ ψ (̃k 2) = (4πR2) exp

{
−1

2
R2k̃ 2

}
, (22)

for which the dependence of the wave function on the quark
momentum k̃ is governed purely by the proton rms radius, R ≡
〈r2

p〉1/2 ≈ 0.88 fm = 1/(0.227 GeV) [68]. Noting Eq. (B2), we
conclude

f
WF
1 (̃k 2) = R4k̃ 2 exp{−R2k̃ 2}, (23)

a simple result to which we compare the model results of
Secs. III B and III C below as an instructive benchmark.
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FIG. 3. A comparison of EDFs for the proton’s charge 2̃k f 1(̃k2)
[Eq. (35), black solid] and axial-singlet charge 2̃ka0(̃k2) [Eq. (42),
maroon dashed] carried by the struck quark in the scalar diquark
ECQM as functions of its Euclidean momentum k̃; for illustration,
we contrast these with the result of using the Gaussian wave function,

2̃k f
WF
1 (̃k2) from Eq. (23) (red dotted). The thin lines and associated

shaded regions at bottom correspond to the integrands of these
distributions’ first moments in k̃2, i.e., M1 ∼ 〈̃k2〉 of Eqs. (20)
and (21). Note that these latter moments have been rescaled by a
factor of 2 for comparison.

Plotting the integrand 2̃k f
WF
1 (̃k2) of F1(0) against k̃ in Fig. 3,

the resulting distribution peaks predictably near k̃ � 0.2 GeV
due to our numerical choice of R, but then has a sharper
momentum dependence at higher k̃ not found for the more
realistic model calculations presented below; this fact alone
highlights the necessity for the more detailed hyperspherical
treatment of nucleon spin structure outlined in Secs. III B
and III C.

Ultimately, in a utilitarian sense the EDFs of Eqs. (18)
and (19) also permit an interface with the output of tradi-
tional Euclidean field-theoretic approaches, as emphasized
in Sec. I. Whereas the formalism of Sec. II is adequate for
the determination of the total proton charge and helicity
in the bare quark model, we wish to absorb the results
of BSE analyses into our ECQM to assess the gluon
dressing effect. For this purpose, however, BSEs describe

the impact of soft gluon exchange in the form of vertex
functions of the quark’s Euclidean momentum, and there is
no straightforward way to incorporate such quantities into the
bare calculation of Sec. II B, especially given the reliance of
the latter upon shifting loop momenta away from those given
in Fig. 1(b).

On the other hand, due to their status as vertex functions
of the quark momentum, BSE results may be incorporated
directly into the integrated EDFs typified by Eq. (19) as
quark momentum-dependent smearing functions fg (̃k2). It is
precisely such a scheme that we pursue here for the quark
helicity contribution to the nucleon spin, a0. Thus, with
the EDF a0(̃k2) and the smearing function fg (̃k2) for the
gluon-dressing effect in hand, one may compute the impact of
soft gluon exchange upon the total quark helicity contribution
to the proton spin, leading to a corrected axial-singlet charge

a′
0 =

∫
dk̃ 2 a0(̃k 2)fg (̃k 2), (24)

where in practice we identify the gluonic smearing function
with the nonperturbative axial-vector vertex factor of BSE
studies, fg (̃k2) = FR (̃k2,0), which we take from Refs. [53,55]
and describe in greater detail in Sec. IV. Moreover, we point
out that assuming the perturbative result expected to hold at
k̃ 
 0 for the gluon dressing function, fg (̃k2) = 1, in Eq. (24)
simply recovers the bare ECQM calculation given by Eq. (19).

We can in fact achieve the specifics of the general formalism
described above, and this amounts to the main result of the
present paper. We derive the EDFs of Eqs. (18) and (19) by
closely following the analogous calculation for the hadronic
vacuum polarization effect in the muon’s anomalous magnetic
moment [33]; viz., we now evaluate Eq. (5) for p̃ ′ = p̃ in
Sec. III B and Eq. (14) in Sec. III C using a hyperspherical
formalism originally adapted to QED [34–36].

