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An analytical solution based on the Laplace transformation technique for the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution equations is presented at next-to-leading order accuracy in perturbative QCD.
This technique is also applied to extract the analytical solution for the proton structure function, F; (x,Q?), in the
Laplace s space. We present the results for the separate parton distributions of all parton species, including valence
quark densities, the antiquark and strange sea parton distribution functions (PDFs), and the gluon distribution.
We successfully compare the obtained parton distribution functions and the proton structure function with the
results from GJRO8 [Gluck, Jimenez-Delgado, and Reya, Eur. Phys. J. C 53, 355 (2008)] and KKT12 [Khanpour,
Khorramian, and Tehrani, J. Phys. G 40, 045002 (2013)] parametrization models as well as the x-space results
using QCDnum code. Our calculations show a very good agreement with the available theoretical models as well
as the deep inelastic scattering (DIS) experimental data throughout the small and large values of x. The use of
our analytical solution to extract the parton densities and the proton structure function is discussed in detail to
justify the analysis method, considering the accuracy and speed of calculations. Overall, the accuracy we obtain
from the analytical solution using the inverse Laplace transform technique is found to be better than 1 part in 10*
to 10°. We also present a detailed QCD analysis of nonsinglet structure functions using all available DIS data to
perform global QCD fits. In this regard we employ the Jacobi polynomial approach to convert the results from
Laplace s space to Bjorken x space. The extracted valence quark densities are also presented and compared to
the JR14, MMHT14, NNPDF, and CJ15 PDFs sets. We evaluate the numerical effects of target mass corrections
(TMCs) and higher twist (HT) terms on various structure functions, and compare fits to data with and without

these corrections.
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I. INTRODUCTION

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equations [1—4] are a set of an integrodifferential
equations which can be used to evolve the parton distribution
functions (PDFs) to an arbitrary energy scale, Q%. The
solutions of the DGLAP evolution equations will provide us
the gluon, valence quark, and sea quark distributions inside
the nucleon. Consequently these equations can be used widely
as fundamental tools to extract the deep inelastic scattering
(DIS) structure functions (SFs) of the proton, neutron, and
deuteron to enrich our current information about the structure
of hadrons. The standard procedure to obtain the x dependence
of the gluon and quark distributions is to solve numerically
the DGLAP equations and compare the solutions with the
data in order to fit the PDFs to some initial factorization
scale, typically less than the square of the c-quark mass
Qé ~ (mg ~ 2 GeV?). The initial distributions for the gluon
and quark are usually determined in a global QCD analysis
including a wide variety of DIS data from HERA [5-10]
and COMPASS [11], hadron collisions at Tevatron [12—15],
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fixed-target experiments over a large range of x and Q?, as well
as v(V)N x F5 data from CHORUS and NuTeV [16,17] and
also the data for the longitudinal structure function Fi (x, 0%
[18]. Finally using the coupled integro-differential DGLAP
evolution equations one can find the PDFs at higher energy
scale, Q2. For the most recent studies on global QCD analysis,
see for instance [19-26].

Some analytical solutions of the DGLAP evolution equa-
tions using the Laplace transform technique, initiated by
Block et al., have been reported in recent years [27-37]
with considerable phenomenological success. In this paper, a
detailed analysis has been performed, using repeated Laplace
transforms, in order to find an analytical solutions of the
DGLAP evolution equations at next-to-leading order (NLO)
approximations. We also analytically calculate the individual
gluon, singlet, and nonsinglet quark distributions from the
initial distributions inside the nucleon. We present our results
for the valence quark distributions xu, and xd,, the antiquark
distributions x(d + %) and xA = x(d — %), the strange sea
distribution xs = x5, and finally the gluon distribution xg.
Using the Laplace transform technique, we also extract
the analytical solutions for the proton structure function
sz(x,Qz) as the sum of flavor singlet Fzs(x,QZ), Fzg(x, 0%
and flavor nonsinglet F)>(x,Q?) distributions. The obtained
results indicate an excellent agreement with the DIS data
as well as those obtained by other methods such as the fit

©2017 American Physical Society
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to the FY structure function performed by KKT12 [20] and
GJROS8 [38].

In the present work, we also demonstrate once more the
compatibility of the Laplace transform technique and the
Jacobi polynomial expansion approach at the next-to-leading
order and extract the valence quark densities as well as
the values of the parameter ax(M%) from the QCD fit to
the recent DIS data. The effect of target mass corrections
(TMCs), which are important especially in the high-x and
low-Q? regions, and the contribution from higher twist (HT)
terms are also considered in the analysis. To quantify the size
of these corrections, we evaluate the structure functions at
next-to-leading order in QCD, and compare the results with
the DIS data used in our PDF fits.

The present paper is organized as follows: In Sec. II, we
provide a brief discussion of the theoretical formalism of the
proton structure function F (x, Q?) at the NLO approximation
of QCD. A detailed formalism to establish an analysis method
for the solution of DGLAP evolution using the repeated
Laplace transforms for the singlet sector are presented in
Sec. III. In Sec. IV, we also review the method of the analytical
solution of DGLAP evolution equations based on Laplace
transformation techniques for the nonsinglet sector. In Sec. V,
we utilize this method to calculate the proton structure function
FJ(x,0Q?) by Laplace transformation. We attempt a detailed
comparison of our next-to-leading order results with recent
results from the literature in Sec. VI. We also discuss in detail
the use of our analytical solution to justify the analysis method
in terms of accuracy and speed. A completed comparison
between the obtained results and available DIS data is also
presented in this section. The application of the Laplace
transformation techniques and Jacobi polynomial expansion
machinery at the next-to-leading order are described in detail
in Sec. VII. The method of the QCD analysis including the
PDF parametrization, statistical procedures, and data selection
are also presented in this section. The numerical effects of
target mass corrections (TMCs) and higher twist terms (HT) on
various structure functions are also discussed. Finally, we give
our summary and conclusions in Sec. VIII. In Appendix A,
we render the results for the different splitting functions in
the Laplace transformed s space, and Appendix B includes
the analytical expression for the coefficient functions of the
singlet and gluon distribution in s space.

II. THEORETICAL FORMALISM

The present DIS and hadron collider data provide the best
determination of quark and gluon distributions in a wide
range of x [7,9,10]. In this article we will be concerned
specifically with the proton structure function at next-to-
leading order accuracy in perturbative QCD. In the common
‘M S renormalization scheme the F(x, 0?) structure function,
extracted from the DIS ep process, can be written as the sum of
flavor singlet F> s(x,Q?), F>, o(x, 0?) and flavour nonsinglet
F> ns(x, Q) distributions in which we will have

Fy(x,07%)
x

1
—(Ps(x, 0% + Fr4(x,0%) + Fans(x,0%)

(e*)Cas(x,0%) ® gs(x, 0%
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+(€)Cr(x,0%) ® g(x,0%)

+Cans(x,0%) ® gns(x,0%); (1

here g and ¢g; represent the gluon and quark distribution
functions respectively. The gns stands for the usual flavor
nonsinglet combination xu, = x(u — i), xd, = x(d — d) and
gs stand for the flavor-singlet quark distribution

Ny
xXqs = Zx(éh +4i),
i=1

where N denotes the number of active massless quark flavors.
In Equation (1) the ® symbol denotes the convolution integral,
which turns into a simple multiplication in Mellin N space,
and (e?) represents the average squared charge. C,s and
C, ns are the common next-to-leading order Wilson coefficient
functions [39]. The analytical expression for the additional
next-to-leading order gluonic coefficient function C,, can
be found in Ref. [39]. As we already mentioned, the gluon
and quark distribution functions at the initial state Q3 can
be determined by fit to the precise experimental data over a
large numerical range for x and Q2. The individual quark
and gluon distributions are parametrized with predetermined
shapes as a standard functional form. This function is given
in terms of x and a chosen value for the input scale Q3. The
gluon distribution xg(x, Qé) is a far more difficult case for
PDF parametrizations to obtain precise information due to the
small constraints provided by the recent data [20,25].

