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Structure and decay of the pygmy dipole resonance in 26Ne
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The low-lying spectra of 24,25,26Ne and the structure of the pygmy dipole resonance (PDR) in 26Ne have
been theoretically studied by the antisymmetrized molecular dynamics (AMD) and its extended version called
shifted-basis AMD. The calculated energy and strength of the PDR reasonably agree with the observation, and the
analysis of the wave function shows that the PDR is dominated by neutron excitation coupled to the quadrupole
excited core nucleus 25Ne, which explains the observed unexpected decay of PDR to the excited states of 25Ne.
The large isoscalar component of PDR is also shown and the enhancement of the core excitation in neutron-rich
Ne isotopes is conjectured.

DOI: 10.1103/PhysRevC.95.034331

I. INTRODUCTION

The low-energy electric dipole (E1) excitation which
emerges well below the giant dipole resonance (GDR) is
called pygmy dipole resonance (PDR), and has attracted much
interest in this decade [1,2]. It was expected that PDR could
be a signature of a novel type of excitation mode peculiar
to unstable nuclei, in which the tightly bound inert core
oscillates against the surrounding neutron skin [3–5]. Hence,
the relationship between the strength of PDR and the growth
of neutron skin in many isotope chains was discussed by many
authors [6–10]. In addition to this, the PDR is expected to have
a strong impact on astrophysical phenomena such as the rapid
neutron capture process, and constrains the equation of state
of the neutron star matter [7–9,11–13].

Among many observed PDR, that of 26Ne is the one most
intensively studied in detail. The experiment performed at
RIKEN reported the PDR of 26Ne around Ex = 9 MeV with
the integrated E1 strength of B(E1) = 0.49 ± 0.16 e2 fm2

which exhausts approximately 5% of the Thomas-Reiche-
Kuhn (TRK) sum rule [14]. Many theoretical studies based
on the quasiparticle random phase approximation (QRPA)
have been performed and have successfully described these
observed properties, although the results range between Ex =
6–10 MeV and 5%–10% of the TRK sum rule depending on
the effective interactions used in the calculations [10,15–23].
At the same time, several QRPA calculations pointed out
that the PDR of 26Ne is less collective and dominated by a
limited number of neutron 1p1h excitations. For example, in
Refs. [18,20], it was shown that the PDR is dominated by
the ν(1s−1

1/21p3/2) and ν(1s−1
1/21p1/2) configurations. However,

at a glance, these 1p1h configurations look contrary to the
observed decay pattern of PDR. The dominance of the 1p1h
configuration such as ν(1s−1

1/21p3/2) implies that the PDR

primary decays to the ground state of 25Ne which has the
ν(1s−1

1/2) configuration relative to the ground state of 26Ne.
On the other hand, experimentally, it was found that the
PDR of 26Ne predominantly decays into the excited states
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of 25Ne, not to the ground state [14]. This puzzling situation is
casting a question on the structure of 26Ne PDR. Is it possible
to understand the structure and decay pattern of 26Ne PDR
consistently?

A possible solution for this puzzle is to explicitly include
the core excitation to the PDR. If the PDR is dominated
by the neutron excitation coupled to the excited 25Ne, the
observed decay pattern can be straightforwardly understood.
In particular, the coupling of the neutron excitation with the
low-lying collective modes such as rotation and vibration
[24] may play an important role, because it is well known
that the neutron excitation across the N = 20 shell gap
induces strong deformation of Ne isotopes in the island of
inversion [25]. Theoretically, the microscopic description of
the rotation and vibration coupling requires treatment beyond
the linear response. For this purpose, I use antisymmetrized
molecular dynamics (AMD) [26,27] and its extended version
called shifted-basis AMD [28–31]. In this framework, by
the angular momentum projection, the rotational motion
is properly described. And, by introducing the basis wave
functions in which the centroids of the Gaussian wave packets
describing nucleons are “shifted,” one is able to describe
various particle-hole configurations. This framework was
applied to the isoscalar monopole and dipole responses of
light stable nuclei [28,29,31] and electric and isoscalar dipole
responses of neutron-rich Be isotopes [30].

