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Background: While diproton emission was first theorized in 1960 and first measured in 2002, it was first observed
only in 2012. The measurement of 14Be in coincidence with two neutrons suggests that 16Be does decay through
the simultaneous emission of two strongly correlated neutrons.
Purpose: In this work, we construct a full three-body model of 16Be (as 14Be +n + n) in order to investigate its
configuration in the continuum and, in particular, the structure of its ground state.
Method: In order to describe the three-body system, effective n-14Be potentials were constructed, constrained
by the experimental information on 15Be. The hyperspherical R-matrix method was used to solve the three-body
scattering problem, and the resonance energy of 16Be was extracted from a phase-shift analysis.
Results: In order to reproduce the experimental resonance energy of 16Be within this three-body model, a
three-body interaction was needed. For extracting the width of the ground state of 16Be, we use the full width
at half maximum of the derivative of the three-body eigenphase shifts and the width of the three-body elastic
scattering cross section.
Conclusions: Our results confirm a dineutron structure for 16Be, dependent on the internal structure of the
subsystem 15Be.
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I. INTRODUCTION

Exotic nuclei are found across the nuclear chart. Proton and
neutron halos are found near the proton and neutron driplines,
respectively, not only in the lightest mass nuclei but also
possibly in nuclei as heavy as neon [1]. Two-nucleon halo
systems can be Borromean, where, if we think of these nuclei
in terms of a core plus two neutrons or protons, the three-body
system is bound but each of the two-body subsystems is
unbound [2] (Ch. 9). Unsurprisingly, beyond the dripline, novel
structures can give rise to exotic decay paths.

Two-proton decay was first theorized in 1960 [3]. When
two nucleons decay from a nucleus A, there are three possible
mechanisms. First, A can decay through the simultaneous
emission of the two valence nucleons, in a true three-body
decay. If there is a state in the A − 1 nucleus below the
ground state of the parent nucleus, the two nucleons are
likely to be emitted sequentially from A, stepping through
the intermediate A − 1 state. However, if the ground state in
the A − 1 nucleus is energetically inaccessible to the emission
of one nucleon and there is correlation between the two
nucleons before the decay, dinucleon emission is the likely
alternative.

Because of the Coulomb interaction, the diproton phenom-
ena is extremely hard to observe; the two protons are repelled
from one another as soon as they exit the nucleus, making
it difficult to reconstruct the diproton angular correlations
that were present in the parent nucleus. Nevertheless, it has
been observed in many nuclei. The dineutron decay, on the
other hand, poses its own challenges. The neutron dripline
is harder to reach than the proton dripline, and the statistics
for neutron-rich nuclear decays beyond the neutron dripline,
involving two-neutron coincidences, are very low. In both
dineutron and diproton decay, the differentiation between a

correlated decay and an uncorrelated three-body decay is made
based on model considerations and therefore is not free from
ambiguity.

Two-proton emission from the ground state of a nucleus was
experimentally observed for the first time in 45Fe [4,5], over
40 years after the initial prediction. Since then, many examples
of two-proton emission have been seen from ground states
[6–8], as well as from excited states [9]. Because the relevant
degrees of freedom are those related to the emission of the two
protons from the parent nucleus, three-body models have been
used to theoretically describe these decays. Different structural
configurations of the parent nucleus give rise to different values
for its width and half-life, as well as different ways of sharing
the energy between the three particles. It is only through the
comparison of model calculations to the data that insights into
the nature of the decay can be obtained [10,11].

In comparison to the large number of two-proton emitters
that have been studied experimentally and theoretically,
two-neutron emitters have not been as well investigated. In
one of the first theoretical studies of two-neutron emission,
Grigorenko [12] discussed the existence of one-, two-, and
four-neutron emitters, as well as comparisons of their widths
in a three-body framework. Recently, a few cases of two-
neutron emission have been observed [13–15]. The first of
these was observed in a 2012 experiment at the National
Superconducting Cyclotron Laboratory [13] through the decay
of 16Be to 14Be plus two neutrons. As the ground-state energy
of 16Be was found to be 1.35 MeV (with a width of 0.8 MeV)
and a lower limit of 1.54 MeV had previously been placed on
the ground state of 15Be [16], 16Be is an ideal candidate for
simultaneous two-neutron emission. Depending on the width
of the ground state of 15Be, sequential neutron decay from 16Be
to 14Be could be energetically inaccessible. A later experiment
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[17] determined that the lowest state in 15Be is an l = 2 state
at 1.8 MeV with a width of 575 ± 200 keV.

