
PHYSICAL REVIEW C 95, 034614 (2017)

Microscopic optical potential for 6He

Hairui Guo,1,* Haiying Liang,2 Yongli Xu,3 Yinlu Han,2,† Qingbiao Shen,2 Chonghai Cai,4 and Tao Ye1

1Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
2Key Laboratory of Nuclear Data, China Institute of Atomic Energy, P.O. Box 275(41), Beijing 102413, China

3College of Physics and Electronic Science, Shanxi Datong University, Datong 037009, China
4College of Physics, Nankai University, Tianjin 300071, China

(Received 21 April 2016; revised manuscript received 19 February 2017; published 27 March 2017)

The microscopic optical potential for 6He with no free parameters is obtained by folding the microscopic
optical potentials of its constituent nucleons with the internal wave function of 6He. We use the isospin-dependent
nucleon microscopic optical potential, which is derived by using the Green’s function method through the nuclear
matter approximation and the local density approximation based on the Skyrme nucleon-nucleon effective
interaction. The internal wave function of 6He is described in a harmonic-oscillator form. The 6He microscopic
optical potential is used to calculate the reaction cross sections and elastic-scattering angular distributions for
target nuclei in the mass range 12 � A � 209 at incident energies up to 350 MeV. The results are compared with
the experimental data and those calculated by a global phenomenological optical potential; in most cases, the
microscopic optical potential reproduces the experimental data less well than the global potential. The sensitivity
of scattering to the potentials as a function of radius has been investigated by using the notch perturbation method.
The investigation shows that the scattering is sensitive to the optical potential in the nuclear surface region. It is
concluded from the discussion that the microscopic optical potential can be improved by increasing the surface
absorption contribution.
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I. INTRODUCTION

Optical potentials are the basis and starting point of
the nuclear reaction analysis, which can not only predict
total reaction cross sections and elastic-scattering angular
distribution directly, but also play an essential role in the
description of inelastic scattering process, transfer reaction
and compound nucleus reaction. The microscopic optical
potential (MOP) is generated theoretically based on the
nucleon-nucleon (NN ) interaction, it need not be determined
by adjusting parameters to fit the available experimental data
as the phenomenological optical potential does. As a result, it
has no free parameters and does not rely on the experimental
data. Therefore, microscopic derivation of optical potentials is
a goal of nuclear reaction theory, which has great significance
in nuclear reaction analysis, especially in the study of the
nuclear reactions including unstable nuclei because the elastic-
scattering measurement of unstable nuclei is difficult.

6He is an interesting nucleus because it is a participant
in the helium-burning reaction chains in nucleosynthesis and
is one of the lightest nuclei with a halo structure. With
the development of facilities that produce radioactive ion
beams, some measurements [1–20] for 6He scattering were
performed. In most cases, phenomenological optical potentials
[4,13,14,19] with the Woods–Saxon form were used to analyze
the experimental data. In addition, a few of semimicroscopic
[5,10] optical potentials were also developed, the real parts
of which were obtained by folding model and the imaginary
parts were still phenomenological ones. All of these optical
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potentials have some adjustable parameters, and most are for
one target nucleus or one incident energy point, which cannot
be applied to the other target nuclei or incident energies. Kucuk
et al. [21] provided a global phenomenological 6He optical
potential (GOP) based on experimental data, which could
be used for target nuclei from 12C to 209Bi and low incident
energies below 50 MeV. Recently, Su et al. [22] also obtained
a GOP by fitting the existing experimental data for incident
energies up to 250 MeV. The extent of the agreement between
the calculated results by both GOPs and the experimental data
is similar. As is known, the more experimental data there are,
the more reliable the prediction of GOP is for cases without
experimental data. Since 6He is an unstable nucleus and the
measurement of 6He scattering from target nuclei is difficult,
we hope to develop a microscopic 6He optical potential
for understanding the 6He-nucleus interaction, predicting the
elastic-scattering data in a wide range of target nuclei and
incident energies, and analyzing the nuclear reactions in which
6He participates in the entrance or exit channel. The purpose
of this paper is to obtain a 6He MOP with no free parameters
for a wide range of target nuclei and incident energies.

