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Proton radius from electron-proton scattering and chiral perturbation theory
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We determine the root-mean-square proton charge radius, Rp , from a fit to low-Q2 electron-proton elastic-
scattering cross-section data with the higher moments fixed (within uncertainties) to the values predicted by chiral
perturbation theory. We obtain Rp = 0.855(11) fm. This number falls between the value obtained from muonic
hydrogen analyses and the CODATA value (based upon atomic hydrogen spectroscopy and electron-proton
scattering determinations).
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The measurement [1,2] of the Lamb shift in muonic hydro-
gen, E(2P3/2) − E(2S1/2), and its associated determination of
the root-mean-square electric charge radius of the proton,

Rp = 0.8409(4) fm, (1)

has led to a lot of controversy. The reason is that this determi-
nation is 7.1 standard deviations away from the CODATA
2010 [3] value of Rp = 0.8775(51) fm (and 5.6 standard
deviations away from the updated CODATA 2014 [4] value
of 0.8751(61) fm). The CODATA value is based on an average
of determinations coming from hydrogen spectroscopy and
from electron-proton scattering data.

Such a large discrepancy calls for an explanation. For the
Rp value obtained from the Lamb shift in muonic hydrogen,
the major criticism concerned the determination and error
analysis of the two-photon-exchange contribution needed for
obtaining Rp. On the one hand, dispersion relation analyses
were used (see, for instance, Refs. [5–9]). These assume
Regge behavior at large energies, which, at present, cannot
be directly derived from QCD. They also require very precise
knowledge of the elastic and inelastic form factors that enter
into those dispersion relations, as in some cases very precise
cancellations may occur. Nevertheless, the major concern is
that momentum-dependent subtraction functions were needed
to make the dispersion relation integrals convergent. Such
functions cannot be deduced from experiment and therefore
introduce some model dependence, which is difficult to
quantify, as emphasized in Ref. [10].

Chiral perturbation theory avoids all of these issues in
the calculation of the two-photon exchange contribution.
This contribution is chirally divergent (linearly in 1/mπ ),
and this linear divergence allows for a model-independent
prediction for the two-photon-exchange term, which avoids
the abovementioned dispersion relation analysis shortcomings.
The two-photon-exchange contribution has been obtained in a
series of papers [11–15]. The complete result can be found in
Ref. [14], where not only the strict chiral result but also the
leading contribution associated with the � particle (motivated
in the large-Nc approximation of QCD) is incorporated.

The introduction of this result into the muonic hydrogen
bound-state energy computation (which was done using
effective field theory techniques, see Refs. [16–20]) produced

the following value [21]:

Rp = 0.8413(15) fm. (2)

This value has a larger uncertainty than Eq. (1), but, never-
theless, it eliminates the model dependence, giving a model-
independent significance to the substantial discrepancy with
the CODATA value.

The other side of the discrepancy comes from the CODATA
average [3,4]. As mentioned, the CODATA value is an average
of determinations coming from hydrogen spectroscopy and
from electron-proton scattering. In this article we focus on
the determination of Rp from the precise electron-proton
scattering measurements of the MAMI Collaboration [22].
Their full analysis [23] leads to Rp = 0.879(8), in variance
with the muonic hydrogen value by 4.6 standard deviations.

The determination of Rp from electron-proton scattering
data has been discussed extensively in the literature [23–40].
The proton radius can be determined [24] from scattering data
from

Rp =
√

−3
dσred

dQ2

∣∣∣
Q2=0

+ 3μ2
p

4m2
p

, (3)

with
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d�
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where dσMott/d� is the Mott differential cross section,

ε =
[
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4Q2 + Q4
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p

8E2 − 2 Q2

mp
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,

τ = Q2/(4m2
p), E is the electron energy, and Q2 = −(pi −

pf )2, with pi and pf being the initial and final electron four-
momenta. Here, mp is the proton mass, μp = 2.792 847 4 is the
magnetic moment of the proton in units of nuclear magnetons,
and we use units with h̄ = c = 1. Note that Eq. (3) follows
from Eq. (4) because ε = 1 at Q2 = 0 for any energy E.