Although comparisons of the 16Be data in Ref. [13] to
dineutron, sequential, and three-body decay models showed
the data best matched the dineutron emission, there was
some controversy over this finding [18,19]. Extreme models
were used to show the difference between dineutron emission
and a three-body decay. The dineutron was modeled as a
cluster and the decay as a two-body 16Be → 14Be +2n, in an
s-wave relative motion. The three-body breakup corresponded
to phase space only. A more realistic, full three-body model
(14Be +n + n) is necessary to help clarify the mode of decay
of this exotic nucleus. Several three-body models have been
successfully used to describe the continuum states of 26O
[20,21] but no application to 16Be is thus far available. This is
the goal of the present study.

This paper is organized into the following sections. In
Sec. II, we introduce the three-body hyperspherical R-matrix
theory used in this work. In Sec. III, details about the two- and
three-body potentials are presented, as well as a convergence
study of our calculations. Our results, assuming either a 1d5/2

or a 2s1/2 ground state for 15Be, are discussed in Sec. IV, and in
Sec. V, we discuss the consequences of these models. Finally,
we conclude in Sec. VI.

II. THEORETICAL FRAMEWORK

In this work, the 16Be system is assumed to take the form
of core + n + n and therefore should satisfy the three-body
Schrödinger equation:(

Tr + Ts + Vcn1 + Vcn2 + Vnn + V3b

)
� = E3B�, (1)

where �r an �s are the standard Jacobi coordinates, as shown
in Fig. 1, where r is the distance between two of the bodies,
and s is the distance between the third body and the center
of mass of the first two. Vcni

and Vnn are the pairwise
interactions. Typically, when the degrees of freedom in the core
are frozen, the final three-body system becomes under-bound.
Traditionally, three-body interactions are then introduced to
take into account the additional binding needed to reproduce
the experimental ground state. This is the role of V3b in Eq. (1).

Equation (1) is a six-dimensional equation, where the
coordinates �r and �s do not separate due to the fact that
the pairwise interactions depend on both. The hyperspherical
harmonic method makes a particular choice of coordinates
and basis functions such that this three-body Schrödinger

FIG. 1. Three Jacobi coordinate systems, (a) Jacobi X system,
(b) Jacobi Y system, and (c) Jacobi T system. Because the two
neutrons are identical, the X and Y coordinate systems are identical.

equation becomes a set of one-dimensional coupled hyper-
radial equations. This is briefly described here.

A. Hyperspherical harmonic method

For a three-body system, there are three sets of Jacobi
coordinates that can be defined (Fig. 1). We will use i to denote
one of the three Jacobi systems, X, Y , or T . We assume the
T coordinate system for convenience (i = 3, which we omit
through the rest of this work). Now, �x and �y are the scaled
Jacobi coordinates [2] (Ch. 9), defined by

�x = �r√
2

(2)

and

�y =
√

2A3

A3 + 2
�s, (3)

where A3 is the mass number of the core. From here, we can
define the hyperspherical coordinates

ρ2 = x2 + y2 (4)

and

tanθ = x

y
. (5)

Note that ρ is invariant among the three Jacobi coordinate
systems, but θ depends on i. Using these coordinates, the
kinetic energy operator can be written as

T = − h̄2

2m

[
1

ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
+ 1

ρ2sin22θ

∂

∂θ

(
sin22θ

∂

∂θ

)

− L2
x

ρ2sin2θ
− L2

y

ρ2cos2θ

]
, (6)

where m is the unit mass, here m = 938.0 MeV/c2.
We perform the standard partial wave decomposition of the

wave function,

�JM =
∑

lx ly lSjI

ψ
lSjIJ
lx ly

(x,y)