In the following, we will present our analytic method
based on the newly developed Laplace transform technique
to determine the non singlet Fys(x, 0?) and singlet Fs(x, 0%
and G(x, Q?) structure functions using the input distributions
Fnso(x, Q%), Fso(x, Q(Z)), and Go(x, Q%) at Q% =2 GeV>2. We
use the KKT12 [20] and GJRO8 [38] input parton distributions
to determine the individual parton distribution functions at an
arbitrary Q% > Q%, which can be obtained using the DGLAP
evolution equations. Having the parton distribution functions
and using the inverse Laplace transform, one can extract the
proton structure function sz (x,0?) as a function of x at any
desired Q2 value.

III. SINGLET SOLUTION IN LAPLACE SPACE AT THE
NEXT-TO-LEADING ORDER APPROXIMATION

For the most important high energy processes the next-
to-leading order approximation is the standard one, and we
consider it in our analysis. The DGLAP evolution equa-
tions can describe the perturbative evolution of the singlet
xgs(x,0?) and gluon xg(x,Q?) distribution functions. The
coupled DGLAP evolution equations at the next-to-leading
order approximation, using the convolution symbol ®, can be
written as [33,34]

4 an

2
w0) g )

4 94

(0%
4

2
=Fs® (P,fq + 2D pi )(x,QZ)

+G® (Pjg + qug>(x, 0%, )
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4

™)

:Fs®<Pg°q aif) gq>( .0%)
+G®<P§g 420D gg>( 0. 0

where a; (Q?) is the running coupling constant and the splitting
functions Pl.(;(x,aS(Qz)) and P(x,a,(Q?)) are the Altarelli-
Parisi splitting kernels at one- and two-loop corrections,
respectively as [4,40,41]:

Y(Q ) ———P"Ox). 4

J

Pyj(x.a(Q%) = PP(x) + ——

4

0T
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In the evolution equations, we take Ny = 4 form? < u* < m?

and Ny = 5form} < u? < m? and adjust the QCD parameter
A at each heavy quark mass threshold, 42 = m? and m3.
Consequently the renormalized coupling constant a,(Q?) can
be run continuously when the Ny changes at the ¢ and b mass
thresholds [42].

We are now in a position to briefly review the method
of extracting the parton distribution functions via analytical
solution of DGLAP evolution equations using the Laplace
transformation technique. By considering the variable changes
v =In(1/x) and w = In(1/z), one can rewrite the evolution
equations presented in Egs. (2) and (3) in terms of the
convolution integrals and with respect to v and 7t variables
as [27,28]

8—I:S(v,t) = /U (qu(v—w)—i- o (T )K (v—w))Fs(w T)dw-l-/v <I€qg(v_w)+ as(e )K (v—w)>G(u) dw (5)
0

47

aG v Y(r) Y a, (f)
—(W,7) = / < Kog(v —w) + ——— K (v — w)> Fs(w T)dw —i—/ ( Kyo(v —w) + K (v — w))G(w )dw, (6)
0

where the Q2 dependence of above evolution equations is expressed entirely thorough the variable T as r(Qz,Q%) =

% fQQ: a;(0"*)d In Q'*. Note that we used the notation Fs(v,7) =
0

Fs(e™", 0% and G(v,7) =

G(e™",0?). The above convolution

integrals show that, using one-loop Iég.(v) =e" Pi(}(e’”) and two-loop Iel.lj(v) =e " Pi}(e"’) kernels where the i and j are a

combination of quark ¢ or gluon g, one can obtain the singlet £5(v,7) and gluon G(v, ) sectors of distributions.

Defining the Laplace transforms f(s,t)

= E[Fs(v,t);s] and g(s,7) = E[G(u,r);s] and using this fact that the Laplace

transform of a convolution factors is simply the ordinary product of the Laplace transform of the factors, which have been
presented in Refs. [27,29], the Laplace transforms of Egs. (5) and (6) convert to ordinary first-order differential equations in
Laplace space s with respect to variable 7. Therefore we will arrive at

%(m) = (@LO( )+ ‘( )chLO( >> (s, 1)+ <@L°( )+ & . )ONLO(s))g<s 1), 7)
ag LO O‘s( ) < NLO LO s( ) NLO
S = (obg (5) + —— D} (s))g(s T) + (o (5) + ——ON(s ))f(s 1), ®)

whose the leading-order splitting functions for the structure function F,, presented in Refs. [4,43] in Mellin space, are given by

@, and OFP, at Laplace s space by

oo—g S L, 1, 2ye + ¥ s+ 1)), ©)
=4—-- —_— s
/ 3o+l Tap2 T
1 2 2
®° =2N; - (10)
: "ANl+s 245 345
ool 2 1 L v ) 22 (11)
= _—— —_ _ S _—,
8 s l4+s 24s 3+ VE 3
[
and results derived in Refs. [4,40,41]. The leading-order solution
of the coupled ordinary first-order differential equations in
QLo — §<% 2 + ! >’ (12)  Egs. (7) and (8) in terms of the initial distributions are
# 3\s 1+4+s 2+ straightforward. Considering the initial distributions for the

where the N is the number of active quark flavors, yg is the
Euler’s constant and i is the digamma function. The next-
to-leading order splitting functions dDNLO) and ®1\1ng are too
lengthy to be include here and we present them in Appendix A.
One can easily determine these next-to-leading order splitting
functions in Laplace s space using the next-to-leading order

gluon, go(s), and singlet distributions, f 0(s), at the input scale
05 =2 GeV?, the evolved solutions in the Laplace s space are
given by [27,29],

F(8.0) = kypp(s.7) fO(8) + ko (5.7)8°(s),

8(5.7) = kgg(5.7)8%(5) + kg (s.7) f2(s). (13)
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The inverse Laplace transform of coefficients k£ in the above
equations are defined as kernels K;;(v,7) = L’l[k,-j(s,r); v]
and the input distributions by F2(v) = L7'[f(s);v] and
G°(v) = £7'[g%s); v]. Then the following decoupled solu-
tions with respect to v and Q? variables and in terms of the
convolutions integrals can be written as

Fs(v, 0% = f ' Ker(v — w,7) FQ(w) dw
0
+ / Ko — w,nGow)dw,  (14)
0

G, 0% = fv Kog(v — w,7)Go(w)dw
0

+ / Ker(v — w, D) FQ(w)dw.  (15)
0

Considering the v = In(1/x), one can finally arrive at the
solutions of the DGLAP evolution equations with respect to x
and Q7 variables. As we mentioned earlier, the O dependence
of the distributions functions Fs(v,0?) and G(v,Q?) are
specified by t variable. Clearly knowledge of the initial
distributions Fg(x) and G°(x) at Qé is needed to obtain the
distributions at any arbitrary energy scale Q>