In principle, Rp could be determined from Eq. (3) from
sufficiently precise measurements of dσ/d� at small Q2,
because only the leading terms of the Taylor expansions of
the form factors,

GE(Q2) = 1 − R2
p

3!
Q2 + 〈r4〉E

5!
Q4 − 〈r6〉E

7!
Q6 + · · · (5)
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and

GM(Q2)

μp
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3!
Q2 + 〈r4〉M

5!
Q4 − 〈r6〉M

7!
Q6 + · · · ,

(6)

become necessary. However, with existing data, a functional
form for the Sachs form factors GE(Q2) and GM (Q2) must
be assumed to obtain a sufficiently accurate extrapolation of
the measured data to Q2 = 0. The first derivative of GM (Q2)
and the second derivative of GE(Q2) at Q2 = 0 (which are
proportional to the magnetic and electric moments 〈r2〉M
and 〈r4〉E , respectively) are of particular importance in this
extrapolation to Q2 = 0.

One can find strong arguments for why one should focus on
the low-Q2 part of the data to extract the proton charge radius.
The charged-pion-production threshold at Q2 = −4m2

π ≈
−0.078 GeV2 results in a branch cut in the analytically
continued form factor. Thus, one can seriously doubt attempts
at fitting (by polynomials or other functions, such as splines)
data beyond the value of Q2 = 0.078 GeV2 and having
confidence in an accurate determination of the slope of GE(Q2)
at Q2 = 0. Fits that include higher-Q2 MAMI data [22] also
require floating 31 normalization constants, and the floating
of these constants leads to considerable flexibility in the fits,
which also makes determination of the higher-order moments
more difficult.

However, concentrating only on low-Q2 data (Q2 <
0.078 GeV2) has not allowed for an accurate determination of
Rp, because this data cannot determine the necessary higher
moments (in particular, 〈r2〉M and 〈r4〉E) to sufficient accuracy
to allow for a precise extrapolation to Q2 = 0 of the required
first derivative of GE(Q2) [Eq. (3)]. Thus, out of necessity,
many attempts have been made to fit scattering data up to
higher Q2 to determine Rp while simultaneously determining
the higher-order moments.

In Ref. [24], it was shown that values of Rp ranging from
0.84 to 0.89 fm are possible from acceptable fits of the MAMI
data, with the value of Rp depending on the functional forms
of GE and GM that are used for the extrapolation to Q2 = 0.
In particular, the higher moments assumed by the different
functional forms lead to the wide range of Rp values. The
implication of that work [24] is that a precise value of Rp

cannot be obtained from electron-proton elastic scattering
unless precise lower-Q2 data become available or unless there
are external constraints on the functional form of GE(Q2)
and GM (Q2). The latter (external constraints on the functional
forms—as obtained from chiral perturbation theory) is the
main topic of this work.

As discussed above, the introduction of computations that
incorporate the correct chiral structure and the associated
power counting of the theory has allowed for a solution to
the theoretical problems that the muonic hydrogen determi-
nation of Rp was facing, allowing for a model-independent
determination of the two-photon exchange using pure chiral
perturbation theory.

Here we investigate if a similar analysis can shed some
light on electron-proton scattering, and, indeed, something
similar happens here. Chiral perturbation theory determines

TABLE I. Values of 〈rn〉E and 〈rn〉M in units of fm from chiral
perturbation theory. The first row is the pure chiral prediction (with
only pions), and the second row is the result after the inclusion of the
effects associated with the � particle. Uncertainties in the last two
digits are shown in parentheses.