× {([
Ylx ⊗ Yly

]
l
⊗ [

Xσ1 ⊗ Xσ2

]
S

)
j
⊗ φI

}
JM

, (7)

where l is the total orbital angular momentum, lx is the relative
orbital angular momentum in the 2n system, ly is the relative
orbital angular momentum in the core + (2n) system, I is the
spin of the core, S is the total spin of the two neutrons, and
j is the total angular momentum of the two neutrons relative
to the core. Next we expand the part dependent on (x,y) in
hyperspherical functions ϕ

lx ly
K (θ ),

ψ
lSjIJ
lx ly

(x,y) = ρ−5/2
Kmax∑
K=0

χ
lSIjJ
Klx ly

(ρ)ϕ
lx ly
K (θ ), (8)

where ϕ
lx ly
K (θ ) is set to an eigenfunction of the angular operator

in Eq. (6) with eigenvalue K(K + 4). Its explicit form is

ϕ
lx ly
K (θ ) = N

lxly
K (sinθ )lx (cosθ )ly P

lx+1/2,ly+1/2
n (cos2θ ), (9)
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where P
lx+1/2,ly+1/2
n (cos2θ ) are the Jacobi Polynomials, and

N
lxly
K is a normalization factor resulting from the condition∫ π/2

0
ϕ

lx ly
K (θ )ϕ

lx ly
K ′ (θ )sin2θcos2θdθ = δKK ′ . (10)

For compactness, we introduce the hyperspherical har-
monic functions,

YJM
γ (�5,σ1,σ2,ξ )

= ϕ
lx ly
K (θ )

{([
Ylx ⊗ Yly

]
l
⊗ [

Xσ1 ⊗ Xσ2

]
S

)
j
⊗ φI

}
JM

, (11)

with γ representing the set {KlSIj lxly}, so that the total wave
function can be written in the form

�JM = ρ−5/2
∑

χJ
γ (ρ)YJM

γ (�5,σ1,σ2,ξ ) . (12)

In this work, we focus on (J,M) = (0,0), corresponding to
the spin of the 16Be ground state.

By substituting Eq. (12) into Eq. (1), we are left with the
following set of coupled hyper-radial equations:(

− h̄2

2m

[
d2

dρ2
− (K + 3/2)(K + 5/2)

ρ2

]
− E3B

)

+
∑
γ ′

Vγγ ′(ρ)χJ
γ ′(ρ) = 0, (13)

where the coupling potentials are defined as

Vγγ ′ (ρ) = 〈YJM
γ ′ (�5,σ1,σ2,ξ )

∣∣ 3∑
j>i=1

Vij

∣∣YJM
γ (�5,σ1,σ2,ξ )

〉
.

(14)

Equation (13) must be solved under the condition that
the wave function is regular at the origin and behaves
asymptotically as

χJ
γγi

→ i

2

[
δγ γi

H−
K+3/2(κρ) − SJ

γ γi
H+

K+3/2(κρ)
]
, (15)

when ρ → ∞, where the γi are the components of a plane
wave.

It is important also to note that the final wave function will
have to be summed over γi , as we do not assume a specific
incoming wave for our 16Be system.

B. Hyperspherical R-matrix method

The set of coupled hyper-radial equations could, in princi-
ple, be solved by direct numerical integration. However, at low
scattering energies, the centrifugal barrier—(K + 3/2)(K +
5/2)—found in every channel, including K = 0, would likely
cause this method to develop numerical inaccuracies. Instead,
we use the hyperspherical R-matrix method [2] (Ch. 6).

In the hyperspherical R-matrix method, we first create a
basis, wn

γ , by solving the uncoupled equations, corresponding
to Eq. (13) with all couplings set to zero except for the diagonal,
in a box of size ρmax,

[Tγ (ρ) + Vγγ (ρ) − εnγ ]wn
γ (ρ) = 0. (16)

By enforcing all logarithmic derivatives,

β = dln
[
wn

γ (ρ)
]

dρ
, (17)

to be equal for ρ = ρmax, the set of functions, wn
γ , forms a

complete, orthogonal basis within the box. Then, the scattering
equation inside the box can be solved by expanding in this
R-matrix basis:

gp
γ (ρ) =

N∑
n=1

cpn
γ wn

γ (ρ). (18)

The corresponding coupled channel equations are

[Tγ (ρ) + Vγγ (ρ)]gp
γ (ρ) +

∑
γ ′ �=γ

Vγγ ′ (ρ)gp
γ ′(ρ) = epgp

γ (ρ).