Now we intend to extend our calculations to the next-to-
leading order approximation for gluon and singlet sectors of
unpolarized parton distributions. In this case, to decouple and
to solve DGLAP evolutions in Egs. (7) and (8) we need an extra
Laplace transformation from 7 space to U space. The U will
be a parameter in this new space. In the rest of the calculation,
the o (t)/4m is replaced for brevity by a(t). Therefore the
solution of the first-order differential equations in Eqs.(7)
and (8) can be converted to

UF(s,U) = f(s)
= @) F(s.U) + D}O(s) Lla(r) f(5.7): U]
+00()G(s,U) + ©F(s) La(v)g(s,7); UL, (16)
UG(s,U) = g°(s)
= 0%()G(5,U) + ®yO(s) Lla(r)g(s,7); U]
+ OF%()F(s,U) 4+ ©F(s) Lla(r) f(s,7); U] (17)
We can consider a very simple parametrization for a(t) as
a(t) = ap. Generally to do a more precise calculation at the

next-to-leading order approximation, one can consider the
following expression for the a(t) as [28]

a(t) ~ ag+aje . (18)

This expansion involves excellent accuracy, to a few parts
in 10*. Using a(t) defined in the above equation and the
conventions which were presented in Refs. [27,29], the
following simplified notations for the splitting functions in
s space can be introduced by

D 4(s) = PQ(s) + ag P} Os),

O 14(s) = ©;°(s) + @O} (s). (19)
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Equations (16) and (17) can be solved simultaneously to get
the desired coupled algebraic equations for singlet 7 (s,U) and
gluon G(s,U) distributions, arriving at

[U — ® ()1 (s,U) — © ((s)G(s,U)
= f0s) + ar [@F () F(s,U + by)
+OYO()G(s.U + by)], (20)
—O,($)F(s,U) + [U — D,(5)1G(s,U)
= 8%s) + a1 [0 () F(s,U + by)
+ Y O()G(s,U + by)]. @21

The simplified solutions of above equations can be obtained
by setting a; =0 in Eq. (18). For a(r) = ag, Egs. (20)
and (21) lead us to

(U — @ ()Fi(s,U) — Of(5)Gi(s,U) = fOs), (22)
—O()Fi(s,U) + [U — D()IG1(s,U) = g°%5).  (23)

One can easily solve these equations and extract the F(s,U)
and G;(s,U) distributions. The results are clearly based on
the input quark f°(s) and g°(s) gluon distribution functions
at Q3. Using the Laplace transform technique, it is possible
to go back from U space to T space, leading to the desired
f(s,7) and g(s,7) expressions. The complete solutions of
Egs. (20) and (21) can be obtained via iteration processes.
The iteration can be continued to any required order but
we will restrict ourselves to getting a sufficient convergence
of the solutions. Our results show that the second order of
iterations is sufficient to get a reasonable convergence. Using
the iterative solution of Egs. (20) and (21) and the inverse
Laplace transform technique to get back from U space to
T space, the following expressions for the singlet and gluon
distributions can be obtained [27,29,35]:

f(s,7) = kyp(ar,bi,s,7) £20s) + kpo(ar,bi,s,7) g°(s),
8(s,7) = kgg(ar,b1,s,7) §°(s) + kgr(ar,by,s,7) fs), (24)

The analytical expressions for the next-to-leading order ap-
proximation of coefficients ks, kg, ko7, and kgg up to the
desired steps of iteration are given in Appendix B. Using
Laplace inversion in Eq. (24) from s to v space, we can arrive to
the decoupled solutions (v, 7) space as the result of convolution
defined by the Egs. (14) and (15).

As a brief description, we have used the Laplace transform
algorithm presented in Refs. [31,32] for the numerical inver-
sion of Laplace transformations and convolutions to obtain the
required parton distribution functions. The analytical result
at the LO approximation is given by Eq. (13). Employing
the iterative numerical method through Eqgs. (16)—(23), up to
desired order to achieve a sufficient convergence, will yield us
the analytical expressions for the patron densities in s space
at the NLO approximation given by Eq. (24). To return the
distributions to the v space we need to convolution integral,
Egs. (14) and (15), in both LO and the NLO approximations.
The Q2 dependencies of the solutions are determined by the t
variable and, recalling that v = In(1/x), the solutions can be
transformed back into the usual x space. Consequently, one
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can obtain the singlet and gluon distributions as Fg(x, Q%) and
G(x, Q%) respectively.

We have used the numerical Laplace transform algorithm
presented in Refs. [31,32] for the numerical inversion of
Laplace transformations and convolutions to obtain the parton
distribution functions and structure function in x and Q2 space.

IV. NONSINGLET SOLUTION IN LAPLACE SPACE AT
THE NEXT-TO-LEADING ORDER APPROXIMATION

Here we wish to extend our calculations to the next-
to-leading order approximation for the nonsinglet sector
of the parton distributions. For the nonsinglet distribution
Fxs(x,0?%), one can schematically write the logarithmic
derivative of Fys as a convolution of nonsinglet distribution

Fxs(x,Q?) with the nonsinglet splitting functions, p;;qO'NS

and pg}O’NS [4,40,41]. Therefore the next-to-leading order

contributions for the Fyg(x, Q%) can be written as
4 d FNS
a;(Q%) d1In Q?

(x,0%

(0%
= Fxs ® (pg,?’Ns + = pg’qLO'NS>(x,Q2). (25)
Again changing to the required variable, v = In(1/x), and
going to the Laplace space s, we arrive at the simple solution
as

Y3 v
S ) = fo (pb,?’“(v—w)

ot .
+ () )pNLO’NS(v - w)) Fns(w,0)e” " dw.

4 T
(26)
Going to Laplace s space, we can obtain the first-order

differential equations in Laplace space s with respect to the ©
variable for the nonsinglet distributions fns(s,7):

i (@)
%(S,T) = <q>§(s) + 0[41-[ quégq)st(S,t), 27

The above equation has a very simplified solution:
fNS(Sa T) = eTCDNS(S)fIgS(S)v

where ®ng(s) contains the next-to-leading order contributions
of the splitting functions at s space, defined as

(28)

Prs(5) = PRY(S) + = BNS, o). (29)
The evaluation of CDII:%’?]q(s) = L[e"’p%‘o’Ns(e’“);s] is
straightforward but too lengthy to present here. The ana-
lytical results for the unpolarized splitting functions in the
transformed Laplace s space at the next-to-leading order
approximation are given in Appendix A. The Q? dependence
of the evolution equations is represented by t at the leading
order approximation and by 7, at the next-to-leading order
approximation which the latter one defined as [27,29,35],

1 [F 1\* 2
= —/ a(thdt = — /
47T 0 47'[ Q(Z]

2

a2(Q"*) d1In Q. (30)
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Since all parts of the current analysis are done at the next-
to-leading order approximation, we should use the 1, variable
as well. However to simplify in notation, the t variable is used
instead throughout the whole paper.

Similar to the singlet case, any nonsinglet solution,
Fns(x, 0?), can be obtained using the nonsinglet kernel Kns =
L7 [e™®s®); v], which is defined by

Fns(v,7) =/ Kxs(v — w) Fs(w)dw. 31)
0

Using again the appropriate change of variable, v = In(1/x),
the solution of Eq. (31) can be converted to the usual
(x,Q?) space. The iterative numerical method of Laplace
transformations at the NLO approximation is followed by the
convolutions based on Egs. (14) and (15). For the numerical
inversion of Laplace transformations and convolutions to
obtain the appropriate PDFs and SFs in x and Q2 space,
we again used the numerical inversion routine presented in
Refs. [31,32].