B. Quark charge distribution

The hyperspherical formalism we describe below is of
sufficient generality that it may be deployed in the evaluation
of various Euclidean momentum distributions. As an initial
demonstration, however, we highlight the calculation of the
EDF for the proton’s electric charge, i.e., the integrand leading
to F1(̃q 2 = 0) of Eq. (18). As will be the case for the
subsequent determination of a0(̃k), we start at amplitude level,
in this case with Eq. (5), which at q̃ 2 = 0 yields

2i p̃μF1(0) = 1

(2π )4

∫
d4k̃ u(p̃ )

(
1

ĩk/ + m

)
γμ

(
1

ĩk/ + m

)
u(p̃ )

(
|ϕ(̃k2)|2

[p̃ − k̃]2 + m2
D

)
(25)

= g2�4

(2π )4

∫
dk̃4 u(p̃ )[−2̃k/ k̃μ + (̃k2 + m2)γμ − im{γμ,̃k/}]u(p̃ )

(̃k2 + m2)2(̃k2 + �2)2
(
[p̃ − k̃]2 + m2

D

) , (26)

where we have again used Eq. (A10) for the general form
of the electromagnetic vertex given in Appendix A. To apply
the hyperspherical formalism, we must express the numerator
algebra leading to F1(0) in terms of inner products. For this
example, we achieve this by contracting both sides of Eq. (26)
with p̃μ and using the identities of Appendix A, which brings

us to the expression

F1(0)= g2�4

(2π )4

∫
dk̃4

k̃ 2+m2− 2
p̃ 2 (p̃ · k̃)2+ 2

p̃ 2 mM(p̃ · k̃)

(̃k2+m2)2(̃k 2+�2)2
(
[p̃−k̃]2+m2

D

) .

(27)
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More critically, rather than shifting away the term in the
denominator ∼ (p̃ · k̃) as in the standard covariant cal-
culations involving Feynman parameters [Eqs. (6), (7),
and (16)], we instead make an expansion of the scalar diquark
propagator:

1

[p̃ − k̃]2 + m2
D

= Zpk

p̃ k̃

∞∑
n=0

(Zpk)nCn(p̂ · k̂), (28)

where explicitly

Zpk ≡ 1

2p̃ k̃

[
p̃ 2+k̃ 2+m2

D−
√(

p̃ 2+k̃ 2 + m2
D

)2−4p̃ 2k̃ 2
]
,

(29)

and we sometimes find it convenient to work in terms of
the dimensionful object Z ≡ Zpk/p̃ k̃. In Eq. (28), the Cn

are Gegenbauer polynomials with the normalization and
orthogonality properties described in Appendix B, and p̂ is
a unit vector in Euclidean space in the direction of p̃μ. We
can exploit these properties in Appendix B to perform the
necessary angular integrations by first rendering the numerator
of Eq. (27) in terms of a linear combination of the Gegenbauer
polynomials

(p̃ · k̃) = p̃ k̃

2
C1(p̂ · k̂), (30)

(p̃ · k̃)2 = 1

4
p̃ 2k̃ 2[C2(p̂ · k̂) + C0(p̂ · k̂)]. (31)

Inserting everything into Eq. (27) and using Eq. (B2) then
results in

F1(0) = g2�4

(2π )4

∫
dk̃ 2

2

k̃ 2Z

(̃k 2 + m2)2(̃k 2 + �2)2

×
∫

dk̂

[ ∞∑
n=0

(p̃ k̃Z)nCn(p̂ · k̂)

]
(32)

×
{
− k̃ 2

2
[C2(p̂ · k̂) + C0(p̂ · k̂)]

+ mM

p̃ 2
p̃ k̃C1(p̂ · k̂) + (m2 + k̃ 2)C0(p̂ · k̂)

}
;

and we may use Eq. (B3) to evaluate the angular integral∫
k̂ . Before doing so, however, it is imperative to note

that Eq. (32) is defined in general for spacelike 4-momenta
(including the external nucleon 4-momentum p̃ 2 � 0). It is
therefore necessary to perform an analytic continuation of the
proton momentum into the timelike region where it is explicitly
on-shell and thus physical: p̃ 2 = −M2. By merit of our
requirement that mD � M , the integration contour k̃2 ∈ [0,∞)
remains unmenaced by branch points or singularities, and the
nucleon momentum may be straightforwardly continued to
p̃ → iM . Doing so after evaluating the angular integrals, we

finally obtain

F1(0) =
(

g�2

4π

)2 ∫
dk̃ 2 k̃ 2Z

(̃k 2 + m2)2(̃k 2 + �2)2

×
[
k̃ 2

2
+ M2

2
(̃k 2Z)2 + mMk̃ 2Z + m2

]
, (33)

in which Z represents the analytic continuation of the rational
function Z of Eq. (29), given explicitly by

Z = − 1

2M2k̃ 2
[̃k 2 + δ2 −

√
(̃k 2 + δ2)2 + 4M2k̃ 2], (34)

having defined the shorthand δ2 ≡ m2
D − M2.