In this study, the shifted-basis AMD is applied to the electric
dipole response of 26Ne. It is shown that the observed energy
and strength of 26Ne PDR is successfully described by shifted-
basis AMD. Furthermore, it is found that the PDR is dominated
by the neutron excitation coupled to the quadrupole excitation
of the core, which qualitatively explains the observed decay
pattern of PDR. It is also discussed that the PDR has a large
isoscalar component at the same time, because of the core
excitation.

This paper is organized as follows. The theoretical frame-
work of shifted-basis AMD is explained in Sec. II, and the
numerical results for the low-lying spectrum of 24,25,26Ne and
the electric dipole response of 26Ne are presented in Sec. III.
The analysis of the numerical results is discussed in Sec. IV.
I first discuss the splitting of GDR. Then the structure of PDR
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and its isoscalar component are discussed. The final section
summarizes this study.

II. THEORETICAL FRAMEWORK

Here, I briefly explain the theoretical framework of AMD
and the method to extract the single-particle energies and
orbits. Then, the generator coordinate method (GCM) and
shifted-basis AMD are introduced, which are used to describe
the low-lying spectrum and the highly excited 1− states of
26Ne. Using thus-obtained GCM wave functions for the ground
and 1− states, the electric dipole transition strength, response
function, and spectroscopic factor are calculated.

A. Antisymmetrized molecular dynamics

In the AMD framework, one uses the microscopic A-body
Hamiltonian given as

H =
A∑

i=1

t(i) +
A∑

i<j

vn(ij ) +
Z∑

i<j

vC(ij ) − tc.m.. (1)

In this study, I employ the Gogny D1S interaction [32] as
an effective nucleon-nucleon interaction vn and the Coulomb
interaction vC is approximated by a sum of seven Gaussians.
The center-of-mass kinetic energy tc.m. is exactly removed,
which is essentially important to remove the spurious modes
from the isoscalar dipole response.

The intrinsic wave function �int is represented by a Slater
determinant of single-particle wave packets. It is projected to
the eigenstate of parity before the variation (parity projection
before variation),

�int = A{ϕ1,ϕ2, . . . ,ϕA}, (2)

�π
int = 1 + πP̂x

2
�int, π = ±. (3)

Here ϕi is the single nucleon wave packet having deformed
Gaussian form [33,34],

ϕi(r) =
∏

σ=x,y,z

(
2νσ

π

) 1
4

e
−νσ (rσ − Ziσ√

νσ
)2+ 1

2 Zσ χiξi, (4)

where χi is the spinor and ξi is the isospin fixed to proton
or neutron. The Zi , ν, and χi are the parameters of the
wave function and determined by the energy variation which
minimizes the expectation value of the Hamiltonian,

Ẽ = 〈�π |Ĥ |�π 〉
〈�π |�π 〉 + vβ(〈β〉 − β)2. (5)

Here the potential vβ(〈β〉 − β)2 imposes the constraint on the
quadrupole deformation parameter 〈β〉 defined in Ref. [35].
The magnitude of vβ is chosen large enough so that 〈β〉 equals
to β after the energy variation. No constraint was imposed
on another quadrupole deformation parameter 〈γ 〉, and hence,
it always has the optimal value for each β. As a result of
the energy variation, one obtains the optimized wave function
denoted by �π

int(β) for each given value of β.

B. Single-particle levels

To investigate the single-particle configuration of the opti-
mized wave functions �π

int(β), the single-particle Hamiltonian
from �int(βi), is constructed and the neutron single-particle
energies and orbits are calculated by diagonalizing it. First,
the single-particle wave packets are transformed to the or-
thonormalized basis,

ϕ̃p(r) = 1√
λp

A∑
i=1

cipϕi(r). (6)

Here, λp and cip are the eigenvalues and eigenvectors of the
overlap matrix Bij = 〈ϕi |ϕj 〉. Using this basis, the single-
particle Hamiltonian is constructed,

hpq = 〈ϕ̃p|t |ϕ̃q〉 +
A∑

r=1

〈ϕ̃pϕ̃r |vn + vC |ϕ̃q ϕ̃r − ϕ̃r ϕ̃q〉,

+ 1

2

A∑
r,s=1

〈ϕ̃r ϕ̃s |ϕ̃∗
pϕ̃q

δvn

δρ
|ϕ̃r ϕ̃s − ϕ̃s ϕ̃r〉. (7)