V. PROTON STRUCTURE FUNCTION Ff (x, Q%)
IN LAPLACE SPACE

We perform here a next-to-leading order analytical analysis
for the proton structure function F; (x,Q?) using the Laplace
transform technique. The results for singlet, gluons, and
nonsinglet parton distributions which we obtained in previous
sections are used to extract the nucleon structure function. The
next-to-leading order proton structure function F2p (x, 0?) for
massless quarks can be written as [1-4]

ny

Fy(x,0%) = ) el x{Cy(x,0,) ® [gi(x,0%) + Gi(x, Q)]

i=1

+C,(x,05) ® g(x, 0}, (32)

where C,; and C, are the next-to-leading order quark and gluon
Wilson coefficients, and g;, g;, and g(x,Q?) are the quark,
antiquark, and gluon distributions, respectively. We exactly
follow the method that we introduced before to solve the
DGLAP evolution equations analytically, to drive the proton
structure function at the next-to-leading order approximation
first in Laplace s space and then in Bjorken x space. As we
already mentioned, only the initial knowledge of singlet F, SO (x),
gluon G°(x), and nonsinglet Fﬁs(x) distributions is required
to solve the DGLAP evolution equations via the Laplace
transform technique.

For our numerical investigation, we use the KKT12 [20]
and GJRO8 [38] parton distribution functions at Q(z) =2 GeV>.
The valence quark distributions xu, and xd,, the antiquark
distributions x(d + %) and xA = x(d — %), the strange sea
distribution xs = x5, and the gluon distribution xg of the
KKT12 and GJRO8 models are generically parametrized via
the standard functional form

xq = agx" (1 — x)0(1 + dyx’" + e x), (33)
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subject to the constraints that fol u,dx =2, fol d,dx = 1,and
the total momentum sum rule

1
f x[uy +dy + 23 +d +5)+ gldx = 1. (34)
0

After changing to the variable v = In(1/x) and using the
Laplace transform ¢(s) = L[e""g(e™");s], one can easily
obtain Eq. (33) in Laplace s space,

q(s) = ay(B[1 + c4,by + 51+ ey B[1 +¢c4,1 4+ by + 5]
+dq B[1+anbq+fq +S]) (35)

We use the following standard parametrizations in Laplace
s space at the input scale Q% =2 GeV? for all parton types
xq;, obtained from GJRO8 set of the free parton distribution
functions [38]:

uy(s) = 0.5889(B[4.7312,0.3444 + s]
—0.175B[4.7312,0.8444 + 5]
+17.997 B[4.7312,1.3444 + 5]),  (36)
dy(s) = 0.2585(B[5.8682,0.2951 + s]
— 1.0552 B[5.8682,0.7951 + ]
+ 26.536 B[5.8682,1.2951 +51),  (37)
d(s) — ii(s) = 7.2874(B[19.756,1.2773 + s]
—6.3187 B[19.756,1.7773 + 5]
+ 18.306 B[19.756,2.2773 + s1),  (38)
d(s) + ii(s) = 0.2295(B[9.8819, — 0.1573 + s]
+0.8704 B[9.8819,0.3427 + 5]
+ 8.2179 B[9.8819,0.8427 + s]),  (39)
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where B is the common Euler beta function. The strange quark
distribution function is assumed to be symmetric (xs = x5)
and it is proportional to the isoscalar light quark sea, which
parameterized as

k -
s(s) = 5(s) = 5ld(s) + a(s)], (41)

where in practice k is a constant fixed to k = 0.5 [20,38].

The proton structure function F; (x, Q?)in Laplace s space,
up to the next-to-leading order approximation, can be written
as

FPU ) = F.0) + FE 6.1 + FSs.1), (42)

where the flavor singlet F> and gluon F§ contributions read

fzs(s,t) = (gZﬁ(s,t) + éZJ(s,r) + é2§(s,r))
x (1 v %C‘(I”(s)), (43)

FS(s.0) = gg(s,w(%c;”(s)). (44)

Finally the nonsinglet contribution for three active (light)
flavors is given by

fé"s(s,r) = <guv(s,t) + %dv(s,r)> <1 + %Céh(s)),

(45)

where the C{(s) and C{"(s) are the common next-to-leading
order approximations of Wilson coefficient functions, derived
in Laplace s space by c,(s) = Lle ¢ (e7");s] and cy(s) =

§(5) = 13667 B4.3258, 0105 +s1, @0y 7 SPEET
|
CcV(s)=C —9—2—”2— 2 L0 2 L4
g W= EF 3 (I+s?  1+4s Q+sP2 2+s
2Aye + ¥+ 2ye +¥is +3
3y + UG + D]+ [VE 1ﬁ(5 )] Ve zti(ss )]
+ %(nz F6[ye + Y(s + DI — 69/(s + 1) + 49/ (s + 1)), (46)
2 2 16 4 16
(1) — _ _ _
Ce (S)_f<(1+s)2 T+s Q152 245 BGts? 3+s
Cye YD) |, Ave + ¥+ D] Alye + vl + 4] w
1+s 2+s 3+s ’

Once again the Q2 dependence of proton structure function in
2

Eq. (42) is evaluated by 7(Q%,03) = 7~ [5 a,(Q*)dIn Q7.
0

— 4r
The final desired solution of the proton structure functions
in Bjorken x space, F/""#"(x,0?), are readily found using
the inverse Laplace transform and the appropriate change of
variables.
The next-to-leading order contribution of heavy quarks,
Fi"’b(x, 0?), to the proton structure function can be calculated

(

in the fixed flavor number scheme (FFNS) approach
[20,44-50], and will yield the total structure functions
as sz’mml(x,Qz) = sz’hgm(x,Qz) + F,-heavy(x,Q2) where the

Fy lieht (v 02) refers to the common u,d,s (anti)quark

and gluon initiated contributions, and Fl.heavy(x, 0% =
F§(x,0%) + Fi(x,?) are the charm and bottom quark struc-
ture functions. We should mention that for the F/"°“ only its
light contribution is derived by Laplace transform technique.
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FIG. 1. Our results for the nonsinglet distribution, xu,(x, Q) and
xd,(x,0?), using Eq. (31), and comparison with the global QCD
analysis of GJRO8. The x-space results from the QCD evolution
package, QCDnum, are also presented (dashed line).

Its heavy contribution results from the usual Mellin transform
technique. In the present analysis we use the GJRO8 values
for m. = 1.30 and m; = 4.20, which slightly differ from the
KKT12 default values of m, = 1.41 and m; = 4.50.

