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Dynamical formation of center domains in quark-gluon plasma
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We study the formation of domain structures due to spontaneous breakdown of center symmetry at high
temperatures in quenched QCD. We develop a phenomenological model for the explicit propagation of the
Polyakov loop as the relevant order parameter of the deconfinement phase transition. The surface tension in the
equation of motion is fit in comparison with lattice QCD data. Results give insight into the dynamical formation
of center domains as well as the formation of energy bands along domain walls and let us estimate the required
time to form such structures above the critical temperature.
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I. INTRODUCTION

The term quark-gluon plasma (QGP) denotes a state of mat-
ter, supposedly present in the early universe until about 10−5 s
after the Big Bang. This primordial phase is characterized
by the deconfinement of color charges and the restoration of
chiral symmetry. Nowadays, the necessary energy densities to
recreate a QGP are reached in heavy-ion collision experiments
such as the Relativistic Heavy-Ion Collider (RHIC) at BNL or
the Large Hadron Collider (LHC) at CERN.

The transition from confinement to deconfinement is fairly
well understood for pure gauge quantum chromodynamics
(QCD), where it is possible to define an order parameter, the
so-called Polyakov loop, related to the spontaneous breakdown
of Z(3) center symmetry at high enough temperatures [1].
For this case, lattice QCD data finds a first-order phase
transition at Tc = 270 MeV. With the inclusion of dynamical
quarks, the transition temperature is significantly lowered
to Tc = 150–160 MeV and the phase transition is smeared
out to an analytic crossover [2,3]. At high temperatures, the
Z(3) symmetric Polyakov loop potential has three degenerate
minima, leading to a domain structure in the deconfined phase,
where center symmetry spontaneously breaks into different
gauge configurations in different spatial regions. Lattice QCD
studies have confirmed the existence of these center domains
for the SU(2) gauge group [4–6] and later for SU(3) [7–10].
The formation of such structures necessarily comes with
domain walls, interpolating between the different values of
Z(3) in neighboring domains [11,12]. Center domains have
been claimed to provide a simultaneous explanation for two
distinct properties of QGP, namely, the low ratio of shear
viscosity over entropy density η/s and jet quenching [13],
properties that have been experimentally confirmed at the LHC
[14].

Domain formation via bubble nucleation at the
confinement-deconfinement transition has been studied within
an effective model in [15,16] both for quenched QCD and
including dynamical quarks. In this work, the authors studied
the evolution of QGP phase bubbles via the Kibble mechanism
[17,18] in a confining background in (2+1) dimensions,
leading to Z(3) domains separated by domain walls and strings.
It was shown that these structures cause inhomogeneities
in the energy density even after cooling below Tc, possibly

influencing dilepton or direct photon distributions. It was
argued furthermore that the expansion of these energetic
fronts in the medium might leave imprints in experimentally
detectable flow coefficients.

Our research here focuses on developing a dynamical model
for an effective Polyakov loop field to describe the dynamical
breaking of center symmetry and the formation of domains in
the deconfined phase. For this purpose, we propose an effective
Lagrangian consisting of a Polyakov loop potential from fits
to lattice QCD and a phenomenological kinetic term, similar
to what has been done in [19–22]. We study the evolution
of the Polyakov loop field in an isothermal heat bath in
(3+1) dimensions, considering the relaxational dynamics after
temperature quenches to the plasma phase. Effects of the heat
bath are included by using a Langevin equation of motion. This
enables us to include thermal fluctuations and thus compare
results to recent lattice QCD studies at finite temperature [9].
Comparison of the correlation length to the one obtained in [9]
allows us to fix the coefficient in front of the kinetic term in
the region around Tc. We are then able to study percolation of
domains above the transition temperature and give estimates
for formation times to better understand the possible role and
relevance of these domain structure for heavy-ion collision
experiments.

This paper is organized as follows: We begin with a
description of the model in Sec. II, followed by the numerical
procedure in Sec. III. In Sec. IV, we fit the surface tension
from lattice QCD correlation lengths and discuss formation
procedures and estimate formation times in Sec. V. We
conclude with a summary and outlook in Sec. VI.