The eigenvectors fqα of hpq define the occupied single-
particle orbits φα = ∑A

q=1 fqαϕ̃q and their eigenvalues εα are
the single-particle energies. To understand the properties of
the single-particle orbits, I also calculate the amount of the
positive-parity component,

p+ =
∣∣∣∣〈φs |1 + Px

2
|φs〉

∣∣∣∣2

, (8)

and angular momenta in the intrinsic frame,

j (j + 1) = 〈φs |j 2|φs〉, � =
√

〈φs |j 2
z |φs〉, (9)

l(l + 1) = 〈φs |l2|φs〉, ml =
√

〈φs |l2
z |φs〉, (10)

which corresponds to the asymptotic quantum number of the
Nilsson orbits.

C. Generator coordinate method and shifted-basis AMD

To describe the ground and excited states, I perform
the angular momentum projection and GCM. I also explain
the shifted-basis AMD [29–31,36] which is used to generate
additional basis wave functions for GCM. First, the eigenstate
of the total angular momentum J is projected out from the
optimized wave functions �π

int(β),

�Jπ M
K (β) = 2J + 1

8π2

∫
d�DJ∗

MK (�)R(�)�π
int(β). (11)

Here, DJ
MK (�) is the Wigner D function and R(�) is the

rotation operator. The integrals over three Euler angles � are
evaluated numerically. This projected wave function �Jπ M

K (β)
is used as the basis wave functions of GCM.

Then, the wave functions having different quadrupole
deformation β and projection of angular momentum K are
superposed (GCM),

�Jπ M
n =

J∑
K=−J

N∑
i=1

eKin�
Jπ M
K (βi), (12)
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where N is a number of basis wave functions prepared by the
energy variation. The coefficients eKin and eigenenergies EJπ

n

are obtained by solving the Hill-Wheeler equation [37,38],∑
K ′i ′

HJπ

KiK ′i ′eK ′i ′n = EJπ

n

∑
K ′i ′

NJπ

KiK ′i ′eK ′i ′n, (13)

HJπ

KiK ′i ′ = 〈
�Jπ M

K (βi)
∣∣H ∣∣�Jπ M

K ′ (βi ′ )
〉
, (14)

NJπ

KiK ′i ′ = 〈
�Jπ M

K (βi)
∣∣�Jπ M

K ′ (βi ′)
〉
. (15)

As explained in the next section, the basis wave functions
�Jπ M

K (βi) are not sufficient to describe GDR, because many
of the 1p1h configurations which coherently contribute to
GDR are missing. To introduce various 1p1h configurations,
I use the shifted-basis AMD which generates additional basis
wave functions as explained below. I denote by Xi a set of
parameters of the optimized wave function �π

int(βi),

Xi = {Z1, . . . ,ZA,ν,χ1, . . . ,χA}, (16)

and introduce new sets of parameters,

Xi
j = {Z′

1, . . . ,Z′
j , . . . ,Z′

A,ν,χ1, . . . ,χA},
X̄i

j = {Z′
1, . . . ,Z′

j , . . . ,Z′
A,ν,χ1, . . . ,χ̄j , . . . ,χA}, (17)

j = 1, . . . ,A,

where χ̄j is the time reversal of χj , and Z′ is generated by
shifting the original position of the j th Gaussian centroid by
εeσ ,

Z′
p =

{
(Zp + εeσ ) − εeσ /A, p = j

Zp − εeσ /A, p �= j
, (18)

σ = x,y,z. (19)

Here, eσ are the unit vectors in x, y, and z directions, and
ε represents the magnitude of the shift which is typically
chosen as ε = 0.3 fm in this study. All Gaussian centroids
are simultaneously shifted by −εeσ /A to satisfy the rela-
tion

∑A
p=1 Z′

p = ∑A
p=1 Zp = 0, which is needed to avoid

the contamination of the spurious center-of-mass excitation.
Those new parameter sets generate 6NA(2J + 1) new wave
functions denoted by �Jπ M

K (βi ; Xi
j ) and �Jπ M

K (βi ; X̄i
j ) to be

used as additional basis wave functions. The meaning of the
shift of Gaussian centroids is explained in Appendix B. If
one performs GCM with only those new basis functions, the
GCM wave function is given as

�Jπ M
n =

∑
Kij

(
fKijn�

Jπ M
K (βi ; Xj ) + gKijn�

Jπ M
K (βi ; X̄j )

)
,

(20)

and if I include all basis functions,

�Jπ M
n =

∑
Ki

eKin�
Jπ M
K (βi) +

∑
Kij

(
fKijn�

Jπ M
K (βi ; Xj )

+ gKijn�
Jπ M
K (βi ; X̄j )

)
, (21)

where the coefficients of superposition are determined by
solving the Hill-Wheeler equation. Hereafter, I denote the
GCM calculations using the wave function Eqs. (12), (20),
and (21) as β GCM, shifted-basis GCM, and full GCM,
respectively.