(19)

To find the coefficients c
np
γ , we insert Eq. (18) into Eq. (19),

multiply the resulting equation by wn′
γ ′ , and integrate over the

box size. This results in a matrix equation:

εnγ cnp
γ +

∑
γ ′ �=γ

∑
n′

〈
wn

γ (ρ)
∣∣Vγγ ′(ρ)

∣∣wn′
γ ′(ρ)

〉 = epcpn
γ , (20)

which, when solved, provides the coefficients c
np
γ of the

expansion Eq. (18). Since g
p
γ (ρ) are only complete inside

the box, and do not have the correct normalization, the full
three-body scattering wave function is given by a superposition
of these solutions which is then matched to the correct
asymptotic form:

χJ
γγi

(ρ) =
P∑

p=1

Ap
γi
gp

γ (ρ). (21)

The new expansion parameter p corresponds to the number
of poles considered in the R matrix. The normalization
coefficients, A

p
γi , connect the inside wave function with the

asymptotic behavior of Eq. (15). The explicit relation is [2]
(Ch. 6)

Ap
γi

= h̄2

2m

1

ep − E

∑
γ ′

g
p
γ ′(ρmax)

×{δγ γ ′[H−′
K+3/2(κγ ′ρmax) − βH−

K+3/2(κγ ′ρmax)]

− Sγ ′γi
[H+′

K+3/2(κγ ′ρmax) − βH+
K+3/2(κγ ′ρmax)]}. (22)

From the values of the g
p
γ (ρ) function at the surface, one

can determine the R matrix [2] (Ch. 6),

Rγγ ′ = h̄2

2mρmax

P∑
p=1

g
p
γ (ρmax)gp

γ ′(ρmax)

ep − E3B

. (23)

Once the R matrix is obtained, the S matrix can be directly
computed:

S = [H+ − ρmaxR(H+′ − βH+)]−1

× [H− − ρmaxR(H−′ − βH−)] (24)

along with the phase shifts for each channel, from the diagonal
elements of the S matrix, Sγγ = e2iδγ γ (more details in
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Ref. [2]). However, the S matrix is not necessarily diagonal,
and due to all of the off-diagonal terms, the diagonal does not
have special significance. Instead of using only Sγγ directly,
it is common to diagonalize the S matrix and extract the
eigenphases, δe [22]. The resonance energies and widths can
then be extracted from these eigenphases.

C. Width calculation

If one assumes a Breit-Wigner shape, resonant properties
for a single-channel calculation can be directly extracted from
the phase shift through the relation

tanδ = �/2

E3B − Eres
, (25)

where � is the width of the resonance and Eres is the resonance
energy. If this is valid, the width can be computed as the full
width at half maximum (FWHM) from the energy derivative
of the phase shift, � = 2/(∂δ/∂E3B). In the case of multiple
channels with weak coupling, one can add the various partial
widths to obtain the total width of the three-body resonance.
For this potentially strongly coupled three-body problem, we
do not expect the pure Breit-Wigner approach to be valid.
Nevertheless, for completeness, we do try to identify channels
for which such an approach may be applicable.

We can also construct the total three-body cross section as a
function of energy which would be measured during an elastic
scattering experiment, as defined in Ref. [22],

σJ
3:3(E3B) ∝ 1

4κ5

[∑
γ

|1 − Sγγ (E3B)|2 +
∑
γ γ ′

|Sγγ ′(E3B)|2
]
,

(26)

in which we might see a resonance as a peak. Theoretically,
three-body elastic scattering could be measured if the 14Be
and two neutrons could be impinged upon one another
simultaneously with total energy, E3B . Because this quantity
includes a sum over all K , this method can justify that the
resonance energies extracted from a single phase shift do
indeed represent the resonance energy of the total system,
as all channels are included in this calculation.

III. NUMERICAL DETAILS

A. Input interactions versus data

In the three-body model, each of the two-body interac-
tions must be constrained, typically from experimental data.
However, very little is known about 15Be [17], so shell-model
calculations are used to supplement the available data. Shell-
model calculations for 15Be were provided [23] using the
Warburton and Brown Potential (WBP) interaction [24]. Since
the ground state in the shell-model calculation was an l = 2
state and was 1 MeV higher than the experimentally observed
l = 2 state in 15Be [17], the levels that were used to constrain
the 14Be -n interactions were the shell models’ levels lowered
by 1 MeV, shown in Fig. 2.