It is notable also that the expression given in Eq. (33)
constitutes an important check of the hyperspherical formalism
which we use in Sec. III C below for a0, and one may verify
that it yields F1(0) = 1 for the parameters of Table I. From it,
we may at last extract the Euclidean density function f 1(̃k2)
for the proton’s quark-level charge through direct matching
with Eq. (18),

f 1(̃k 2) =
(

g�2

4π

)2
k̃ 2Z

(̃k 2 + m2)2(̃k 2 + �2)2

×
[
k̃ 2

2
+ M2

2
(̃k 2Z)2 + mMk̃ 2Z + m2

]
; (35)

we plot this EDF in Fig. 3 alongside the analogous quantity
for the axial-singlet charge a0(̃k2) derived in Sec. III C
below.

Having determined the quark-level EDF for the proton’s
electric charge in Eq. (35), we may use this result to evaluate
higher moments of the charge distribution given in Eq. (20):

M1
f̄1

= 0.1985 GeV2. (36)

In this case, this value corresponds roughly to the center of the
peak of the heavy-solid line in Fig. 3; more directly, we also
plot the integrand over k̃ for the moment M1

f̄1
as the thin-solid

line, multiplied by a factor of 2 for ease of comparison.

C. Quark helicity

While the formalism in Sec. II B above was sufficient to
determine the bare quark helicity contribution to the proton
axial-singlet charge a0, we must ultimately interface our quark-
diquark framework with the results of BSE analyses to estimate
the gluon dressing effect as mentioned above. In this case,
the BSE calculations we aim to incorporate are k̃-dependent
vertex factors as noted in Sec. III A, and thus we require an
axial charge momentum distribution along the lines of Eq. (35)
to evaluate Eq. (24).

Hence, analogously to the calculation in Sec. III B, we now
proceed by contracting both sides of Eq. (14) with the nucleon
spin 4-vector S̃μ to obtain

2Ma0 = − g2�4

(2π )4

∫
d4k̃

S̃μu(p̃ )(−ĩk/ + m)γμγ5(−ĩk/ + m)u(p̃ )

(̃k2 + m2)2(̃k2 + �2)2
(
[p̃ − k̃]2 + m2

D

) = − g2�4

(2π )4

∫
d4k̃

2M[2(S̃ · k̃)2 + (m2 − k̃2)S̃2] − 4m(p̃ · k̃)

(̃k2 + m2)2(̃k2 + �2)2
(
[p̃ − k̃]2 + m2

D

) ,

(37)
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and here we require an additional inner product:

(S̃ · k̃) 2 = 1
4 S̃2k̃ 2[C2(Ŝ · k̂) + C0(Ŝ · k̂)]. (38)

Using this and Eq. (30) to rewrite the inner products of
Eq. (37) above, we incorporate the polynomial expansion for
([p̃ − k̃]2 + m2

D)−1; here this leads to

a0 = g2�4

(2π )4

∫
dk̃ 2

2

k̃ 2Z

(̃k 2 + m2)2(̃k 2 + �2)2

×
∫

dk̂

[ ∞∑
n=0

(p̃ k̃Z)nCn(p̂ · k̂)

]

×
{

k̃ 2

2
[C2(Ŝ · k̂) + C0(Ŝ · k̂)] − m

M
p̃ k̃C1(p̂ · k̂)

+ (m2 − k̃ 2)C0(Ŝ · k̂)

}
(39)

=
(

g�2

4π

)2 ∫
dk̃ 2 k̃ 2Z

(̃k 2 + m2)2(̃k 2 + �2)2

×
[

k̃ 2

2
(p̃ k̃Z)2 C2(Ŝ · p̂)

3
− m

M
p̃ k̃(p̃ k̃Z)

C1(p̂ · p̂)

2

+
(

m2 − k̃ 2

2

)
C0(Ŝ · p̂)

]
. (40)