D. Dipole transition strength

Using the GCM wave functions for the ground and excited
1− states, I calculate the electric dipole transition probability
B(E1) and excitation function S(E1; E) defined as

Mμ(E1) = N

A

∑
i∈p

riY1μ(r̂) − Z

A

∑
i∈n

riY1μ(r̂), (22)

B(E1; 0+
1 → 1−

n ) =
∑

μ

∣∣ 〈�1−μ
n

∣∣Mμ(E1)
∣∣�0+0

1

〉 ∣∣2
, (23)

S(E1; E) =
∑

n

�/2

π

B(E1; 0+
1 → 1−

n )

(E − En)2 + �2/4
, (24)

where the smearing width is chosen as � = 1 MeV. The energy
weighted and nonweighted sums,

mn =
∫

dE B(E1; E)En, (25)

are also evaluated to see the centroid energy of GDR and the
convergence of the calculation. In addition to the E1 response,
I also calculated the isoscalar dipole transitions whose operator
is defined as

Mμ(IS1) =
A∑

i=1

(r i − rc.m.)
2Y1μ(r i − rc.m.), (26)

where rc.m. denotes the center of mass of the system and the
solid spherical harmonics is defined as Ylm(r) = rlYlm(r̂).
The transition probability B(IS1) and excitation function
S(IS1; E) are defined in the same manner as the E1 transition.

E. Overlap amplitude and spectroscopic factor

To investigate the structure of the 1− states, I calculated
the overlap amplitude and spectroscopic factor. The overlap
amplitude is defined as the overlap between the wave functions
of nuclei with mass A and A + 1. For example, the overlap
amplitude for 26Ne is defined as

ϕ(r) = √
A + 1

〈
�J ′π ′

M ′
n′ (25Ne)

∣∣�Jπ M
n (26Ne)

〉
. (27)

If the wave functions for 25Ne and 26Ne are given by β GCM,
Eq. (27) reads

ϕ(r) = √
A + 1

∑
KiK ′i ′

e∗
K ′i ′n′eKin

× 〈
�J ′π ′

M ′
K ′ (βi ′ ;

25Ne)
∣∣�Jπ M

K (βi ;
26Ne)

〉
. (28)

Using Eqs. (A8) and (A9), it is calculated as

ϕ(r) =
∑
j l

CJM
J ′M ′,jM−M ′ϕjl(r)[Yl(r̂) ⊗ χ ]jM−M ′ , (29)

ϕjl(r) =
∑

KiK ′i ′
e∗
K ′i ′n′eKin

∑
k

CJK
J ′K ′−k,jk

26∑
p=1

(−)pψ
(p)
j lk (r; i)

× 2J ′ + 1

8π2

∫
d�DJ ′∗

K ′K−k(�) det B(p;ii ′)(�). (30)
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FIG. 1. The energy curves as functions of quadrupole deformation parameter β for 24Ne, 25Ne, and 26Ne. Symbols denoted by “positive” or
“negative” show the results of the energy variation after the parity projection, while others show those after the angular momentum projection.
For the negative-parity states of 26Ne, two different single-particle configurations were obtained, which are shown by open and filled symbols.

Once the overlap amplitude is calculated, its integral yields the
spectroscopic factor,

Sjl =
∫ ∞

0
r2dr |ϕjl(r)|2. (31)

The details of the above expressions are explained in Ap-
pendix A. It is straightforward to derive corresponding expres-
sions for shifted-basis GCM and full GCM wave functions.

III. RESULTS

In this section, I first show the low-lying level scheme of
24Ne, 25Ne, and 26Ne obtained by β GCM. Then I compare
the electric dipole response functions obtained by β GCM,
shifted-basis GCM, and full GCM.