In our previous work, the MOPs for nucleon [23], deuteron
[24], triton [25], helium-3 [26], and alpha [27] were obtained
by using the Green’s function method and the folding model
[28–30]. The folding model is a powerful tool to derive
optical potentials for complex nuclei. In the model, the optical
potential for a composite nucleus is considered as the sum of
the optical potentials for its constituent nucleons averaged over
their internal motion within the composite particle. This means
that the MOP for 6He can be obtained by folding the MOPs of
its constituent nucleons with their probability distribution in
6He. We have developed an isospin-dependent nonrelativistic
nucleon MOP [23] by using the Green’s function method

2469-9985/2017/95(3)/034614(9) 034614-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.95.034614


GUO, LIANG, XU, HAN, SHEN, CAI, AND YE PHYSICAL REVIEW C 95, 034614 (2017)

on the base of the Skyrme nucleon-nucleon interaction. It
is expressed analytically and can reproduce the experimental
data fairly well. The internal wave function of 6He can be
described by using a harmonic-oscillator potential. Thus, the
MOP for 6He is derived by using the folding model based on
the isospin-dependent nonrelativistic nucleon MOP with the
internal wave function of 6He described in harmonic oscillator
form. To check the predictive power and the reliability of the
6He MOP, it is applied to calculate the reaction cross section
and the elastic-scattering angular distributions for the target
nuclei from 9Be to 209Bi at incident energies up to 350 MeV,
and the results are compared with experimental data.

In Sec. II, the formulation of the 6He MOP is presented.
In Sec. III, theoretical results are compared with experimental
data and discussed. Finally, Sec. IV is a summary.

II. THEORETICAL MODEL

In the folding model, the optical potential for 6He is
expressed as

V (R) =
∫

ϕ∗(ξ )

(∑
i∈P

Vi

)
ϕ(ξ )dξ , (1)

where R is the relative coordinate between the centers of mass
of 6He and the target nucleus, and ξ denotes the internal
coordinates of 6He. Vi is the optical potential between the
nucleon i in 6He and the target nucleus with the nucleon energy
being one sixth of the incident6He energy. ϕ(ξ ) is the internal
wave function of 6He.

In this paper, Vi is described by the isospin-dependent
nonrelativistic nucleon MOP taken from Ref. [23]. We show
the detail of the derivation of the nucleon MOP in Ref. [23],
so just a brief introduction is given here. From the viewpoint
of many-body theory, the nucleon optical potential can be
identified with the mass operator of the one-particle Green’s
function [31]. The first- and second-order mass operators of the
one-particle Green’s function in nuclear matter were derived
based on the Skyrme nucleon-nucleon effective interaction,
GS2 [32]. The first-order mass operator was used to denote
the real part of the nucleon MOP, and the imaginary part of
the second-order mass operator denotes the imaginary part of
the nucleon MOP. The MOP for finite target nuclei was then
obtained by applying a local density approximation [33]. The
nucleon MOP is isospin-dependent and expressed analytically,
which can reproduce the experimental data fairly well [23].

6He is a 1p-shell nucleus, two protons and two neutrons
within 6He locate at the 1s state, the other two neutrons locate
at the 1p state. The harmonic-oscillator radial wave function
of the 1s-state single nucleon is expressed as

φs(r) = 2
√

π

(
β

π

) 3
4

exp

(
−β

2
r2

)
, (2)

while the harmonic-oscillator radial wave function of 1p-state
single nucleon is expressed as

φp(r) = β

(
64β

9π

) 1
4

r exp

(
−β

2
r2

)
, (3)

FIG. 1. The relation of the coordinates of each nucleon in 6He
with the internal relative coordinates ξ .

where β is the parameter of the harmonic-oscillator potential
and is defined by

β = mω

h̄
, (4)

with m being the mass of the nucleon and ω being the frequency
of the harmonic oscillator.