The 14Be -n interaction for each partial wave has a Woods-
Saxon shape with a = 0.65 fm and R = 1.2A1/3 fm, where
A is the mass number of the 14Be core. The depths depend

FIG. 2. Level scheme for 15Be. The first column shows the shell-
model calculation provided by [23], while the second column shows
the 15Be levels that we used in this work; here, the shell model levels
are lower by 1 MeV so the 1d5/2 state in the shell-model calculation
reproduces the experimental l = 2 energy from Ref. [17], as shown
in the third column.

on angular momentum, and are obtained by fitting the single-
particle resonances in 15Be, described in Fig. 2, using the
code POLER [25]. The core deformation is taken into account
by allowing an l dependence in the potential. A spin-orbit
interaction was also included with the same geometry as the
central nuclear force with the depth adjusted to reproduce the
split between the 1d5/2 and 1d3/2 states. We use the definition
of the spin-orbit strengths of Faddeev with Core Excitation
(FaCE) [26]. Potential depths for the various models included
are as indicated in Table I.

The lowest s and p orbitals in 14Be are assumed to be full.
In order to remove the effect of these occupied states in the
14Be core, the 1s1/2, 1p3/2, and 1p1/2 states were projected
out through a supersymmetric transformation [26].

B. Description of models

There are four three-body models for 16Be that we consider
in this work. In D3B, the ground state of 15Be is a 1d5/2

state and a three-body force is included to reproduce the
experimental three-body ground-state energy of 16Be. This
three-body force is also of Woods-Saxon form with radius of
3.02 fm and diffuseness of 0.65 fm. In D, the ground state of
15Be is a 1d5/2 state but no three-body force is included. In S,
the ground state of 15Be is a 2s1/2 state but no three-body force
is included.

All models D3B, D, and S include the Gogny, Pires, and
Tourreil (GPT) NN interaction [27], as in previous three-body

TABLE I. Interaction parameters for the various models consid-
ered. All depths are given in MeV. Details in the text.

Parameter D3B D DNN S

Vs –26.182 –26.182 –26.182 –41.182
Vp –30.500 –30.500 –30.500 30.500
Vd –42.73 –42.730 –42.730 –42.730
Vso (l �= 2) –10.000 –10.000 –10.00 –10.000
Vso (l = 2) –33.770 –33.770 –33.770 –33.770
V3B –7.190 0.000 –7.190 0.000
αNN 1.000 1.000 0.000 1.000
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TABLE II. Energy levels, in MeV, for 16Be and 15Be for the
various models considered. Energies are measured with respect to the
14Be threshold. Details in the text.

D3B D DNN S

15Be(1d5/2) 1.80 1.80 1.80 1.80
15Be(2s1/2) ∼3 ∼3 ∼3 0.48
16Be(gs) 1.32 1.88 3.08 1.60a

aThis is an excited state.

studies [28–31]. This interaction reproduces NN observables
up to 300 MeV. Although it is simpler than the AV18 [32] and
Reid soft-core [33] interactions, its range is more than suitable
for the energy scales used in this work. We also consider the
effects of removing the NN interaction completely. This model
is named DNN. In Table I, we provide the depths for the various
terms of the interaction and the coefficient αNN by which we
multiply the GPT force in each of our calculations.

In Table II, we summarize the energies for the 1d5/2 and
2s1/2 states in the subsystem 15Be as well as the ground-state
energy of 16Be in the various models considered in Table I.
For all of the models considered, the 1d3/2 state was placed at
6.0 MeV.

C. Convergence

Our methods rely on basis expansions, and our model space
is determined by a number of numerical parameters. In this
section we demonstrate convergence for various quantities,
including the ground-state energy of 16Be and the phase shifts.
The truncation of the expansion in hyperspherical harmonics
is controlled by the hypermomentum, K . In Fig. 3, we show
the convergence of the lowest 0+ three-body resonance energy
of 16Be as Kmax increases. The width of 16Be with respect to
Kmax shows the same trend. Our results are converged within
0.05 MeV by Kmax = 28 for both observables.

Our results are very sensitive to the number of R-matrix
basis functions N (which essentially determines the hyper-

FIG. 3. Convergence of the three-body energy as a function of
the maximum K value included in the model space.

TABLE III. Convergence of E3B as a function
of the number of radial R-matrix functions, N , for
ρmax = 60 fm.

N E3B (MeV)

70 2.06
75 1.95
80 1.84
85 1.78
90 1.74
95 1.71
100 1.69
105 1.67

radial discretization) as well as the maximum box size, ρmax. In
Tables III and IV, we show the convergence of the three-body
resonance energy of several parameters for the K = 0,L = 0,
S = 0 channel. The convergence with respect to the number of
R-matrix basis functions is shown in Table III. Convergence
is slow but results are very close to converged for N = 95.