〈r4〉E 〈r6〉E 〈r8〉E 〈r2〉M 〈r4〉M 〈r6〉M

π 0.71(36) 5.4(2.7) 104(52) 0.35(18) 0.71(35) 6.3(3.2)
π and � 0.60(29) 5.0(2.0) 99(37) 0.44(16) 0.79(28) 6.9(2.4)

the dominant (nonanalytic) dependence on the pion mass of
the different moments. For R2

p = 〈r2〉E , one obtains only the
logarithmic dependence, and therefore no accurate estimate
can be made. For the higher moments, and all magnetic
moments, however, one obtains answers for the moments
that are in inverse powers of the pion mass, which allows
for a determination of the leading term and an estimate
of the uncertainty based on the estimated effect of missing
higher terms. To obtain these moments, one needs the chiral
expressions of the Sachs form factors, first obtained in
Refs. [41–43]. The latter two references work in the heavy-
baryon formalism to third order, which is the formalism that
we use. Reference [43] also incorporates the �-particle effects
into the computation. Below the threshold imposed by the
branch cut (Q2 < 0.078 GeV2), these form factors are analytic
and can be Taylor expanded. From the Taylor expansion and
Eqs. (5) and (6), the moments can be determined. In Ref. [14],
one can find analytic expressions for 〈r2k〉E (k > 1). The
expressions for 〈r2k〉M are given in the Appendix of the present
paper, where we also give the purely chiral result for the Sachs
form factors in a compact form.

Values (and uncertainties) obtained in this way for
the lowest calculable electric and magnetic moments can
be found in Table I. Note that in all cases the correction
due to the � particle is quite small. The uncertainties in
the first row of the table are estimated to be of order
mπ/� ∼ 1/2, where � = m� − mp. The uncertainty in the
chiral perturbation theory contribution in the second row is of
order mπ/(mRoper − mp) ∼ 1/3, due to the Roper resonance.
This estimate is also large enough to include corrections of
order mπ/mρ , where mρ is the mass of the ρ meson. Finally,
the uncertainty of the contribution due to the � included
in the second row is estimated to be of order 1/Nc (where
Nc = 3 is the number of colors). In practice, we take the more
conservative estimate of 1/2 ∼ �/(mRoper − mp). A detailed
discussion of the uncertainty analysis is given in Ref. [14].
The overall uncertainty in the moments given in the final row
of Table I is approximately 30 to 40%.

To determine Rp, we fit the lowest-Q2 MAMI data using
Eqs. (5) and (6) [along with Eq. (4)], but fix the moments,
〈r2k〉E (for k � 2) and 〈r2k〉M (for k � 1), to be their predicted
values (second row of Table I) from chiral perturbation theory
(to within their uncertainties), while performing a least-squares
fit to determine Rp. The value of 〈r2〉E ≡ R2

p is the only
moment which chiral perturbation theory cannot determine
with sufficient accuracy, and thus it must be determined from
fitting to the data.
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FIG. 1. Shown is the fit of the MAMI data [22] up to Q2
max =

0.023 GeV2 (the largest Q2
max value considered in this work). The

quantity plotted is the experimental cross section, scaled as in Eq. (4),
with the contribution from the magnetic form factor (as predicted
from chiral perturbation theory) subtracted out. The derivative of
this quantity with respect to Q2 at Q2 = 0 gives the value of Rp

[Eq. (3)]. The fit uses the functional forms of Eqs. (5) and (6), with
Rp floating and the higher moments set to the values of Table I. The
different symbols (colors) represent separate data groups, with the
closed circles (blue), open circles (red), and open squares (green)
data taken at an energy of 180 MeV, the closed squares (magenta)
at 315 MeV, and the crosses (gray) at 450 MeV. Each group has a
separate normalization constant that must also float in the fit. Repeated
measurements within a data group at identical (or nearly identical) Q2

values have been averaged only for the purpose of aiding the clarity
of the presentation.