A. Results of energy variation and single-particle configurations

Figure 1 shows the energy curves for positive-parity states
of 24Ne and 25Ne, and those for positive- and negative-parity
states of 26Ne obtained by the energy variation after the
parity projection and the angular momentum projection. All
nuclei discussed here locate out of the island of inversion,
and hence, their ground states are dominated by the 0h̄ω
(normal) configurations. The strongly deformed 2h̄ω (in-
truder) configurations locate approximately 7 MeV above
the normal configurations in all nuclei. After the angular
momentum projection, the energy minima of 0+ or 1/2+
states corresponding to the ground states have non-negligible
deformations that are β � 0.35 for 24Ne and β � 0.30 for 25Ne
and 26Ne. For the negative-parity states of 26Ne, I have obtained
two energy minima which have different internal structures.

The single-particle configurations of the positive- and
negative-parity minima of 26Ne can be understood from the
properties of single-particle orbits listed in Table I. At the
energy minimum of the positive-parity state, the most weakly
bound two neutrons occupy the [211 1/2+] Nilsson orbit which
originates in the spherical 1s1/2 orbit [Table I(a)]. Owing to
the spherical nature of this orbit, the deformation of neutron
distribution is smaller than that of proton distribution as seen
in its density profile shown in Fig. 2(a), which reduces the
deformation of the system compared to 24Ne as mentioned
above.

The 1− states shown by open circles in Fig. 1(d) have the
energy minimum located around β = 0.40 at approximately
4 MeV above the positive-parity minimum, whose single-
particle levels are listed in Table I(b). One sees that the
protons do not change their configuration from the positive-
parity minimum, but a valence neutron is excited from the
[211 1/2+] orbit to the [330 1/2−] orbit which corresponds

TABLE I. The valence four proton and six neutron orbits of 26Ne
at the energy minima of (a) positive parity with 0h̄ω configuration,
(b) negative parity with neutron excitation, and (c) negative parity
with proton excitation. The single-particle energy ε is given in MeV.
Other quantities are defined by Eqs. (8)–(10). The Nilsson asymptotic
quantum numbers [Nnzml�

π ] deduced from those properties are also
given.

(a) Positive minimum at β = 0.30

Orbit ε p+ j l ml � [Nnzml �π ]
π 1, 2 −17.0 0.99 2.3 1.9 0.5 0.5 [220 1/2+]
π 3, 4 −24.3 0.01 0.7 1.0 1.0 0.5 [101 1/2−]

ν 1, 2 −5.2 0.99 1.5 1.5 0.8 0.5 [211 1/2+]
ν 3, 4 −7.3 0.99 2.5 2.0 2.0 2.5 [202 5/2+]
ν 5, 6 −10.1 0.99 2.5 2.0 1.1 1.5 [211 3/2+]

(b) Negative minimum at β = 0.40 (neutron ex.)

Orbit ε p+ j l ml � [Nnzml �π ]
π 1, 2 −18.8 0.99 2.3 1.8 0.4 0.5 [220 1/2+]
π 3, 4 −23.1 0.10 0.7 1.1 1.0 0.5 [101 1/2−]

ν 1 −1.4 0.00 2.9 2.5 0.4 0.5 [330 1/2−]
ν 2 −5.2 0.99 1.7 1.7 0.9 0.5 [211 1/2+]
ν 3, 4 −6.3 0.99 2.5 2.0 2.0 2.5 [202 5/2+]
ν 5, 6 −10.1 0.99 2.5 2.1 1.1 1.5 [211 3/2+]

(c) Negative minimum at β = 0.32 (proton ex.)

Orbit ε p+ j l ml � [Nnzml �π ]
π 1, 2 −16.7 0.99 2.4 1.9 0.6 0.7 [220 1/2+]
π 3 −20.1 0.53 1.8 1.6 1.0 1.0 [211 3/2+] + [101 1/2−]
π 4 −25.0 0.00 0.7 1.0 1.0 0.5 [101 1/2−]