As before, we analytically extend p̃ into the timelike region
where it is on-shell, leading to

a0 =
(

g�2

4π

)2 ∫
dk̃ 2 k̃ 2Z

(̃k 2 + m2)2(̃k 2 + �2)2

×
[
− k̃ 2

2
+ M2

6
(̃k 2Z)2 + mMk̃ 2Z + m2

]
, (41)

and Z is again given by the expression in Eq. (34). Lastly,
we deduce the EDF appearing in Eq. (19) [and Eq. (24)] from
Eq. (41) by simple matching, as had been done for f 1(̃k 2):

a0(̃k 2) =
(

g�2

4π

)2
k̃ 2Z

(̃k 2 + m2)2(̃k 2 + �2)2

×
[
− k̃ 2

2
+ M2

6
(̃k 2Z)2 + mMk̃ 2Z + m2

]
; (42)

in summary, we emphasize that to obtain Eqs. (37)–(42) we
have contracted both sides of the first equation with S̃μ and
expanded the diquark propagator à la Eq. (28).

With these expressions, one may proceed to compute the
bare quark contribution to the proton spin using the set of
parameters determined from fits to the proton electromagnetic
form factors, given in Table I. Using these values in the
conventional formalism of Sec. II B that led to Eq. (16), we
found a0 = 0.784—a value which may also be recovered
from the hyperspherical formalism as given by Eq. (41).
Incidentally, this figure is in accord with the moment of the
scalar diquark contribution to the quark helicity PDF obtained
in a typical light-front quark model (see Eqs. (61) and (62) of

Ref. [10]):

�qs = 1
3 (2�u − �d) ≈ 0.75; (43)

this latter expression assumed an SU(2) ⊗ SU(2) structure for
the proton’s spin-flavor wave function.

We point out as well that the axial-singlet EDF a0(̃k 2)
given by Eq. (42) is not restricted to be positive definite,
unlike the analogous electromagnetic charge EDF f 1(̃k 2) of
Eq. (35), which is related to the zeroth moments of traditional
probabilistic quark density functions. In fact, for certain
parameter combinations, a0(̃k 2) may experience substantial
negative downturns at larger spacelike quark momenta, k̃ � 1
GeV. However, for the set of fitting parameters that best
describes proton form factor data, this effect is not evident,
and the axial-singlet EDF a0(̃k) is instead dominated by a soft
peak centered roughly at k̃ � 0.2 GeV, as shown in Fig. 3 as
the maroon dashed line.

Owing mainly to the similarity of the explicit k̃ 2 de-
pendence appearing in Eqs. (35) and (42), the shapes
of these distributions closely track each other, with
f 1(̃k 2) ≈ a0(̃k 2), particularly for k̃ 2  m2. Ultimately, we
interpret this behavior as following from the common origin
of both expressions in the diagrams of Fig. 1, which at q̃ = 0
differ only by the appearance of γ5.

Moreover, for the higher ∼〈̃k 2〉 moment of the axial-singlet
EDF, we obtain the value

M1
ā0

= 0.08125 GeV2, (44)

implying the proton’s distribution of axial-singlet charge is
relatively softer than the charge distribution [Eq. (36)] in the
bare model.

IV. GLUON DRESSING EFFECT

We now incorporate numerical estimates of the effect of
dressing the quark axial-current vertex with gluon exchange,
which in principle may be determined from DSE-BSE anal-
yses. Here, the relevant diagrams are displayed in Fig. 4,
wherein Fig. 4(a) illustrates the dressed propagator responsible
for QCD’s quark DSE, while Fig. 4(b) demonstrates the
realization of the BSE for the quark-level coupling of the
axial-vector current dressed by soft gluon exchange. Naturally,
the infrared momenta at which this effect is of interest
demands the use of nonperturbative methods, and the standard
procedure requires a prescription-dependent truncation of the
quark-gluon vertex (shown as the blobs in Fig. 4).

k~ − k~
L~

k~ L~

(a)

k~ k~

P~ = 0

L~
(b)

FIG. 4. (a) The diagram leading to the DSE for a quark of momen-
tum k̃ dressed by a nonperturbative gluon carrying loop momentum
L̃. (b) The corresponding diagram for the quark axial-vector vertex
BSE, responsible for the k̃-dependent gluonic dressing correction to
the axial charge of an individual quark. In the flavor-singlet channel,
additional unquenching loop diagrams also contribute, as described
in Ref. [55].