VI. THE RESULTS OF THE LAPLACE
TRANSFORMATION TECHNIQUE

In this section, we present our results that have been
obtained for the parton distribution functions and proton
structure function F2‘” (x,0% using the Laplace transformation
technique to find an analytical solution for the DGLAP
evolution equations. We obtain the valence quark distributions,
xuy(x,0?) and xd,(x,Q?), using Eq. (31) and compare them
with the next-to-leading order GJRO8 results. Since the GJRO8
Collaboration started their evolution at Q% =2 GeV?, we
used Fyg, FY, and G° constructed from their values at Q3 in
Eq. (33). The results for the evolved nonsinglet distributions
are depicted in Fig. 1. To double-check and indicate the
sufficient precision of our analysis, we have also used the QCD
evolution package, QCDnum [42] and linked it to the LHAPDF
[23] package for the GJRO8 PDFs, which directly render the
parton densities in x space. As can be seen from the related
figures, a good agreement between our results and the other
ones exists. It indicates the evolution works well beyond the
charm quark mass threshold, Q% > Q3 (*m2 =2 GeV?). In
this figure the straight line represents the solution resulting
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FIG. 2. Sea quarks and singlet distributions in comparison with
the next-to-leading order results of GJRO8 model. The gluon distri-
bution are also shown. The solid line corresponds to Q% = 10 GeV?
and the dashed line corresponds to Q> = 20 GeV?. The results from
the QCD evolution package, QCDnum, are also presented (dash-dotted
and dash—double-dotted lines).

from the Laplace transform technique, and the red circles
represent the valence quark distributions from GJRO8 global
QCD analysis. The dashed line indicates the results arising
from QCDnum evolution package. One can conclude that the
agreement, over the large span of 0 < x < 1, is quite striking.
The accuracy of the present analysis has been investigated and
is typically better than about 1 part in 10° at small and large
values of Bjorken x for the up-valence quark distribution xu,,.
For the down-valence quark distribution xd,, disagreements
between our calculation and the GJRO8 results are less than
1-2% for 0 < x < 0.2.

In Fig. 2, the results for sea quark and singlet distributions
are shown and compared with the next-to-leading order
analysis of the GJRO8 model as well as QCDnum evolution
package. However, some researchers are reporting the sin-
glet solution rather than the individual distribution for sea
quarks; but following the technique which was introduced in
Refs. [41,51], it is possible to present separately the see quark
distributions. The analytical solution for the gluon distribution,
G(x,0% = xg(x,Q?), is also shown. All distributions are
obtained from Eq. (24) in (s,7) space and then converted to the
(x, Q%) space, using the convolution integrals in Eq. (14). The
results indicated by the solid line correspond to Q% = 10 GeV?
and the ones indicated by the dashed line correspond to
Q? =20 GeV>. The strange sea distribution xs = x5 and
its comparison with the next-to-leading order results of the
GJRO8 model are also shown in Fig. 3 at Q% = 10 GeV? and
Q? =20 GeV". This figure indicates that the obtained results
from the present analysis based on the Laplace transform
technique are in good agreement with the ones obtained by
global QCD analysis of GJRO8 for the parton distribution
functions and also the obtained results from the QCD evolution
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FIG. 3. The strange sea distribution xs = xs in comparison with
the next-to-leading order results of GJRO8 model. The solid line
corresponds to Q2 = 10 GeV? and the dashed line corresponds
to 0% =20 GeV>. The results from the QCD evolution package,
QCDnum, are also presented (dash-dotted and dash—double-dotted
lines).

package QCDnum. One can conclude from Figs. 2 and 3 that the
agreements between our results and GJRO8 global analysis are
excellent over the entire range of momentum fraction x and
the virtuality Q%. We found slightly disagreements between
x space results calculated from the QCDnum package and the
GJRO8 analysis which are 1.5-2% for all parton species except
for the gluon distribution. It is clear from the mentioned plots
that, over the enormous Q2 and x spans, our analytic solutions
are in satisfactory agreement with the GJRO8 analysis.

A detailed comparison has also been shown with the
next-to-leading order results from the KKT12 global QCD
analysis and depicted in Fig. 4. In this figure our analytical
solution based on the Laplace transform technique is presented
for sea and singlet distributions as well as for the gluon
distribution G(x, Q%) = xg(x,0%) at 0% = 100 GeV?. The
analytical solution arises from Eq. (24), which is related to
the KKT12 initial distributions at Q2 = 2 GeV?.

The results of analytical solutions for all parton distribution
functions clearly show significant agreement over a wide range
of x and Q? variables. The only serious disagreements which
we found between our calculations and the KKT12 results are
for xu + xii and xd + xd distributions, which are smaller than
2-2.5% at 0.01 < x < 0.1.

As a numerical illustration of our analytical approaches at
the next-to-leading order approximation of the total proton
structure function, sz (x,0%), we compare our results with
the GJRO8 proton structure function and depict them in
Figs. 5 and 6. A comparison with E665 data at fixed-target
experiments [52] and H1 inclusive deep inelastic neutral
current data [8] are also shown there. The results for the total
proton structure function F'°“'(x,0?) have been presented
as a function of x (both for large and small x) at Q7 =
9.795 and 25 GeV?. It is seen that our analytical solutions
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FIG. 4. Sea quarks, gluon, and nonsinglet distributions and
comparison with the results from next-to-leading order KKT12 global
QCD analysis at 0% = 100 GeV>.

based on the inverse Laplace transform technique at the
NLO approximation for the proton structure function over
a wide range of x and Q? values correspond well with the
experimental data and the QCD analysis performed by GJRO8
analysis. One can conclude that, in spite of small disagreement

2 : : :
—— Laplace

NLO
L5 Q’=9.795 GeV’ LR

F," Q")

0.5

!

0.001 0.01 0.1 1
X

0
0.0001

FIG. 5. The next-to-leading order approximation of the total
proton structure function, sz’m'al(x, 0?), as a function of x at Q% =
9.795 GeV?2. The input distributions are obtained from the GJROS
model [38]. Here the straight line represents our result, using the
Laplace transform technique, and the red circles represent the proton
structure function arising from the GJRO8 global QCD analysis. A
comparison with the E665 experimental data [52] is also shown.
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FIG. 6. The next-to-leading order approximation of the total
proton structure function, Fz‘”mml(x,Qz), as a function of x at
Q% = 25 GeV?. The input distributions are obtained from the GJRO8
model [38]. Here the straight line represents our result, using the
Laplace transform technique, and the red circles represent the proton
structure function arising from the GJRO8 global QCD analysis. The
square and up-triangle signs represent the the E665 experimental
data [52] and H1 inclusive deep inelastic neutral current data [8],
respectively.

for the parton densities, we found a satisfactory agreement for
the proton structure function over a wide range of x and Q2.
The overall disagreement is found to be 1 part in 10°.

Based on our obtained results for the next-to-leading order
proton structure function, Fj (x, 0?), and its good agreement
with other theoretical models as well as experimental data,
one can evaluate the parton distributions functions at the input
scale Q% by performing a global QCD fit to the all available
and up-to-date DIS and hadron collision data, using the Jacobi
polynomial approach. We plan to present our detailed QCD
analysis based on the analytical calculation in the next section.

VII. JACOBI POLYNOMIALS TECHNIQUE
FOR THE DIS ANALYSIS

Global analysis of deep-inelastic scattering (DIS) data in the
framework of QCD provides us with new knowledge of hadron
physics and serves as a test of reliability of our theoretical
understanding of the hard scattering of leptons and hadrons.
Various QCD analyses, both for polarized and unpolarized
cases, can be constructed using all available data from fixed-
target experiments, DIS data, and the precise data from hadron
colliders. For further literature on various PDFs models, we
refer the reader to review articles [19,53—63]. The kinematics
spanned by each DIS data set used in our fit are described in
Secs. VI A.