Our fitting procedure follows that described in Ref. [24].
Before performing the fits, we remove the Feshbach two-
photon-exchange correction and replace it with the more com-
plete two-photon-exchange correction calculated following the
prescription of Ref. [44]. For the low-Q2 data used in this work,
these corrections agree well with the low-Q2 two-photon-
exchange calculations of Ref. [45]. In fact, at the very low
Q2, which are of interest to the present work, the replacement
of the Feshbach correction is not very relevant, despite the fact
that the Feshbach correction ignores magnetic effects.

We perform fits to subsets of the MAMI data of variable
length, starting from the lowest available Q2 value up to some
chosen cutoff Q2

max values. Depending on our choice of Q2
max,

there are still either four or five normalization constants that
must also be determined by the fits. Our fits float these normal-
ization constants, along with the one remaining constant Rp

(the only one that cannot be determined from chiral perturba-
tion theory). In all cases, the fits return normalization constants
near unity (within 0.5% in all cases, i.e., well within the 2%
absolute normalization uncertainty of the measurements).

Figure 1 shows a typical fit used in this work. Shown in that
plot are the experimental MAMI measurements [scaled to give
σred, as in Eq. (4)], with the magnetic form factor contribution
(τ/ε)G2

M (as calculated from chiral perturbation theory—
Eq. (6) and Table I) subtracted out. This difference is an
estimate of G2

E , and the derivative of this quantity with respect
to Q2 at Q2 = 0 gives the value of Rp, as indicated in Eq. (3).

The data shown in the figure represent 270 measured cross
sections, within five data groups (shown by separate symbols),
with each data group having a separate floating normalization
constant. The fits use the original 270 MAMI measurements
and their uncertainties. For clarity of presentation, the figure
shows the average of cross sections taken at identical (or
nearly identical) Q2. The fits are performed with the central
value predicted for 〈r2k〉E (for k � 2) and 〈r2k〉M (for k � 1),
as shown in the final row of Table I. The fits are then repeated
for the full range of values for these moments that fall within
the uncertainties given in Table I.

The results of the radius Rp from these fits are shown in
Fig. 2(a), as a function of Q2

max, the maximum Q2 data that
is included in the fit. The range of Q2

max used is limited at
the lower end by the inability to obtain a precise fit using the
small amount of MAMI data with very low Q2. At the upper
end it is limited by three concerns. First, we wish to stop well
before Q2 = 0.078 GeV2, where, due to the charged-pion
threshold (at Q2 = −0.078 GeV2), the Taylor series is no
longer meaningful. Second, we restrict ourselves to Q2

max
values that give fits with a reduced χ2 of unity or better. Third,
we are restricted by the fact that the uncertainty in the chiral
perturbation theory predictions for 〈r2〉M and higher moments
makes a precise determination of Rp infeasible at larger Q2

max
values. The sensitivity to 〈r2〉M becomes particularly acute
for large scattering angles, which have a small value of ε
and therefore a large (τ/ε)G2

M contribution for the 180-MeV
scattering with Q2 above our range of Q2

max.
The uncertainties in the determination of Rp are due to a

combination of the statistical error from the least-squares fit
[the central (blue) region in Fig. 2(a)] and the uncertainties
in the moments (the largest from 〈r2〉M , but also from higher
electric and magnetic moments). Note that the uncertainty
in the determined Rp at the left of Fig. 2(a) (Q2

max = 0.012
GeV2, which includes 118 MAMI cross sections) is dominated
by the statistical uncertainty associated with the least-squares
fit. The value here is

Rp = 0.8538(104)f (42)M2(35)E4(1)M4(2)E6 fm

= 0.8538(117) fm. (7)

Here the f subscript indicates the fit uncertainty, and the M2,
E4, M4, and E6 subscripts indicate the uncertainties that
result from the uncertainties in the moments of Table I (in
the second row). The uncertainty at the right side of Fig. 2(a)
(Q2

max = 0.023 GeV2, which is a fit of 270 measured MAMI
cross sections) is dominated by the Table I uncertainties:

Rp = 0.8566(53)f (78)M2(59)E4(4)M4(6)E6 fm

= 0.8566(112) fm. (8)

The fact that the uncertainties at the two ends are dominated
by different concerns, and the fact that the values agree at
both ends, adds strength to our determination. We average the
values at the two ends to obtain our final determination of Rp:

Rp = 0.855(11) fm, (9)

where the uncertainty is chosen to be consistent with the
whole range of Q2

max shown in Fig. 2(a). This range is shown
by the dashed lines in Fig. 2(a).
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FIG. 2. (a) The range of Rp allowed by the fits as a function of Q2
max. The central (blue) region is the range of uncertainty from the fits. The

expanded (pink) range includes the uncertainty in 〈r2〉M . The largest (green) band includes the uncertainties in all of the higher-order moments,
and represents the full uncertainty in the determination. The dashed lines show the 0.855(11)-fm range of Eq. (9), which represents the final
result of this work. (b) A comparison of the result of this work to the original (Refs. [1,2]a) and chiral perturbation theory motivated (Ref. [21]b)
determinations of Rp from muonic hydrogen [1,2] and from muonic deuterium (Ref. [46]c, along with the hydrogen-deuterium 1S-2S isotope
shift of Ref. [47]), CODATA 2010 (Ref. [3]d ) and 2014 (Ref. [4]e), and the MAMI analysis of their electron-proton elastic-scattering data
(Ref. [23]f ).

The value of 〈r2〉M plays a major role in our determi-
nation, as can be seen from the uncertainties labeled M2
in Eqs. (7) and (8). Other methods for determining 〈r2〉M
report [22,48–51] larger values than the chiral perturbation
theory predictions shown in Table I. The Particle Data Group
reports [52] a value of 0.602(38) fm2 for 〈r2〉M , which
is larger (but within the uncertainty limits) of our value
of 0.44(16) fm2 in Table I. Introducing a larger value of
〈r2〉M into our fit would decrease the value of Rp, bringing
it significantly closer to the value obtained from muonic
hydrogen.

Our final result is compared to other determinations of Rp in
Fig. 2(b). Our value is higher (by 1.2 standard deviations) than
the values obtained from muonic hydrogen. It is also higher (by
1.7 standard deviations) than the value that can be determined
from a combination of a muonic deuterium [46] measurement
along with a hydrogen-deuterium isotope shift measurement
[47]. On the other hand, it is lower than the CODATA value
by 1.6 standard deviations and the MAMI prediction by 1.7
standard deviations.

The uncertainty in our determination of Rp [Eq. (9)] is an
order of magnitude larger than that of Eq. (2). One side effect
of this fact is that we do not have to concern ourselves with
a possible different definition for the proton radius (see the
discussion in Ref. [11]), because the difference is smaller than
the precision we have obtained here.

In summary, we have used chiral perturbation theory inputs,
along with fits of the precise MAMI electron-proton elastic-
scattering cross sections, to determine the root-mean-square
charge radius of the proton: Rp = 0.855(11) fm. This result
falls between the determinations of Rp obtained from muonic
hydrogen [Eqs. (1) and (2)] and the CODATA value. This work
is a step on the path to resolving the proton radius puzzle.
The work presented here should be directly applicable to the
analysis of ongoing and planned measurements [53] of elastic-
scattering cross sections at very low Q2.

This work was supported in part by Spanish Grants No.
FPA2014-55613-P and No. FPA2013-43425-P, by Catalan
Grant No. SGR2014-1450, and by the NSERC and CRC of
Canada.

APPENDIX

The electric and magnetic Sachs form factors can be written in the following form in the chiral limit (x2 = Q2/m2
π ):

GE(Q2) = 1 − R2
p

3!
Q2 + m2

π

288π2F 2
π

{
3

√
4

x2
+ 1

[
4 + x2 + g2

A(8 + 5x2)
]
ArcCsch

[
2

x

]
− 12 − 4x2 − g2

A(24 + 17x2)

}
, (A1)
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GM (Q2) = μp − g2
Ampmπ

32πF 2
π

{
− 2 +

(
4

x
+ x

)
ArcTan

[
x

2

]}
. (A2)

For k � 1 we have the following expression for the magnetic moments (which, in addition to the pure chiral result, also
incorporates the corrections associated with the � particle):

〈r2k〉M = (−1)k(2k + 1)!