II. EFFECTIVE MODEL

Confinement can be mathematically described by the
Polyakov loop potential. The fundamental Polyakov loop is
defined as

L(�x) = 1

3
trP exp

[
ig

∫ 1/T

0
A4(τ,�x)dτ

]
, (1)

where P denotes the path-ordering operator, g is the strong-
coupling constant, T is the temperature, and A4 is the temporal
component of a static gluon background field in Euclidean
space-time.
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From fits of lattice QCD data in the pure gluon sector, it
is possible to obtain a polynomial potential for the Polyakov
loop [23–29]. In our work, we use the version from [29],

U (L,T ) =
[
−b2

2
|L|2 − b3

6
(L3 + L̄3) + 1

4
(|L|2)2

]
b4T

4,

(2)
with the temperature-dependent coefficient

b2(T ) = [(1−1.11/x)(1+0.265/x)2(1+0.3/x)3−0.487]/r2,

(3)

and the parameters b3 = 2/r, b4 = 0.61r4, where x = T/Tc

and r = 2.23. This potential leads to an expectation value
of 〈L〉 = 0 at temperatures T < Tc with Tc = 270 MeV.
Above Tc, spontaneous symmetry breaking leads to three
degenerate states 〈L〉 = ei2νπ/3, with ν = 0,1,2 the three
elements of the center subgroup Z(3). The transition at Tc

is of first-order type. In the presence of dynamical quarks,
it becomes an analytic crossover and the Z(3) symmetry is
also explicitly broken, preferring the state 〈L〉 = 1 at high
temperatures. One can account for this by adding a term
proportional to L to the potential in Eq. (2) as shown in
[30–33]. Note that as this potential is obtained from lattice
QCD fits in equilibrium, it is well determined around the
respective minima, but afflicted with uncertainties away from
them. As discussed in [13], the logarithmic form would lead
to values of L ≈ 0 along the domain walls representing gauge
configurations similar to those in the confined phase. Within
our dynamical model, we will demonstrate the emergence of
these walls in Sec. V.

Effective potentials for the Polyakov loop are often used in
low-energy models such as the Polyakov loop Nambu-Jona-
Lasinio (PNJL) model [34,35] or the Polyakov-Quark-Meson
(PQM) model [36,37].

As the Polyakov loop carries no explicit time dependence,
we apply an effective theory based on an effective Lagrangian
of the form

L(L,T ) = σT 2
c

2

∣∣∂μL
∣∣2 − U (L,T ), (4)

with the parameter σ playing the role of a surface tension;
cf. [20]. It is clear that σ will influence the domain size and
therefore we shall assume it to be temperature dependent,
σ ≡ σ (T ). The factor of T 2

c has been added to account for
the right dimensions in the fluctuation term [19]. From the
Lagrangian, we can obtain the equation of motion

σT 2
c ∂μ∂μL + ∂U (L,T )

∂L
= 0. (5)

To capture the effect of thermal fluctuations, we go beyond
this classical equation by using a Langevin equation of motion
including dissipation and noise in a thermalized heat bath:

σT 2
c ∂μ∂μL + η

∂L

∂t
+ ∂U (L,T )

∂L
= ξ. (6)

The dissipation coefficient η has been estimated in [20,38] by
studying the exponential growth of the correlation function
of the Polyakov loop within Glauber dynamics of pure SU(3)
lattice gauge theory. Relating Monte Carlo time and real time

as in [39] provides us with a value of η = 5/fm3. The stochastic
noise field ξ is Gaussian and white, and follows

〈ξ (x,t)ξ (x ′,t ′)〉 = 2ηT δ(x − x ′)δ(t − t ′) (7)

from the dissipation-fluctuation theorem. From Eqs. (4) and
(5), it is clear that the correlation length ξ depends on the
coefficient σ as ξ ∼ √

σ . It has been shown in [7,9] that in
quenched QCD, the cluster size d = 2ξ is constant below Tc

at about 0.5 fm and then linearly rising above Tc, thus signaling
the phase transition. The authors argued that the value of
0.5 fm proves reasonable as it resembles the size of a heavy
quark meson. We therefore assume a quadratic increase of
σ with temperature above the phase transition and use the
following ansatz for the kinetic coefficient:

σ =
{

σ0 if T � Tc

σ0 + a
(

T −Tc
Tc

)2
if T > Tc.

(8)

In a next step, we fix the constants σ0 and a from the simulation
by extracting the correlation length ξ and comparing it with
the values obtained in [9]. The ansatz in Eq. (8) is of course an
oversimplification as we neglect the curvature of the Polyakov
loop potential which also influences the correlation length. It
is also not clear if the linear rise in the cluster size is at some
point halted as the data provided in [9] only reaches up to
1.2 Tc.