ν 1, 2 −5.1 0.99 1.5 1.4 0.8 0.6 [211 1/2+]
ν 3, 4 −7.2 0.99 2.5 2.0 2.0 2.5 [202 5/2+]
ν 5, 6 −10.3 0.99 2.5 2.0 1.1 1.5 [211 3/2+]
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FIG. 2. Intrinsic density distributions of 26Ne at energy minima
of positive- and negative-parity states. Upper (lower) panels show
proton (neutron) distributions. β, βp , and βn, respectively, denote
the quadrupole deformation of matter (proton+neutron), proton, and
neutron density distributions at each minima.

to the neutron excitation from sd to pf shells. The neutron
particle and hole enlarge the deformation of the neutron
distribution, and as a result, the deformation of the system
is much larger than the positive-parity minimum [Fig. 2(b)].
It is noted that the degeneracy of the single-particle orbit is
lost in this configuration because the time reversal symmetry
is broken. Therefore, the single-particle energies and other
properties listed in the table are averaged for the pair of the
approximately degenerated orbits. Other 1− states shown by
filled circles in Fig. 1(c) have the minimum approximately
8 MeV above the positive-parity minimum around β = 0.32
whose single-particle configuration is given in Table I(c).
In this state, the neutron configuration is unchanged from
the positive-parity minimum, but the third proton occupies
the orbit which is an admixture of the positive and negative
parity. From the properties of this orbit, I deduced that the
[211 3/2+] and [101 1/2−] orbits are mixed. Therefore,
when the intrinsic wave function is projected to the negative
parity, this configuration approximately corresponds to the
proton [211 3/2+] particle and [101 1/2−] hole state. The
proton particle and hole reduce the deformation of the proton
distribution [Fig. 2(c)] leading to the reduction of the total
system deformation. The Jπ = 2− and 3− states shown by

open and filled boxes and diamonds have the same single-
particle configurations as the Jπ = 1− states mentioned above.

Although I do not show the calculated results, it is noted
that the single-particle configurations of 24Ne and 25Ne are
understood in the same way. Namely, their ground states
are dominated by the normal configuration, while the 2h̄ω
excited configuration has two neutrons in the [330 1/2+]
orbit. The negative-parity states of 25Ne also have two energy
minima. The lowest minimum has a neutron excitation from
the [211 1/2+] orbit to the [330 1/2+] orbit, while the upper
minimum has a proton excitation from the [101 1/2−] orbit to
the [211 3/2+] orbit, which is qualitatively the same as 26Ne.

The results obtained by the energy variation and angular
momentum projection are summarized as follows: (1) 25Ne and
26Ne have positive-parity minimum with smaller deformation
compared to that of 24Ne. This is because of the valence
neutrons occupying the [211 1/2+] orbit which originates in
the spherical 1s1/2 orbit. (2) 25Ne and 26Ne have two negative-
parity minima having different single-particle configurations.
The lowest minimum has a neutron [330 1/2−] particle and
a [211 1/2+] hole. The neutron particle and hole enlarge
the deformation compared to the positive-parity minimum.
(3) Another minimum has a proton [211 3/2+] particle and
[101 1/2−] hole, which reduces the nuclear deformation.

B. Low-lying energy spectra obtained by β GCM

The energy spectra of 24Ne, 25Ne, and 26Ne obtained by β
GCM are shown in Fig. 3. I first examine the result for 24Ne.
For this nucleus, I have not obtained any negative-parity states
below 5 MeV. The ground band members (0+, 2+, and 4+
states) having normal configurations are reasonably described
showing a vibrational spectrum, although the excitation ener-
gies of the first 2+ and 4+ states are slightly underestimated.
The present result also gives the reasonable B(E2; 0+ → 2+)
value which is consistent with the observed value as listed in
Table II. The second 2+

2 state is followed by the 3+ state at
approximately 5 MeV which also has normal configuration
and constitutes a γ vibrational band. Their relatively small
excitation energies imply the γ softness of this nucleus,
although the 3+ state has not been experimentally identified
yet. The 0+

2 state having the intruder configuration locates at
5.62 MeV which slightly overestimates the observed excitation
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FIG. 3. Observed [39–42] and calculated spectrum of 24Ne, 25Ne, and 26Ne. The results of the HFB-based theoretical calculations [43,44]
which also use Gogny D1S interaction are also shown.
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TABLE II. Reduced E2 transition probabilities for low-lying
states of neon isotopes in the unit of e2 fm4. Numbers in parentheses
are the experimental values taken from Refs. [45,46].