The relation of the coordinates r1, r2, r3, r4, r5, and r6

of each nucleon in6He with the internal relative coordinates ξ

(ξ 1, ξ 2, ξ 3, ξ 4, ξ 5) is shown in Fig. 1 and denoted as

r1 = R − 1
3ξ 5 + 1

2ξ 4 + 1
2ξ 1,

r2 = R − 1
3ξ 5 + 1

2ξ 4 − 1
2ξ 1,

r3 = R − 1
3ξ 5 − 1

2ξ 4 + 1
2ξ 2,

(5)
r4 = R − 1

3ξ 5 − 1
2ξ 4 − 1

2ξ 2,

r5 = R + 2
3ξ 5 + 1

2ξ 3,

r6 = R + 2
3ξ 5 − 1

2ξ 3.

The internal wave function of 6He is described as the
harmonic-oscillator wave function of the six-particle system
written as

ϕ(ξ ) =
(

β5

6π5

) 3
4
(

48

29

) 1
2

β

(
4

9
ξ 2

5 − 1

4
ξ 2

3

)

× exp

(
−β

4
ξ 2

1 − β

4
ξ 2

2 − β

4
ξ 2

3 − β

2
ξ 2

4 − 2β

3
ξ 2

5

)
.

(6)

The parameter β is determined by

rm = 1

6

∫ 6∑
i=1

(r i − R)2|ϕ(ξ )|2dξ , (7)

where rm is the matter root-mean-square radius of 6He. The
value of rm is taken from Ref. [34], where rm was set as
2.57 fm by fitting the measured interaction cross sections.
Thus, the corresponding value of β is 0.2397.

To get a more intuitive view of the 6He structure, the
radial probability distributions (P ) of 1s-state protons or

034614-2



MICROSCOPIC OPTICAL POTENTIAL FOR 6He PHYSICAL REVIEW C 95, 034614 (2017)

FIG. 2. Radial probability distributions of 1s-state protons and
neutrons (dashed line), 1p-state neutrons (solid line), all neutrons
(dash-dot-dotted line), and all nucleons (dash-dotted line) relative to
the full nucleon probability distribution of 6He. The arrows denote
the corresponding most-probable radii.

neutrons (P1sp or P1sn), 1p-state neutrons (P1pn), all neutrons
(P1sn+1pn), and all nucleons (Pp+n) relative to the full nucleon
probability distribution of 6He are calculated. P1sp and P1sn

are expressed as

P1sp = P1sn = 1
3 |φs(r)|2r2, (8)

P1pn is expressed as

P1pn = 1
3 |φp(r)|2r2, (9)

P1sn+1pn is expressed as P1sn+1pn = P1sn + P1pn, and Pp+n is
expressed as Pp+n = 2P1sn + P1pn. The calculated results are
shown in Fig. 2. It can be seen that the 1p-state neutrons tend
to distribute farther than 1s-state nucleons. The arrows in the
figure denote the most probable radii which are determined
by

d

dr
P = 0. (10)

The most probable radius of 1p-state neutrons (2.9 fm) is much
larger than that of 1s-state nucleons (2.04 fm), as a result, the
1p-state neutrons distribute mainly in the outer region of the
nucleus, like a halo.

III. CALCULATED RESULTS AND ANALYSIS

The 6He MOP obtained in Sec. II is analyzed and used
to predict the reaction cross sections and elastic-scattering
angular distributions for different target nuclei from 12C to
209Bi. The calculated results denoted by the solid lines are
compared with the existing experimental data in the following
figures.

The radial dependence of the real and imaginary parts
of the 6He MOP for 208Pb at incident energies of 45, 155,
and 300 MeV is shown in Fig. 3. It can be seen that
the absolute value of the real part decreases with increas-

FIG. 3. Radial dependence of the MOP for6He +208Pb reaction.

ing radius and incident energy, while the absolute value
of the imaginary part increases with increasing energy of
incident 6He.

The calculated result of the differential cross section relative
to Rutherford cross section for 6He elastic scattering from12C
at incident energies from 8.79 to 250 MeV is compared with
the experimental data [3–6] in Fig. 4. The calculated result
basically reproduces the experimental data except at 18.0 MeV.
The reason for the discrepancy may be that the light nuclei
have a strong nuclear-structure effect at low incident energy
and the nuclear matter approximation used in the derivation of
the nucleon MOP cannot describe it well.

Figure 5 shows the differential cross section relative to
Rutherford cross section for 6He elastic scattering from27Al at
incident energies from 9.54 to 13.4 MeV. The theoretical result
is in reasonable agreement with the experimental data [7].