We shall focus here on the nonsinglet (NS) structure func-
tions, F)*(x,0?), with their corresponding Laplace s-space
moments MM (s,0?) in order to perform a QCD analysis
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of deep inelastic scattering data up to the next-to-leading
order (NLO). Based on a popular parametrization for the
parton distribution functions (PDFs), we apply the Jacobi
polynomial formalism. We consider a wide range of DIS data
corresponding the momentum transfer from low Q% > 2GeV?
to high 0% ~ 30000 GeV? where the approach still works
reasonably. In this section, we first give an introductory
description of the Jacobi polynomial approach, as the method
of our QCD analysis for the nonsinglet (NS) structure functions
and the procedure of the QCD fit to the data.

In the common M S factorization scheme, one can obtained
the relevant F, structure function up to NLO from the combi-
nation of nonsinglet, flavor singlet, and gluon contributions of
Eqgs.(43)—(45).

In Laplace s space, the combinations of parton densities at
the valence region x > 0.3 for the proton structure function
MQ in NLO can be written as

P _(? 1 T oo 7 Ps ()
M (s,T) = (9uv(s)+ 9dv(s)> (1 + o C, (s) |e .
(48)

In the above region, the combinations of parton densities for
the deuteron structure function Mg are also given by
5 T
Mi(s,7) = 75 (o) + dv(s))<1 + EC;D(S)> T,
(49)
where d = £ ;" . In the region of x < 0.3, for the difference of
proton M} and deuteron M¢ data we use

MIZ\IS(S,‘[) = 2(/\/15 — Mg)(s,r)

x (1 + %C;D(s))ef%m. (50)

Since sea quarks cannot be neglected for x smaller than about
0.3, in our calculation we suppose the d — i distribution from
JR14 [57] at Q3 = 2 GeV? to be

x(d — w)(x,0F) = 37.0x**(1 — x)"2(1 + 2.1/%).  (51)

As we mentioned at the beginning of this section, the
method we have employed is using the Jacobi polynomial
expansion of the structure functions. The details of the Jacobi
polynomial approach are presented in our previous work [64].
Here we outline a brief review of this method. According to
this approach, using the Jacobi polynomial moments a, (Q?),
one can reconstruct the structure function as

Ninax
2f @0 =21 =) Y an(@HO; (), (52)

n=0

where Ny« is the number of polynomials and @ff’ﬁ (x) are the
Jacobi polynomials of order #,

Ot =Y a.p)x, (53)

j=0
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in which ci.")(a,,B ) are the coefficients that are expressed
through I" functions and satisfy the orthogonality relation with
the weight w*# = xf(1 — x)* as follows:

1
/ dx xP(1 — x)*O%F (x)O%P (x) = S (54)
0
Using the above equations, we can relate the proton, neutron,
and nonsinglet structure functions with their Laplace s-space
moments,

Ninax

FP N, 0%) = xP(1—0)* Y 03P (x)
n=0

x> @M = 4+ 1,00,

j=0
(55)

where M} ’d’NS(s,QZ) are the moments in Laplace s space
presented in Eqs. (48)—(50) for the proton, neutron, and
nonsinglet structure functions. Here the Q2 dependence of
the structure functions will be provided by the Q2 dependence
of their moments in the Laplace s space. We consider Nyax
to be 9, o to be 3.0, and S8 to be 0.7 to achieve the fastest
convergence of the above series [64—66].

A. Method of the QCD analysis

In this section, we present the details of the analysis which
our analysis is based. We begin with a short discussion of
the parametrization chosen for the various flavour PDFs. We
then present a detailed discussion on the data set used and
kinematic cuts applied. The method of the minimizations also
will be discussed. Then we present the results of the analysis
and describe the approach taken in this analysis.

PDF parametrizations

For the parametrization of the PDFs at the input scale Q(z),
chosen here to be 2 GeV?, a standard five-parameter form is
adopted for valence parton species f:

xity (x, 03) = Nox® (1 — )P (1 + yu/x + 1,%),
xdy (x,02) = Nyx®(1 — x)P1(1 + ya/x + 14x). (56)

This form applies to the up-valence xu, = xu —xii and
down-valence xd, = xd — xd distributions. The normaliza-
tion factors, N, and Ay, will be fixed by fol uydx =2

and fol dydx = 1, respectively. In the Laplace s space, the
normalizations N, and N are fixed by L[e u,(e™");s =
0] =2 and L[e "d,(e™");s = 0] = 1, respectively.

Data sets

Our valence PDFs are obtained by fitting to a global
database of over 572 data points from a variety of high energy
scattering processes. The data sets used in this analysis are
listed in Table I. These include deep-inelastic scattering data
from BCDMS [67-69], SLAC [70], and NMC [71,72] experiments.
The BCDMS data were collected at CERN and both proton and

PHYSICAL REVIEW C 95, 035201 (2017)

deuterium targets were used in the same experiment. These
data sets facilitate flavor separation of PDFs at large x. The
NMC experiment was also performed at CERN. The NMC data
span lower values of x and Q2 and, due to the better coverage
of the small-x region, those data are also sensitive to the isospin
asymmetry in the sea distribution.

The DIS data from H1 [73] and ZEUS [74] Collaborations
are also included. New data sets from combined measurement
of H1 and ZEUS Collaborations at HERA for the inclusive
etp scattering cross sections are also added [10]. As one can
see from Table. I, we use three data samples: for sz (x,0%
and F(x,(Q?) in the valence quark regions x > 0.3 and for
FZNS(x, 0% = 2[F2p(x, 0% — F2d(x,Q2)] in the region of x <
0.3. Before the fitting process, we apply different cuts on data
samples in order to widely eliminate the higher twist (HT)
effects. Cuts on the kinematic coverage of the DIS data have
been made for Q? > 4 GeV? and on the hadronic mass of
W? > 12.5. An additional cut on the BCDMS data (y > 0.35)
and on the NMC data (Q? > 8 GeV?) was also applied. The
DIS data used in our fit and the number of data points for each
experiment after the cuts are listed in Table I. The numbers of
reduced data points by the additional cuts are given in the fifth
column of the table. This reduces the number of data points
from 467 to 248 for Fy (x, 0%), from 232 to 159 for F} (x, 0?),
and from 208 to 165 for FZNS(x, 0?).

Statistical procedures

Agreement between the data sets and our theory predictions
is quantified by the following X;,?lobal functional:

Nexp
2 2
Xaobal = 9 Wn X (57)

n=1
in which

ata 2
= <1 3 Nn>2 * NZ AL ik L S
Xn = A-/\/’n j\/n AFZ]?ldtd ’

i=1

where FP* and F,"™” stand for the measurement and
theory predictions, respectively. AFy is the measurement
uncertainty (statistical and systematic combined in quadrature)
and i stands for i th data pointin the fit. AN, is the experimental
normalization uncertainty and V), is the overall normalization
factor which should be obtained from the fit to the data and
then kept fixed. The minimization of the above nglobal value
to determine the best fit parameters of the valence parton
distributions is done using the CERN program minuit [75].
The value of x?/n.d.f. computed according to Eq. (57) for the
used data sets is given in Table II. The description quality
is good enough for all data. This value is comparable to
1, therefore, the data can be easily accommodated in our
fit. The uncertainties on the observables and on the PDFs
throughout this paper are computed using well-known Hessian
error propagation, as outlined in Refs. [25,62,63,76-80], with
Ax? = 5.86, which corresponds to a 68% confidence level
(C.L.) in the ideal Gaussian statistics.
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TABLE L. Data sets used in our analysis, with the corresponding number of data points (a) Fy (x, 0?), (b) Fz" (x,0?), and (c) FzNS (x,0%
for the nonsinglet QCD analysis with their x and Q? ranges. The names of different data sets and ranges of x and Q? are given in the three
first columns. The normalization shifts are listed in the last column. The details of corrections to data and the kinematic cuts applied on data

are contained in the text.