2μp

1

m2k−1
π

mp

πF 2
π

{
− g2

A(−1)k

4k+1(1 − 4k2)
+ g2

πN�z−1

9π

[
(−1)k+1
2(k + 1)

k
(2k + 2)

+ 2

4k(1 − 4k2)

√
1 − z2

(
z2

1 − z2

)k

ln

(
2

z

)
+ (−1)k

√
1 − z2


2(k + 1)


(2k + 2)

k−1∑
s=0

1

k − s

(
1
2
s

)(
z2

1 − z2

)s

− (−1)k
√

1 − z2

(
1
2

k

)(
z2

1 − z2

)k

2(k + 1)


(2k + 2)

∞∑
s=1

(2s)!z2s
2F1

( − k, − s; 3
2 − k; 1 − 1

z2

)
22ss(s!)2

]}
, (A3)

where z = mπ/�, � = m� − mp, 2F1 is the hypergeometric function, and 
(n) is the Euler 
 function. The numerical values
for the masses and the coupling constants are taken from Ref. [43], except for gA = 1.2723(23), which we take from Ref. [52],
and gπN� = 3/(2

√
2)gA = 1.35, which we have fixed to the large-Nc prediction.

Note that the z−1 terms cancel in the total sum and the general structure of the moments is the following,

〈r2k〉M ∼ 1

m2k−1
π

[
1 + O

(
mπ

�

)]
, (A4)

up to single logarithms, as it should.

[1] R. Pohl et al., Nature 466, 213 (2010).
[2] A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro, F. Biraben,

J. M. R. Cardoso, D. S. Covita, A. Dax et al., Science 339, 417
(2013).

[3] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 84,
1527 (2012).

[4] P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88,
035009 (2016).

[5] K. Pachucki, Phys. Rev. A 60, 3593 (1999).
[6] A. P. Martynenko, Phys. At. Nucl. 69, 1309 (2006).
[7] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, 020102

(2011).
[8] M. C. Birse and J. A. McGovern, Eur. Phys. J. A 48, 120 (2012).
[9] M. Gorchtein, F. J. Llanes-Estrada, and A. P. Szczepaniak, Phys.

Rev. A 87, 052501 (2013).
[10] R. J. Hill and G. Paz, Phys. Rev. Lett. 107, 160402 (2011).
[11] A. Pineda, Phys. Rev. C 71, 065205 (2005).
[12] D. Nevado and A. Pineda, Phys. Rev. C 77, 035202 (2008).
[13] C. Peset and A. Pineda, Eur. Phys. J. A 51, 32 (2015).
[14] C. Peset and A. Pineda, Nucl. Phys. B 887, 69 (2014).
[15] J. M. Alarcon, V. Lensky, and V. Pascalutsa, Eur. Phys. J. C 74,

2852 (2014).
[16] E. E. Jenkins and A. V. Manohar, Phys. Lett. B 255, 558

(1991).
[17] W. E. Caswell and G. P. Lepage, Phys. Lett. B 167, 437

(1986).
[18] A. Pineda and J. Soto, Nucl. Phys. Proc. Suppl. 64, 428 (1998).
[19] A. Pineda and J. Soto, Phys. Lett. B 420, 391 (1998).
[20] A. Pineda and J. Soto, Phys. Rev. D 59, 016005 (1998).
[21] C. Peset and A. Pineda, Eur. Phys. J. A 51, 156 (2015).
[22] J. C. Bernauer, P. Achenbach, C. Ayerbe Gayoso, R. Böhm,
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