24Ne 25Ne 26Ne

Ji → Jf B(E2) Ji → Jf B(E2) Ji → Jf B(E2)

2+
1 → 0+

1 24.3 (28) 3/2+
1 → 1/2+

1 35.9 2+
1 → 0+

1 31.1 (28)

2+
2 → 0+

1 2.3 5/2+
1 → 1/2+

1 27.4 2+
2 → 0+

1 6.7

4+
1 → 2+

1 17.5 5/2+
1 → 3/2+

1 1.6 4+
1 → 2+

1 32.1

4+
1 → 2+

2 1.5 7/2+
1 → 3/2+

1 40.9 4+
1 → 2+

2 2.3

3+
1 → 2+

1 6.5 7/2+
1 → 5/2+

1 6.5 3+
1 → 2+

1 6.9

3+
1 → 2+

2 18.8 9/2+
1 → 5/2+

1 26.1 3+
1 → 2+

2 1.3

9/2+
1 → 7/2+

1 1.9

energy of 4.77 MeV. On the other hand, the Hartree-Fock-
Bogoliubov (HFB) calculation with the angular momentum
projection and generator coordinate method (AMPGCM) [43]
which also uses the Gogny D1S interaction underestimates
the 0+

2 state energy (2.9 MeV). This difference may be from
the difference of the theoretical treatment. In the present
calculation, the pairing effect is not explicitly included and
AMPGCM calculation assumes the axial symmetry.

The spectrum of 25Ne is shown in Fig. 3(b). In the low-lying
positive-parity states, similar to 26Ne, the last neutron occupies
the [211 1/2+] orbit which originates in the spherical 1s1/2

orbit. Therefore, the ground state is the 1/2+ state and it is
followed by the 3/2+ to 9/2+ states to constitute the ground
band. The energies of the band member states (3/2+ and 5/2+
states) reasonably agree with the observation, although the
7/2+ and 9/2+ states have not been observed yet. This ground
band is interpreted as the coupling of the 1s1/2 neutron to
the ground band of 24Ne. Namely, 24Ne(2+) ⊗ 1s1/2 yields
the 5/2+-3/2+ doublet and 24Ne(4+) ⊗ 1s1/2 yields the 9/2+-
7/2+ doublet. The calculated and observed B(E2) values and
the spectroscopic factors listed in Tables II and III appear to
support this interpretation, although the 0+

1 ⊗ d3/2 component
is not small for the 3/2+ state.

The negative-parity states of 25Ne provide approximate
information about the size of the N = 20 shell gap in this

TABLE III. Single-particle spectroscopic factors for the low-
lying states of 25Ne and the ground state of 26Ne. Numbers in
parentheses are the experimental values taken from Refs. [42,47].

0+
1 ⊗ lj 2+

1 ⊗ s1/2 2+
1 ⊗ d5/2 2+

1 ⊗ d3/2

25Ne(1/2+
1 ) 0.57 (0.80) 0.52 0.14

25Ne(3/2+
1 ) 0.21 (0.44) 0.15 0.00 0.05

25Ne(5/2+
1 ) 0.07 (0.10) 0.49 0.10 0.10

0+
1 ⊗ lj 2+

1 ⊗ p3/2 2+
1 ⊗ f7/2

25Ne(3/2−
1 ) 0.40 (0.75) 0.26 0.08

25Ne(7/2−
1 ) 0.64 (0.73) 0.04 0.05

1/2+
1 ⊗ s1/2 3/2+

1 ⊗ d3/2 5/2+
1 ⊗ d5/2

26Ne(0+
1 ) 1.04 (1.4) 0.55 (0.5) 1.47 (1.3)

mass region. The calculated 3/2− and 7/2− states locate at 4.0
and 4.7 MeV and slightly overestimate the observed values of
3.3 and 4.0 MeV [41,42,47–50]. The observed and calculated
spectroscopic factors for those negative-parity states are large,
and hence, their excitation energies are good measures for the
p3/2 and f7/2 single-particle energies. It is interesting to note
that the order of the 3/2− and 7/2− (1p3/2 and 0f7/2) are
already inverted in this nucleus, which explains the reason of
the p3/2 neutron-halo formation in 31Ne [51–55].