Experiment X 0% (GeV?) Ff F! cuts N
(a) FJ(x,Q?) data points
BCDMS (100) 0.35-0.75 11.75-75.00 51 29 0.9984
BCDMS (120) 0.35-0.75 13.25-75.00 59 32 0.9968
BCDMS (200) 0.35-0.75 32.50-137.50 50 28 0.9986
BCDMS (280) 0.35-0.75 43.00-230.00 49 26 1.005
NMC (comb) 0.35-0.50 7.00-65.00 15 14 0.9996
SLAC (comb) 0.30-0.62 7.30-21.39 57 57 1.0000
H1 (hQ2) 0.40-0.65 200-30000 26 26 1.0015
ZEUS (hQ2) 0.40-0.65 650-30000 15 15 1.0000
H1 (comb) 0.40-0.65 90-30000 145 21 1.0000
Proton 467 248
Experiment x 0? (GeV?) F{ Fjyl cuts N
(b) F{(x,Q?) data points
BCDMS (120) 0.35-0.75 13.25-99.00 59 32 1.0069
BCDMS (200) 0.35-0.75 32.50-137.50 50 28 1.0048
BCDMS (280) 0.35-0.75 43.00-230.00 49 26 1.0038
NMC (comb) 0.35-0.50 7.00-65.00 15 14 0.9987
SLAC (comb) 0.30-0.62 10.00-21.40 59 59 0.9961
Deuteron 232 159
Experiment X 0% (GeV?) F)S F)S cuts N
©) FZNS(x, 0?) data points
BCDMS (120) 0.070-0.275 8.75-43.00 36 30 0.9987
BCDMS (200) 0.070-0.275 17.00-75.00 29 28 0.9929
BCDMS (280) 0.100-0.275 32.50-115.50 27 26 0.9997
NMC (comb) 0.013-0.275 4.50-65.00 88 53 1.0002
SLAC (comb) 0.153-0.293 4.18-5.50 28 28 1.0010
Nonsinglet 208 165

B. Target mass corrections (TMCs)

It is important to consider all sources of corrections in

a QCD analysis which may contribute to a comparable
magnitude, such as target mass corrections (TMCs) [81,82].
In this section, we will focus on the target mass corrections,
which formally are subleading 1/Q? corrections to leading
twist structure functions. Their effects are important at large
values of x and moderate Q2, which coincides with the region

TABLE II. Parameter values of the NLO nonsinglet QCD fit at
Q32 = 2 GeV?. The parameters values without error have been fixed
after the first minimization.

Next-to-leading order (NLO) fit

U, o 0.7108 = 0.1295
B. 3.3595 + 0.027
Vi 0.2979
M 1.3440
d, o 0.9467 + 0.0261
Ba 2.8468 + 0.3130
Va 1.1004
N ~1.1330
aN=4(02) 03521 4 0.0139
x2/n.d.f 521.303/563 = 0.92

where parton distribution functions (PDFs) are not very well
determined. Consequently, a reliable perturbative QCD based
analysis which includes data in the low- Q? region demands an
accurate description of the TMCs. To study the effect of TMCs,
we follow the method presented in Refs. [64,81,83,84] to
determine the analytical form in Laplace s space. The moments
of flavor nonsinglet structure functions in the presence of
TMCs and in the Laplace s space have the following form:

Mg,TMC(SvQ2) = ﬁ[ TMC(e v.0 s)
= Mh(s, 0 + ——— (ZIZ> ME(s +2,0%
(s + 3)2 m%\,
2T (s — DI(s + 5) <_2> 35 +4.0%
[(s +4HI(s +35)
e () M 6.0)

L+ +7) (m3y ik 2
24T(s — DI'(s +9) <_> Mals 8,07

0
2\’
w(E) , (59)
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TABLE III. Parameter values of the NLO HT fit at Q2 = 2 GeV~.

NLO

h(x) o = 1.089 B =1.132 y = 0.960

where higher powers (mfv /O?)" (n > 2) are negligible for the
relevant x < 0.8 region. Consequently, we can neglect these
higher order parts. By inserting Eq. (59) into Eq. (52), one can
obtain

Nmax
Fy™MCx, 0% = xP(1 -0 Y 01 (x)
n=0

<Y e, BY M e + 1,07

Jj=0
(60)

In this equation M5 1(j + 1,0Q?) are the moments deter-
mined by Eq. (59). The effects of TMCs on the PDFs and the
corresponding observables will be illustrated in Sec. VIID.
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FIG. 7. The parton densities xu, and xd, at the input scale Q(Z) =
2 GeV?. The uncertainties of our PDFs (yellow band) correspond to
a 68% confidence level (C.L.) with A nglobal = 5.86. The dashed line
is the BBG PDF [90], the dashed-dotted line is the CJ15 PDF [63],
and the dashed—double-dotted line is the result from GJRO8 [46].
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FIG. 8. The parton densities xu,(x, Q%) and xd,(x,Q?) at the
scale of Q% = 10 GeV?. The dashed line is the JR14 PDF [57], the
dashed-dotted line is the NNPDF2.3 model [91], and the dashed—
double-dotted line is the result from the MMHT 14 group [19].

C. Higher twist (HT) corrections

In addition to the important role played by TMCs at large
values of x and moderate Q?, the effects of higher twist (HT)
corrections are also significant [85-89]. Consequently, in the
context of parton distribution analyses, the study of higher
twists is also important in its own right. In addition to the
kinematic cuts (Q2 > 4 GeV?, W? > 12.5 GeV?) we apply in
our analysis, we also take into account higher twist corrections
to the proton sz (x,0% and deuteron structure functions
de(x, 0?) for the kinematic region Q> > 4 GeV?, 4 < W? <
12.5 GeV?2. For this purpose, we extrapolate our QCD fit results
to this region.

In practice, higher twist contributions are usually
parametrized independently from the leading twist one with
some function of x, which is typically polynomial in x. In
the region where the power corrections are non-negligible for
the case of the DIS data, they are defined within an entirely
phenomenologically motivated ansatz, as follows:

FIT(x,0%) = Oryc[ FIMC(x,0%)] (1 " h(x’—Qz)> 61)
2 S 02[GeV?] )’
where F2T MC(x,0?) are given by Eq. (60). In the above
equation, the operation Orycl- - -] denotes taking the target
mass corrections of the twist—2 contributions to the respective
structure function. As we mentioned, the coefficients A (x, QZ)
are determined in bins of x and Q? and are then averaged over
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FIG. 9. Comparison of proton structure function F, data from
BCDMS, SLAC, NMC, H1, and ZEUS with our theory predictions, as a
function of Q? for fixed values of x. The pure QCD fit in next-to-
leading order is shown as a solid line, the contributions from target
mass corrections (TMCs) are shown as a dashed line, and the higher
twist (HT) correction is shown as a dashed-dotted line.