035205-8



EUCLIDEAN BRIDGE TO THE RELATIVISTIC . . . PHYSICAL REVIEW C 95, 035205 (2017)

0 0.5 1
 k  (GeV)

-0.5

0

0.5

1

1.5

2

f g(k
2 )

~

 bare

(a)

 DB
 RL
 unquenched

~

0 0.2 0.4 0.6 0.8 1

 k  (GeV)

-1

0

1

2

3

 2
k 

a 0(k
2 ) 

f g(k
2 )

~

(b)

~
~

~

 bare
 DB
 RL
 unquenched

FIG. 5. (a) The gluon dressing function fg (̃k 2) under several different scenarios: the perturbative limit, fg (̃k 2) = 1 (solid black); using
an improved dynamical chiral symmetry-breaking kernel in the quenched BSE, f DB

g (̃k 2) (red dashed); with the quenched rainbow-ladder
truncation method, f RL

g (̃k 2) (blue dotted); and using the result of a calculation [55] that included the effects of unquenching which contribute
to the axial-singlet charge (green short dashed). (b) A plot of the integrand of Eq. (24) 2̃k a0(̃k 2)fg (̃k 2), taking for fg (̃k 2) the gluon dressing
functions shown in panel (a), and retaining the aforementioned line styles.

In the context of BSE analyses [15,50–53], the dressed
axial-vector vertex is represented by the structure �ab

5μ(K̃; p̃ ),
which is understood to connect an incoming quark of flavor
b and momentum K̃− = K̃ − (1 − η)P̃ to an outgoing quark
of flavor a and momentum K̃+ = K̃ + ηP̃ ; here P̃ and K̃

represent the total and relative momentum of the quark pair,
and η is a dimensionless parameter upon which calculations
cannot depend. Thus, for our purposes, we require the
case P̃ = 0, such that K̃+ = K̃− = K̃ ≡ k̃, and we take the
diagonal isospin-independent vertex a = b, as described in
Ref. [53]. Then the structure of the quark-axial vector vertex
of relevance here is simply

u(̃k)�5μ (̃k; 0) u(̃k) = u(̃k) γ5 [γμFR (̃k; 0) + · · · ] u(̃k), (45)

and the ellipsis in Eq. (45) above represents additional
components of the vertex that do not contribute in the present
analysis.

We therefore make the identification fg (̃k) ≡ FR (̃k; 0)
mentioned in Sec. III A, and directly insert the numerical
results reported in Ref. [53] to smear the bare model axial
charge as in Eq. (24). We also note that Ref. [53] was aimed
at the quark’s isovector axial vertex, and therefore neglected
the unquenching effect of higher-order quark loops within the
dressing diagram of Fig. 4(b), as such corrections are charge
independent and thus cancel for nonsinglet combinations.
Unquenching effects do in principle contribute to the axial-
singlet matrix element, however, and have been considered in
Refs. [54,55]. We assess the potential impact of this additional
physics below.

The behavior of fg (̃k) depends crucially on the truncation
scheme used to obtain the effective quark-gluon vertices in the
panels of Fig. 4. To get a sense for this source of prescription
dependence within the quenched calculation, we compute the
correction following from both schemes treated in Ref. [53]—
the rainbow-ladder scheme (RL) and an ansatz based on a
specific realization of dynamical symmetry breaking (DB),

which we take numerically from Fig. 1 of Ref. [53]. Referring
to these as f RL

g (̃k) (blue dotted) and f DB
g (̃k) (red dashed),

we plot both dressing functions against k̃ in Fig. 5(a).
Plainly, both truncation schemes predict a suppression of the
quark’s axial charge for the lowest infrared momenta k̃ � 0.3
GeV, but substantial enhancements beyond—particularly for
the RL prescription, which overhangs the DB scheme by ∼25%
for k̃ ∼ 1 GeV. Having determined the axial EDF of Eq. (42),
we may fold these extractions for the quenched gluon dressing
function into Eq. (24) to determine the overall effect, plotting
the integrands responsible for a′

0, 2̃k f RL
g (̃k 2) a0(̃k 2) (blue dot-

ted) and 2̃k f DB
g (̃k 2) a0(̃k 2) (red dashed), in Fig. 5(b) alongside

the bare or undressed scenario, fg (̃k 2) = 1 (black solid).
From this, we find the net correction to the quark helicity

contribution from quenched gluon dressing to be(
a′

0

a0

)
− 1 = −0.04% (DB scheme), (46)

= +2.98% (RL scheme). (47)