We also needed to check the dependence on the box size,
ρmax. When increasing the box size, one also needs to increase
the number of R-matrix basis functions that span the radial
space for consistency. These results are given in Table IV.
We summarize the minimum convergence requirements in
Table V.

IV. RESULTS

Using model D, we calculated the eigenphases for 16Be.
The converged eigenphases can be found in Fig. 4 (solid). As
we would expect for this type of system, the resonance energy
in model D is above the experimental energy observed for the
ground state. We include a three-body force, as described in
Table I. The eigenphases, including this three-body interaction
(model D3B), are shown in Fig. 4 (dashed).

One can also extract a resonance energy from the three-body
total cross section, shown in Fig. 5 as a function of three-body
energy. This observable also contains contributions from all of
the channels included in the model space. If one investigates
the structure of the wave function of model D3B for the pole
closest to the resonance energy, we conclude that the state is
37% K = 0, lx = ly = 0, 30% K = 2,lx = ly = 0, and 13%
K = 4, lx = ly = 0.

Although the lowest experimentally observed state in 15Be
was an l = 2 state, we wanted to investigate the possibility

TABLE IV. As the box size, ρmax, increases, a greater number of
R-matrix radial functions, N , are need to keep the same resonance
energy, E3B .

ρmax (fm) N E3B (MeV)

50 80 1.70
60 95 1.71
70 110 1.72
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TABLE V. Minimum convergence values for
the three-body wave-function expansion.

Parameter Value

Kmax 28
lx(max), ly(max) 10
NJac 65
ρmax (fm) 60
N 95

of an s-wave ground state in 15Be, below the observed state.
Such a state exists in 10Li and was only observed after other
higher lying resonances were well known [34]. With this in
mind, we developed model S, described in Table I. We use
the same model space as in Table V. The dot-dashed line
in Fig. 4 shows the corresponding eigenphases for model S.
The resulting cross section is also depicted in Fig. 5 by the
dot-dashed line. The clear evidence for the resonance seen in
models D and D3B is washed out in model S; however, there
does appear to be a resonant-like shape in the eigenphase, just
above the resonance in D3B at 1.60 MeV. We will come back
to this in Sec. V.

Finally we also consider the results when the NN interaction
is switched off (model DNN). A resonance is still seen in δe(E)
(Fig. 4, dotted), around 3 MeV, demonstrating the importance
of the NN correlations in producing the observed state in 16Be.
Our results show that the configuration of the system is strongly
modified by switching off the NN interaction.

V. DISCUSSION

To investigate whether or not dineutron emission is the
predominant form of decay for 16Be, we can study the structure
of the 16Be through the spatial density distribution. Two
spatially correlated neutrons should be primarily emitted via
dineutron emission, rather than a three-body decay.

FIG. 4. Eigenphases as a function of three-body energy for 16Be
models D (solid, black), D3B (dashed, red), DNN (dotted, green),
and S (double-dash dotted, blue).

FIG. 5. Three-body cross section as a function of three-body
energy for 16Be models D (solid, black), D3B (dashed, red), DNN
(dotted, green), and S (double-dash dotted, blue).

In calculating the spatial probability distribution of the
three-body system,

P (x,y) =
∫

|�JM (x,y)|2d�xd�y, (27)

we can determine the location of the two neutrons with
respect to the core. The wave function used here is that of
Eq. (7), calculated at the resonance energy, E = 1.32 MeV.
The calculation includes the wave function up to ρmax, and no
additional binning is included to localize the resonance. Note,
also, that P (x,y) contains the contribution of all components,
and not just a single K . From this density distribution
we can determine the configuration of the two neutrons
in 16Be: dineutron, helicopter, or triangle [Figs. 6(a)–6(c),
respectively].

Figure 7 shows the resulting density distribution for the 16Be
system with the D3B model. The density distribution mainly
shows a dineutron configuration, although a small component
of a helicopter configuration is present. This is consistent
with what was seen in Ref. [13]. Even though the three-body
resonance energy shifts up by about 0.5 MeV when the three-
body interaction is removed, this does not change the relative
strength of the dineutron component of the density distribution.

FIG. 6. Three-body configurations: (a) dineutron (two neutrons
close together and far from the core), (b) helicopter (two neutrons are
close to the core and far from each other), and (c) three-body (the
three bodies are equally spaced).
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FIG. 7. Three-body density as a function of the distance between
the two neutrons (r) and the distance between the nn pair and the
core (s) for D3B. The scale on the right is given in fm−5.