Figures 6–9 show the angular distributions of 6He elastic
scattering from the four medium-mass nuclei 51V, 58Ni, 65Cu,
and 64Zn, respectively. The theoretical results are a little lower
than the experimental data [8–13] for some relatively larger
angles.

The calculated result of the differential cross section relative
to Rutherford cross section for 6He elastic scattering from
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FIG. 4. Calculated differential cross sections relative to Ruther-
ford cross section for 6He elastic scattering from 12C at incident
energies from 8.79 to 250 MeV compared with experimental data.
The solid lines and dashed lines denote the results calculated by the
MOP and the GOP [22], respectively. The data are shifted downward
by factors of 100, 10−2, 10−4, and so on.

120Sn at incident energies from 17.4 to 20.05 MeV is compared
with the experimental data [14] in Fig. 10. The calculated result
is in basic agreement with the experimental data.

Similar comparisons are made for 6He elastic scattering
from the three heavy nuclei 197Au, 208Pb, and 209Bi in
Figs. 11–13. The experimental data are taken from
Refs. [15–20]. Reasonable agreement is obtained in these
cases except for back angles. The discrepancies maybe come
from the effect of breakup. The breakup effect becomes strong
for relatively heavier target nuclei at low incident energies;
however, the theoretical model used here does not consider
the excitation effect of 6He.

FIG. 5. Same as Fig. 4 but for 6He elastic scattering from 27Al
at incident energies from 9.54 to 13.4 MeV. The data are shifted
downward by factors of 100, 10−1, 10−2, and 10−3.

The experimental data for the total reaction cross section
induced by 6He are very scarce. Warner et al. [35] provided a
set of experimental data for the 6He-induced reaction on 28Si
at incident energies below 350 MeV. The calculated result is
compared with the experimental data in Fig. 14. It can be
seen that the calculated result is within the error range of the
experimental data.

The 6He MOP is also used to calculate the differential cross
section relative to Rutherford cross section for 6He elastic
scattering from 9Be at incident energies from 16.2 to 150 MeV.
The calculated result is compared with the experimental data
[1,2] in Fig. 15. Relatively large discrepancies can be seen.

FIG. 6. Same as Fig. 4 but for 6He elastic scattering from 51V
at incident energies of 15.4 and 23.0 MeV. The data are shifted
downward by factors of 100 and 10−1.
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FIG. 7. Same as Fig. 4 but for 6He elastic scattering from 58Ni
at incident energies from 9.0 to 21.7 MeV. The data are shifted
downward by factors of 100, 10−1, 10−2, 10−3, and 10−4.

The reason for the discrepancies may be that the reaction
mechanism is complicated for 6He +9Be reaction because
6He is an unstable light nucleus and 9Be is a loosely bound
light nuclei, which is beyond the range of the predictive ability
of the 6He MOP.

The theoretical results calculated by the 6He MOP are also
compared with those calculated by the GOP from Ref. [22]
which are denoted by the dashed lines in the above figures.
It can be seen that the GOP results are better than the MOP
results in fitting the experimental data generally. It should be

FIG. 8. Same as Fig. 4 but for 6He elastic scattering from 65Cu
at incident energies from 19.56 to 30.05 MeV. The data are shifted
downward by factors of 100, 10−1, and 10−2.

FIG. 9. Same as Fig. 4 but for 6He elastic scattering from 64Zn
at incident energies of 10.0 and 13.6 MeV. The data are shifted
downward by factors of 100 and 10−1.

noted that the GOP is obtained by fitting these experimental
data.

To investigate what correction is required to make the MOP
give a better global fit, the MOP (solid lines) is compared with
the GOP (dashed lines) for the target nucleus 209Bi, as shown
in Fig. 16. Because both potentials vary slowly with incident
energy, only the case of 22.5 MeV for 209Bi is plotted. It
can be seen that the real parts of the two optical potentials
are similar, while the imaginary parts are very different. The
imaginary part of the GOP has only a surface absorption term,
while the imaginary part of the MOP consists of both surface
and volume absorption. The sensitivity of scattering to the