Q2. The x shape of the higher twist contributions is defined
by the following expression:

xP
h(x) = oc( — y). (62)
1—x

This choice of h(x,Q?) provides sufficient flexibility of the
higher twist terms with respect to the data analyzed. To perform
higher twist QCD analysis of the nonsinglet world data, we
consider the Q2 >4 GeV?, 4 < W2 < 12.5 GeV? cuts. The
parameter values of the h(x) function were fitted to the data
simultaneously with the valence PDF parameters and the value
of Aqcp. The corresponding parameter values are presented
in Table III. One can see the sensitivity of the fit to the higher
twist terms in Sec. VIID.

D. Results of QCD fit

In this section, we present the results of our global QCD
analysis which is based on the analytical solution based on
Laplace transform technique and Jacobi polynomial approach.
The parameter values of the next-to-leading order nonsinglet
QCD fit at the input scale of Q% =2 GeV? are presented
in Table II. The parameters values without error have been
fixed after the first minimization since the present data do
not constrain these parameters well enough. From the table,
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FIG. 10. Comparison of the structure function Fy data from
BCDMS, SLAC, and NMC with our theory predictions, as a function
of Q? for the fixed values of x. The pure QCD fit in next-to-leading
order is shown by a solid line, the contributions from target mass
corrections (TMCs) shown as a dashed line, and the higher twist
(HT) correction is shown as a dashed-dotted line.

one can find rather stable PDF central values. The value for
aNi=*(Q?) has also been obtained from the fit. This result
can be expressed in terms of (x_Y(Mﬁ), which corresponds to
a;(M2) = 0.1173 £0.0011.

The obtained valence-quark PDFs themselves are displayed
in Fig. 7 at the input scale of Q% =2 GeV? along with their
A Xg210ba1 = 5.86 (68% C.L.) uncertainty bands computed with

the Hessian approach, for xu,(x,Q3) and xd,(x,Q3). For
comparison, we also show the results from BBG [90], GJRO8
[46], and up-to-date results from CJ15 [63] PDFs.

For the higher value of Q? (=10 GeV?), we plot our
xuy(x,0%) and xd,(x,0?%) parton densities in Fig. 8. The
valence-quark densities from several recent representative
NLO global parametrizations including JR14 [57], NNPDF2. 3
[91], and MMHT14 [19] are also shown for comparison. As
this plot shows, the results of our analysis and from different
parametrizations are in good agreement.

The quality of the fit to the data is illustrated in Fig. 9, where
the inclusive proton sz structure functions from BCDMS, SLAC,
NMC, H1, and ZEUS are compared with our next-to-leading
order fit as a function of Q2 at approximately constant values
of x. The data have been scaled by a factor ¢, from ¢ = 1 for
x = 0.75to ¢ = 15 for x = 0.35. The vertical arrowed line in
the plot indicates the regions with W? > 12.5 GeV>.
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FIG. 11. Comparison of BCDMS and NMC data for the nonsinglet
structure function F3® with our QCD predictions at next-to-leading
order.

In Fig. 10, detailed comparisons of the deuteron structure
function de data from the BCDMS, SLAC, and NMC experiments
are shown with the theory predictions of our fit. The results
have been plotted as a function of Q2 with the corresponding
x ranges. The data have been scaled by a factor ¢, from ¢ = 1
for x = 0.75 to ¢ = 15 for x = 0.35.

Comparisons to data from BCDMS and NMC experiments for
the nonsinglet structure function F)*° are shown in Fig. 11.
The data have been scaled by a factor ¢, from ¢ = 0.2 for
x =0.275to ¢ = 2.6 for x = 0.0125.

One can see that our theory predictions based on analytical
solutions using Laplace transform and Jacobi polynomials
provide a very good description of the data. When the
effects of target mass corrections (TMCs) and higher-twist
(HT) corrections are included, the agreement between theory
prediction and the data become strikingly better. Figures 9
and 10 clearly present this result. The agreements between the
theory prediction for F; and de structure functions (including
TMCs and HT) and data, over several decades of Q2 and x,
are also excellent.

VIII. SUMMARY AND CONCLUSION

We presented the next-to-leading order decoupled analyti-
cal evolution equations for singlet Fs(x, Q?), gluon G(x, Q?),
and nonsinglet Fys(x,Q?) distributions, arising from the
coupled DGLAP evolution equations in the Laplace s-space.
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We then rendered the results for valence quark distributions
xu, and xd,, the antiquark distributions x(E +u) and xA =
x(g — u), the strange sea distribution xs = x5, and the gluon
distribution xg initiated from KKT12 and GJRO8 input parton
distributions at Q% = 2 GeV?2. In this work, we also calculated
the proton structure function FJ(x,Q?) using directly the
Laplace transform technique, derived from corresponding
analytical solutions for singlet Fy(x,Q?), Fy(x,Q?) and
nonsinglet Fst(x, 0?) structure functions. To determine the
proton structure function at any arbitrary Q? scale, we only
need to know the initial distributions for singlet, gluon, and
nonsinglet distributions at the input scale Q%. The method
presented in this analysis enables us to achieve a strictly
analytical solution for parton densities and structure function
in terms of the x variable. We observed that the general
solutions are in satisfactory agreements with the available
experimental data and other parametrization models. In further
research activities we hope to report the results of the Laplace
transform technique to get analytical solutions for heavy quark
contributions of the proton structure function. Extension of
the current result to the higher, next-to-next-to-leading order
(NNLO) approximation is also a valuable task to pursue in
future.

We also applied our approach to extract the initial valence-
quark densities xu, and xd, from fits to DIS data for the
nonsinglet sector. The Laplace transform technique and Jacobi
polynomial approach were used to performed the analysis.
When using this approach, the target mass corrections (TMCs)
and higher twist (HT) effects are taken into account in the
analysis. The obtained results are in satisfactory agreement
with the DIS data and other phenomenological models.
We hope to apply these techniques to a global fit of the
experimental neutrino-nucleon structure function x F3(x, Q?)
data in order to determine at, the NLO approximation, the
valence-quark distributions xu,, and xd,,, which can be used for
the interpretation of results from future neutrino experiments.

In summary, there are various numerical methods to solve
the DGLAP evolution equations to obtain the quarks and
gluon parton distribution functions. In this paper we have
shown that the methods of the Laplace transform technique are
reliable alternative schemes to obtain the analytical solution
of these equations. The advantage of using such a technique
is that it enables us to achieve strictly analytical solutions
for the proton distribution functions sz (x, 0?) in terms of the
Bjorken x variable and virtuality Q2.
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APPENDIX A: THE LAPLACE TRANSFORMS OF SPLITTING FUNCTIONS AT THE NLO APPROXIMATION

CDNLO @NLO

We present here the Laplace transforms of the splitting functions for quark and gluon sectors, denoted by and
respectively at the next-to-leading order approximation which we used in Egs. (19) and (29). We fixed the usual quadratic Casimir
operators to their exact values, using C4 = 3, Tr = f, and Cr = 4/3. ¥/ (s) is defined by ¥ (s) = %lnr‘(s) and yr = 0.577216
is the Euler-Lagrange constant.
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APPENDIX B: THE COEFFICIENT FUNCTIONS OF SINGLET AND NONSINGLET DISTRIBUTIONS IN THE LAPLACE
S SPACE AT THE NLO APPROXIMATION

We present here the Laplace transformed for the coefficient functions of the singlet and gluon distributions which we used in
Eq.(24).
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where R is defined as

(B4)

R z\/(cbf — D)2 +40,0),. (B5)
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