There are several quantities that we can look at to extract a
width for this system. If we extract the width from the FWHM
of the derivative of the three-body eigenphase shift in Fig. 4
we obtain 0.17 MeV (consistent with the observed width of the
nearest R-matrix pole, 0.17 MeV). Both of these are smaller
than the 0.8 MeV width found by experiment [13]. This
discrepancy is most likely due to the effect of experimental
resolution (etc.), which has not been taken into account when
comparing our calculations with experiment. Work to include
these effects is currently ongoing. To further calculate the yield
of 16Be when produced from a proton removal of 17B, as in
Ref. [13], a reaction model would be needed that includes the
overlap functions between the original 17B and the resulting
three-body continuum states in 16Be.

When we switch off the NN interaction (model DNN), the
density distribution shown in Fig. 8 has equal contributions
from the dineutron and the helicopter configurations. Increas-
ing or decreasing the strength of the three-body interaction
does not change this picture. This illustrates that it is indeed
the NN interaction that is responsible for the strong dineutron
character of the 16Be ground state.

FIG. 8. Same as Fig. 7 for the model DNN.

FIG. 9. Same as Fig. 7 for a plane wave solution of 16Be, at
E3B = 1.35 MeV, for comparison.

For comparison with all of these models, Fig. 9 shows the
density distribution for a 16Be that has both the NN and n-15Be
interactions removed (all K components have been summed).
This system does not contain any resonance, so the density
distribution is calculated at the 16Be experimental resonance
energy, 1.35 MeV. The distribution has less structure and is
pushed farther away from the center of the system.

Let us now turn our attention back to the hypothesis of
there being a lower s-wave resonance in 15Be (model S).
Although δe(E) goes through 90◦, there is no clear signature of
a resonance in the total cross section. Indeed the 16Be system
becomes bound, also indicated by the double hump structure 4
(double-dash-dotted). Only by using a much shallower s-wave
potential could we regain a resonance in the low energy 16Be
spectrum. These results make it much less likely that 15Be has
an s-wave ground state.

Using three-neutron coincidences, Kuchera et al. proposed
that there is a small chance of finding the 1d3/2 state in 15Be
at 2.69 MeV [35]. Including this state, keeping the 1d5/2 at
1.8 MeV, and using the same s-wave as models D and D3B,
the ground-state energy of 16Be produced by our model had
E3B = 1.05 MeV, without including a three-body interaction.
The density distribution was nearly identical to that shown in
Fig. 7. In this case, the only way to reproduce the experimental
ground state of 16Be would be to include a repulsive three-body
interaction, which is unusual.

VI. CONCLUSIONS

In summary, a three-body model for 16Be was developed
to investigate the properties of the system in the continuum.
The hyperspherical R-matrix method was used to solve the
three-body scattering problem, with the n-14Be interactions
constrained by experimental data on 15Be. As usual in three-
body models, we included a three-body potential to reproduce
the experimental ground-state energy of 16Be. We obtained
convergence results for phase shifts, density distributions, and
three-body cross sections.

We study the properties of the resulting three-body con-
tinuum around the resonant energy of 16Be and conclude
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that it has a strong dineutron configuration, consistent with
experimental observations [13]. The estimate of the width
obtained from our calculations is consistent among the various
methods of extraction but is smaller than the experimental
value [13]. We find that the NN interaction is important in
producing the strong dineutron configuration in the ground
state of 16Be, since the structure of the resonance is completely
different when switching off the NN interaction. In contrast,
the three-body force needed to shift the resonance energy to
the observed experimental energy of 16Be ground state has
little effect on the structure of the state. We also explore a
possible s-wave ground state in 15Be and find that the results
are incompatible with the observed 16Be ground state [13]. In
fact, the structure of the 15Be ground state being a d5/2 wave
is crucial to reproducing the 16Be experimental results. Only
with a 1d5/2 ground state and higher lying 2s1/2 and 1d3/2 state
in 15Be can a resonance energy of 1.35 MeV be reproduced in
16Be with a physical three-body interaction.

The 16Be experiment [13] provided a variety of correlation
observables that would be very interesting to compare to
our model. However, our predictions need to be introduced

into a full experimental simulation code that includes the
appropriate three-body assumptions as well as efficiencies
and acceptance of the detector setup. Work along these lines
is currently under way.
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