The magnitude of the effect from quenched gluon dressing is
therefore quite small, and in the present analysis is actually
consistent with zero in the sense that, depending upon the
choice of truncation scheme, one may obtain a modest en-
hancement (RL) or tiny suppression (DB) of the proton’s total
quark helicity. The smallness of the effect can be understood
from the momentum dependence shown in Fig. 5(b), in which
the interplay of the shapes of fg (̃k 2) and a0(̃k 2) are such
that the axial-singlet charge is slightly suppressed at low k̃
and enhanced at higher k̃. These two effects largely cancel,
however, in the integral over k̃ involved in the computation of
a′

0 according to Eq. (24), such that a′
0 ≈ a0, and we conclude

the quenched dressing effect in a0 to be minimal.
As pointed out above, while the diagram of Fig. 4(b)

figures in the dressing of both isovector and isoscalar (i.e.,
flavor singlet) axial-vector quark vertices, the latter can receive
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additional contributions from higher-order diagrams involving
the coupling of the axial-vector current to virtual quark loops
closely connected to axial anomaly triangle graphs shown,
e.g., in Fig. 12 of Ref. [55]. As is typical of unquenched
nonperturbative calculations, obtaining a systematic treatment
of the dynamical quark loop effect is challenging. There is
a significant level of dependence on renormalization scales,
and the calculation in Ref. [55] employed a two-flavor
approximation.

In the end, this procedure leads to the unquenched dressing
function f

unq.
g (̃k 2) plotted as the green-short-dashed curve

in Fig. 5(a), with a very sharp suppression of the quark’s
axial-singlet charge at low k̃, which even attains negative
values for k̃ � 0.4 GeV. Including this unquenching effect
as computed in Ref. [55]—again using Eq. (24)—we find a
dramatic suppression of the nucleon’s axial-singlet charge,
which in fact becomes slightly negative:

a′
0 = −0.111 (unquenched scheme), (48)

a value representing −14% of the bare axial-singlet nucleon
charge, and which corresponds to the integrand plotted as the
green short-dashed line in Fig. 5(b).

We therefore conclude unquenching virtual quark loop
diagrams have the potential to suppress the nucleon’s axial-
singlet charge (and total quark helicity), despite the tiny size
of the corresponding effect from the quenched calculation.

V. CONCLUSION

In this paper we have proposed a model in Euclidean space
formulated in terms of constituent quark degrees of freedom.
The essential products of the resulting ECQM technology are
density functions of the quark’s Euclidean momentum (the
EDFs) obtained from hyperspherical angular integrations of
4-dimensional amplitudes. The special value of these derived
quantities is their ability to recover nucleon charges through
integrals over the internal momenta of their constituent quarks,
a fact that empowered us to couple them to predictions of other
Euclidean analyses—in this case, BSEs.

Thus, having introduced this formalism, we tested it
preliminarily by computing both the nucleon’s quark charge
density as well as its axial-singlet charge. For the latter, this test
assumed the form of an assessment of the impact of BSE cal-
culations for the dressed quark axial-vector vertex. There are,
of course, various sources of model dependence on the side of
both our ECQM for the nucleon-quark interaction and of the
BSE analyses. Despite these sources of model dependence, we
find the effect of the quenched gluon dressing to be small by
itself—at most a several percent correction to the total quark
helicity in the bare ECQM. In contrast, we find that unquench-
ing quark loop contributions highly suppress the nucleon’s
quark helicity component, a point requiring further study.

Naturally, the analysis presented here is essentially ex-
ploratory, and if anything, suggests the need for further
refinements. For instance, the scalar diquark picture alone
cannot realistically approximate the nucleon’s full spin struc-
ture as evidenced by the large value we obtain for the bare
axial-singlet charge (a0 = 0.784); a fuller calculation would
therefore involve spin-1 diquark exchanges, which in general

are necessary to obtain an authentic flavor decompostion of
the nucleon helicity.

At the same time, it is reasonable to expect that the
qualitative shape obtained for a0(̃k) shown in Fig. 5 for the
present scalar diquark ECQM would hold also for amplitudes
involving spin-1 exchanges, so that the essential details of such
a calculation would resemble our presentation here. That being
the case, our ultimate conclusion is unlikely to change: Models
formulated with bare constituent quarks receive vanishing
corrections to the total quark helicity from quenched gluon
loops but can experience huge suppressions of the quark spin
from higher-order unquenching diagrams. This finding places
an increased premium upon elucidating the details of how the
unquenched dressing effect enters the spin decomposition of
Eq. (1) and its interaction with the quark and gluon angular
momenta contained therein.