III. NUMERICAL SETUP

To study the evolution of the center domains, we numeri-
cally solve the equation of motion (6) in (3+1) dimensions. We
apply periodic boundary conditions for the spatial coordinates
on a cubic lattice with 2003 sites, large enough to contain
several larger domains at higher temperatures. We correlate
the noise field over a volume of (1/T )3 for each box with
given temperature T as we expect the correlation length to
be of the order of 1/T . We chose the lattice spacing to be

xNcorr = 1/T with Ncorr = 4, following [40] such that for
each box, the noise field is correlated over a volume of N3

corr
cells. Finally, we set the time step to 
t = 0.01 · 
x to ensure
numerical stability. At time t = 0 fm, the Polyakov loop L =
|L|eiφ is initialized with a flat distribution in its argument φ and
a Gaussian with width 0.1 in the modulus |L|, corresponding
to small fluctuations around the low-temperature expectation
value of L = 0. Note that Eq. (5) does not include the Hubble
term; thus we neglect the effects of an expanding medium and
consider a static box only.

IV. DOMAIN SIZE

Our first goal is to determine the behavior of the kinetic
coefficient σ as a function of T . We use the temperature
values studied in [9] as quench temperatures above Tc and
then determine the correlation length ξ from the two-point
correlation function of the imaginary part L2 of the Polyakov
loop L = L1 + iL2,

C(|x − y|) = 〈L2(x)L2(y)〉T ∝ e−|x−y|/ξ , (9)
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FIG. 1. Correlation length of the Polyakov loop from our dynam-
ical model compared to the results obtained on the lattice in [9].

taking the average 〈·〉T over an ensemble with the same
temperature T . The value of L2 serves to distinguish different
types of domains which are characterized by L2 = 0, L2 =
sin(2π/3), and L2 = − sin(2π/3). For the real part L1, only
two different values occur. Alternatively, one could use the
argument φ of L.

After setting the temperature in our box to the desired
value above Tc, we follow the evolution of the system to the
deconfined phase, where the small initial fluctuations amplify
and form center domains. As soon as the evolution has come
to a halt and no more domains form or merge, we determine
ξ from the correlation function (9). We tune our input σ such
that the cluster diameter d = 2ξ equals the equally obtained d
from the lattice calculation [9]. From a fit of σ as function of T
according to Eq. (8), we finally obtain the values σ0 = 0.004
and a = 4.3. Next, we use σ (T ) to calculate the domain size
for several values of T , ranging from 0.5 to 1.3 Tc, and show
the result in Fig. 1. We see a clear resemblance between the
data from our dynamical model and the lattice QCD results
in the limited range investigated in [9]. In both cases, the
phase transition is clearly indicated by the sudden increase in
d. For temperatures above the provided lattice QCD data, the
cluster diameter from our model no longer increases linearly
with temperature. This is due to the obvious oversimplification
in our ansatz (8), where we neglected the curvature of the
potential as an influence on the correlation length. Calculations
of the volume of the largest percolating cluster in [10] show
that above Tc, this volume increases less strongly with growing
temperature. We may therefore expect a similar behavior for
the average diameter, thus at least qualitatively justifying our
result.

V. DYNAMICAL DOMAIN FORMATION

To give an estimate for the formation time of domains, we
use the standard deviation of L2 over all cells in our box,

σ (L2) =
√

〈(δL2)2〉V , (10)

with δL2 = L2 − 〈L2〉V and the average 〈·〉V taken over all
cells in our volume V . We expect σ (L2) to saturate at some
value as soon as the dynamical formation of domains in the
isothermal heat bath has settled. We show this quantity as a
function of time in Fig. 2 for several quench temperatures. Note

FIG. 2. Time evolution of the standard deviation of L2, indicating
the formation of center domains in different quench scenarios.

here that the temperature is increased directly at t = 0 fm. We
obtain values in the range between 17.0 and 50.0 fm for the
formation. This formation time increases with temperature
as with increasing surface tension σ , the velocity ∂L/∂t
decreases. We point out that the obtained curves lie closer
and closer with increasing quench temperature, indicating a
slowing down in the increase of the formation time. For center
domains to play a relevant role in heavy-ion experiments, one
needs to consider two things: First, the average domain volume
should be smaller than the volume of the medium created
after the collision, and second, the formation time has to be
smaller than the lifetime of the QGP. Both quantities have been
determined by Hanbury-Brown-Twiss (HBT) measurements
[41] who found a homogeneity volume at LHC of around
300 fm3, twice the size as at RHIC. This volume would be
enough to contain several smaller domains, given the average
domain size does not exceed about 7 fm for LHC or 5.5 fm
for RHIC. The decoupling time has been determined to reach
up to 10–11 fm at LHC energies in comparison to 7–8 fm
at RHIC, well in agreement with previous transport model
simulations [42]. Therefore, taking into account our estimates
for the required formation time, the possibility of domain
formation at the LHC seems doubtful. However, it would be
favorable to extend results to higher temperatures and also
consider an expanding medium to simulate the situation in
a heavy-ion collision. Work in this direction is currently in
progress.