FIG. 10. Same as Fig. 4 but for 6He elastic scattering from 120Sn
at incident energies from 17.4 to 20.05 MeV. The data are shifted
downward by factors of 100, 10−1, 10−2, and 10−3.
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FIG. 11. Same as Fig. 4 but for6He elastic scattering from197Au
at incident energies of 10.1 and 27.0 MeV. The data are shifted
downward by factors of 100 and 10−1.

two optical potentials as a function of radius is analyzed
by the notch perturbation method [36,37] for this case. The
perturbation is performed by reducing the real or imaginary
potential to 0 over a region of width 0.5 fm centered at
radius R. The ratio χ2/χ2

0 is used to judge the sensitivity
of scattering to a radial region, where χ2 and χ2

0 are the
chi-squares corresponding to the perturbed and unperturbed
potentials, respectively. Figure 17 shows χ2/χ2

0 for real and
imaginary parts of the MOP and GOP. It can be seen that the

FIG. 12. Same as Fig. 4 but for 6He elastic scattering from 208Pb
at incident energies from 14.0 to 56.6 MeV. The data are shifted
downward by factors of 100, 10−1, 10−2, and so on.

FIG. 13. Same as Fig. 4 but for 6He elastic scattering from 209Bi
at incident energies from 14.71 to 22.5 MeV. The data are shifted
downward by factors of 100, 10−1, 10−2, and so on.

sensitive radial region for the real part of the MOP is 5–14
fm, and the χ2/χ2

0 nearly remains at unity for the imaginary
part of the MOP. In addition, the sensitive radial region for the
real part of the GOP is 12–14 fm and for the imaginary part of
the GOP it is 11–15 fm. We replace the real part of the MOP
by the GOP in the radial region of 5–14 fm and replace the
imaginary part of the MOP by the GOP in the radial region
of 11–15 fm separately, and get the elastic-scattering angular

FIG. 14. Calculated total reaction cross sections for 6He +28Si
compared with experimental data. The results calculated by MOP
and GOP are denoted by the solid line and dashed line, respectively.
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FIG. 15. Same as Fig. 4 but for 6He elastic scattering from 9Be
at incident energies from 16.2 to 150 MeV. The data are shifted
downward by factors of 100, 10−2, and 10−4.

distributions denoted by dash-dot-dotted and dash-dotted lines
in Fig. 18, respectively. It can be seen that the calculated result
still fails to fit the experimental data in the intermediate-angle
region when the real part is replaced, whereas good agreement
is obtained when the imaginary part is replaced. This suggests
that the surface absorption contribution must be increased in
the MOP to get a better global agreement. It is expected that
the underestimation of the surface absorption is because the
breakup effect is not considered in the derivation of the MOP,
which exactly plays its role in the nuclear surface region. The
χ2/χ2

0 for the imaginary part of the MOP increasing very little
in the radial region of 11–15 fm is because the imaginary part
of the MOP is small in this region, which leads to a weak
perturbation.

FIG. 16. Comparison of the MOP (solid lines), GOP [22] (dashed
lines), and KD-fold (dash-dotted lines) for6He +209Bi reaction at the
incident energy of 22.5 MeV.

A single-folding potential (KD-fold for short) based on
the KD global nucleon potential [38] that is known to work
reasonably well and the internal wave function of 6He given
in Sec. II is also obtained and shown by the dash-dotted lines
in Fig. 16. It can be seen that the real part is similar to the
MOP and GOP, whereas the imaginary part is a little larger
than the MOP and less than the GOP in the radial region
of 11–15 fm. Figure 19 shows the comparison of calculated
elastic-scattering angular distributions using the three optical
potentials with the experimental data for 209Bi at 22.5 MeV.
The KD-fold result is a little better than the MOP result for
the intermediate-angle region and worse for larger angles in
fitting the experimental data. The fact that KD-fold also cannot
reproduce the experimental data well further indicates that the
breakup coupling effect which is not considered in the model
is closely related to the discrepancy.
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FIG. 17. Radial sensitivity of the differential cross sections of
6He elastic scattering from 209Bi at the incident energy of 22.5 MeV
to the MOP and GOP. The solid and dashed lines show the results
of perturbing the real and imaginary parts of the MOP, respectively,
while the dash-dotted and dash-dot-dotted lines denote the results of
perturbing the real and imaginary parts of the GOP, respectively.