Similarly, it should be noted that other possible consid-
erations have not been treated systematically, including the
momentum dependence of the constituent quark’s dynamical
mass, the implementation of which would require a self-
consistent scheme not typical of the fitted constituent quark
model presented here. Such issues, as well as continued
improvements to the Euclidean hyperspherical formalism
and BSEs for the axial-vertex dressing functions will be
of enormous value in extending the current state-of-the-art
regarding quark helicity, the nucleon spin problem, and
Euclidean modeling of nucleon structure.
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APPENDIX A: EUCLIDEAN SPACE CONVENTIONS

We proceed using the Minkowski ↔ Euclidean transcrip-
tion dictionary as outlined in, e.g., Refs. [17,20], wherein
4-momenta and Dirac matrices transform according to

k0 = ik4, kj = −kj ,

γ 0 = γ4, γ j = iγj ; j ∈ {1,2,3}. (A1)

The Dirac algebra in this setting is then specified by

{γμ,γν} = 2δμν, (A2)

such that the Euclidean inner product for any two 4-vectors
ãμ, b̃μ is

ã · b̃ ≡
∑

μ

ãμb̃μ = ã1b̃1 + · · · + ã4b̃4, (A3)

and, by extension,

p̃/ ≡ γ1 p̃1 + · · · + γ4 p̃4. (A4)

We also note the definition

γ5 = −γ1γ2γ3γ4. (A5)
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We may give explicit expressions for the Euclidean Dirac
spinors, which we obtain following the conventional Wick
rotation as

uλ(p) =
√

M + p0

(
χλ

σ ·p
M+p0 χλ

)

→ uλ(p̃ ) =
√

M + ip̃4

(
χλ

−σ ·̃p
M+ip̃4

χλ

)
, (A6)

where the helicity states χ[λ=↑↓] = (1
0), (0

1) are proportional to
the standard eigenvectors of σ3. These spinors are endowed
with the typical normalization,

uu = 2M, u(p̃ )γμu(p̃ ) = 2ip̃μ, (A7)

and obey the Dirac equation

u(p̃ ′)(ip̃/ ′ + M) = (ip̃/ + M)u(p̃ ) = 0. (A8)

Moreover, in Euclidean space the Gordon identity assumes
the slightly altered form

u(p̃ ′)γμu(p̃ ) = 1

2M
u(p̃ ′){−iP̃μ + σμνq̃ν}u(p̃ ), (A9)

where we have defined P̃μ ≡ p̃ ′
μ + p̃μ and σμν ≡

(i/2)[γμ,γν]. By similar logic, we obtain the general form
for the extended electromagnetic vertex of the proton,

u(p̃ ′)�μ(p̃ ′,p̃ )u(p̃ )

= u(p̃ ′)
{
F1(̃q 2)γμ + F2(̃q 2)σμν

q̃ν

2M

}
u(p̃ ). (A10)

APPENDIX B: HYPERSPHERICAL FORMALISM

In the hyperspherical formalism [33–36], numerator alge-
bra leads to covariant expressions involving inner products
which we represent in terms of the Gegenbauer polynomi-
als, of which only the lowest are relevant for the present
analysis:

C0(x) = 1, C1(x) = 2x, C2(x) = 4x2 − 1. (B1)

Hyperspherical integrals may be separated into radial and
angular parts according to∫

dd k̃ =
∫

dk̃ k̃d−1
∫

d
(d)
k̂

, (B2)

and we of course take d = 4 in the integrations over dk̂ ≡
d

(4)
k̂

(= sin2 ψ sin θdφdθdψ) in Sec. III; these can then
be carried out in practice using well-known orthogonality
properties:∫

db̂ Cm(â · b̂) Cn(b̂ · ĉ) = 2π2δmn

n + 1
Cn(â · ĉ). (B3)

These relations can be determined from an appropriate choice
of hyperspherical coordinates, with a common selection [60]
being

kμ =
√

k̃ 2

⎛⎜⎜⎜⎝
sin ψ sin θ cos φ

sin ψ sin θ sin φ

sin ψ cos θ

cos ψ

⎞⎟⎟⎟⎠. (B4)
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