It is instructive to follow a visualization of the evolution of
center domains. We show plots of the imaginary part of L in
Fig. 3 for constant value of z, corresponding to the curve of
T = 1.1 Tc in Fig. 2. Center domains then appear as regions of
the same color. We choose four distinct times, namely, at the
beginning of the steep increase of σ (L2) (t = 20 fm), during
the increase (t = 30 fm), at its end (t = 40 fm), and at the end
of the simulation (t = 50 fm). In the first two plots, the shape
of the domains becomes more distinct while the field values
move towards their respective equilibrium values. In the next
two plots, we see the domains further sharpen in the edges and
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FIG. 3. The imaginary part of the Polyakov loop for constant z at T = 1.1 Tc and times (a) t = 20 fm, (b) t = 30 fm, (c) t = 40 fm, and
(d) t = 50 fm. The formation and merging of domains can be clearly observed.

observe some domains merging with neighboring domains of
the same type. It is important to note that these domains are all
continuously connected and there is no abrupt change in the
values, but a smooth transition between volumes with different
Z(3) configuration. This border is characterized by a gauge
configuration corresponding to the confined low-temperature
phase, as already discussed in Sec. II. We demonstrate that this
different gauge configuration effectively leads to a difference
in the energy (see Fig. 4), which shows the energy density 
U
above the ground state at time t = 50 fm, corresponding to
the plot of L2 in Fig. 3(d). Here, we clearly see bands of high
energy at the edges of the center domains.

This is an important observation as these borders might act
as potential barriers in two ways: Soft partons with thermal
momenta will reflect on the domain walls which effectively
limits their free wavelength, resulting in a small value of η/s.
Hard partons, on the other hand, may cross these walls under
the emission of soft gluon radiation. Reflection of these gluons
on the walls then makes the jet energy rapidly isotropic [13].
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FIG. 4. Energy borders on the surfaces of the center domains at
T = 1.1 Tc and t = 50 fm.
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It would be interesting in the future to extend our model such
that it can describe these two effects and estimate their impact
on shear viscosity and jet quenching.

VI. SUMMARY AND OUTLOOK

In this article, we have introduced an effective model to
describe the formation of Z(3) center domains via dynamical
symmetry breaking in pure gluon QCD. We have fixed the
surface tension in our equation of motion to obtain correlation
lengths corresponding to the latest lattice QCD results. Our
model signals the phase transition via a sudden increase in the
size of center domains. We observed the mechanism of domain
formation after a temperature quench, through the formation
of small bubbles and the subsequent merging of bubbles with
the same gauge configuration into domain structures. We were
able to give estimates for the formation time, ranging from
17–50 fm, larger than the estimated lifetime of the QGP at
LHC energies. Although the presented results cover only a
limited range up to 1.3 Tc, we see that the formation time
increases less and less with increasing temperature.

Finally, we have demonstrated the occurrence of energy
bands along the walls of domains, which have previously
been claimed to be a possible explanation for the simultaneous
emergence of low η/s and jet quenching.

We are going to continue our work by considering the
effects of dynamical quarks though a linear term in the
effective potential for the Polyakov loop, indicating the explicit

symmetry breaking present in full QCD. We expect that in
this case, domain formation will also occur, as lattice QCD
calculations with dynamical quarks also lead to the formation
of similar structures above the transition temperature [43].
Furthermore, dynamical models have also found domain
formation if explicit symmetry breaking is taken into account
[44]. Without a first-order phase transition, it can be expected
that near Tc, the transition between the two phases proceeds
more rapidly in a dynamical setup as there is no barrier to
overcome, which significantly decreases the formation time
for these scenarios. We are going to continue our work by
considering the effects of dynamical quarks though a linear
term in the effective potential for the Polyakov loop. To
study the situation after the collision of two nuclei, it would
furthermore be instructive to couple this model to a full (3+1)-
dimensional hydrodynamical expansion to better understand
what happens to center domains during expansion and cooling.
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