IV. SUMMARY

The microscopic optical potential for 6He with no free
parameters is obtained by the folding model. In the model,
we use the isospin-dependent nucleon microscopic optical po-
tential, which is derived by using the Green’s function method
through the nuclear matter approximation and the local density

FIG. 18. The differential cross sections relative to Rutherford
cross section for6He elastic scattering from209Bi at the incident energy
of 22.5 MeV. The solid and dashed lines denote the results calculated
by the MOP and GOP [22], respectively. The dash-dot-dotted line
denotes the result calculated by the MOP with the real part replaced
by the GOP in the radial region of 5–14 fm. The dash-dotted line
denotes the result calculated by the MOP with the imaginary part
replaced by the GOP in the radial region of 11–15 fm.

FIG. 19. The differential cross sections relative to Rutherford
cross section for 6He elastic scattering from 209Bi at the incident
energy of 22.5 MeV. The solid, dashed, and dash-dotted lines denote
the results calculated by the MOP, GOP, and KD-fold, respectively.

approximation based on the Skyrme nucleon-nucleon effective
interaction. The probability distribution of the nucleons within
6He is described by harmonic-oscillator wave function. To
check the predictive power and the reliability of the 6He
microscopic optical potential, it is used to calculate the reaction
cross sections and elastic-scattering angular distributions for
target nuclei in the mass range 12 � A � 209 at incident
energies up to 350 MeV, the theoretical results are in reasonable
agreement with the experimental data generally except for the
medium and heavy nuclei at some relatively larger angles. The
predictive ability for lighter target nucleus 9Be is also checked,
and relatively large discrepancy of the calculated results and
the experimental data is observed. Therefore, the MOP is not
appropriate for target nuclei with mass number less than 12.
The theoretical results calculated by the 6He MOP are also
compared with those calculated by the GOP. The GOP can
reproduce the experimental data better generally. The radial
dependence of the MOP is compared with that of the GOP,
and the sensitivity of scattering to the two optical potentials
as a function of radius is analyzed by the notch perturbation
method. When the imaginary part of the MOP is replaced by
the GOP in the sensitive radial region from 11 to 15 fm, good
agreement between the theoretical result and the experimental
data is obtained. It is concluded from the comparison and
discussion that the MOP can be improved by increasing the
surface absorption contribution, which is expected to come
from the breakup effect.
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Lépine-Szily, M. A. G. Alvarez, E. S. Rossi, Jr., C. P. Silva, B. V.
Carlson, J. J. Kolata, L. Lamm, D. Peterson, P. Santi, S. Vincent,
P. A. De Young, and G. Peasley, Phys. Rev. C 67, 024602
(2003).

[11] A. Chatterjee, A. Navin, A. Shrivastava, S. Bhattacharyya, M.
Rejmund, N. Keeley, V. Nanal, J. Nyberg, R. G. Pillay, K.
Ramachandran, I. Stefan, D. Bazin, D. Beaumel, Y. Blumenfeld,
G. de France, D. Gupta, M. Labiche, A. Lemasson, R. Lemmon,
R. Raabe, J. A. Scarpaci, C. Simenel, and C. Timis, Phys. Rev.
Lett. 101, 032701 (2008).

[12] A. Navin, V. Tripathi, Y. Blumenfeld, V. Nanal, C. Simenel, J. M.
Casandjian, G. de France, R. Raabe, D. Bazin, A. Chatterjee, M.
Dasgupta, S. Kailas, R. C. Lemmon, K. Mahata, R. G. Pillay, E.
C. Pollacco, K. Ramachandran, M. Rejmund, A. Shrivastava,
J. L. Sida, and E. Tryggestad, Phys. Rev. C 70, 044601
(2004).

[13] A. Di Pietro, P. Figuera, F. Amorini, C. Angulo, G. Cardella,
S. Cherubini, T. Davinson, D. Leanza, J. Lu, H. Mahmud, M.
Milin, A. Musumarra, A. Ninane, M. Papa, M. G. Pellegriti, R.
Raabe, F. Rizzo, C. Ruiz, A. C. Shotter, N. Soić, S. Tudisco, and
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