The low-lying spectrum of 26Ne is shown in Fig. 3(c).
Experimentally, the first 2+ state is known at 2.0 MeV and two
states without definite spin-parity assignment are observed
at 3.5 and 3.7 MeV. The present calculation yields the first
2+ state at 1.8 MeV and predict the 4+ state at 3.2 MeV.
Those yrast states constitute the ground band dominated by
the [211 1/2+]2 configuration or by the (1s1/2)2 configura-
tion, which is confirmed from the observed and calculated
spectroscopic factors listed in Table III. The calculation also
predicts the second 0+ state at 4.5 MeV which is dominated
by the intruder [330 1/2+]2 configuration. Similar to 24Ne,
this nucleus also has the low-lying Kπ = 2+ band owing to
its softness against the γ deformation. It is constituted by the
second 2+ state at 4.2 MeV and the 3+ state at 5.1 MeV. Those
nonyrast states may correspond to one of the observed states at
3.5 and 3.7 MeV. The HFB calculations with AMPGCM [43]
overestimate the 2+

1 state energy by approximately 1.5 MeV,
while the other HFB-based GCM calculation with the Gaussian
overlap approximation [44] reasonably describes the observed
energy. Thus, the numerical results are dependent on the
theoretical models to some extent.

The low-lying 1− states of 26Ne are of particular interest
because of their relationship to the pygmy dipole resonance.
The lowest energy minimum in Fig. 1(c) which is dominated
by a neutron excitation yields a group of the negative parity
states around 4–5 MeV shown in Fig. 3(c). It generates 1−

1
and 1−

2 states at 4.0 and 4.5 MeV. The energy minimum with
a proton excitation yields another group of 1− states around
8–11 MeV.

C. Electric dipole response of 26Ne

Figure 4(a) shows the electric dipole strength functions
where the histograms show the results of β GCM, shifted-
basis GCM, and fill GCM. The solid line shows the full GCM
result smeared with the Lorentzian with 1-MeV width. In the
result of β GCM (blue histogram), there are tiny peaks around
5–10 MeV which are the neutron and proton excited states
explained in the previous section. On the other hand, there is
almost no prominent strength above 10 MeV, which means that
β GCM is insufficient to describe the highly excited 1− states,
in particular, the GDR to which various 1p1h configurations
coherently contribute.

The shifted-basis GCM [green histogram in Fig. 4(a)]
overcomes this problem. It yields two large peaks around 21
and 28 MeV which correspond to the GDR. The origin of this
splitting is attributed to the deformation of the ground state
and is discussed in the next section. The energy weighted sum
(m1) listed in Table IV is evidently increased compared with
β GCM. It is consistent with other theoretical calculations
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width. (b) Comparison of the results of full GCM calculations in which the magnitude of the shift is changed from 0.20 to 0.40 fm.

with Gogny D1S interaction and much larger than the TRK
sum rule (92 e2 fm2 MeV) because of the momentum and
isospin dependence of the Gogny D1S. Thus, the shifted-basis
GCM successfully describes GDR by introducing various
1p1h configurations using the shifted Gaussian wave packets.
However, the tiny peaks around 5–10 MeV are not clear in the
shifted-basis GCM compared to the β GCM. This may mean
that the single-particle wave functions such as [330 1/2−] and
[101 1/2−] that generate low-lying peaks cannot be descried
properly by the simple shift of the Gaussian basis.

The full GCM includes all of the basis wave functions which
are the single-particle excited states obtained by the energy
variation and the various 1p1h configurations generated
by the shifted Gaussian basis. Therefore, I expect both of
the collective and single-particle excitations are reasonably
described. The strength function obtained by the full GCM is
shown by the orange histogram and red line in Fig. 4(b). It
has two peaked GDR distribution similar to the shifted-GCM
and low-lying strengths around 5–10 MeV which should be
attributed to the pygmy dipole resonance. The calculated
energy weighted sum and GDR energy are similar to the result
of the shifted-basis GCM and other theoretical calculations.

Finally, I examine the convergence of the full GCM
calculation. If the model space spanned by the shifted-basis

TABLE IV. Energy weighted sum in e2 fm2 MeV and centroid
energy of GDR (peak position and the ratio of energy weighted and
nonweighted sums) in MeV obtained by β GCM, shifted-basis GCM,
and full GCM. They are compared with the QRPA calculations [16,21]
which also use Gogny D1S interaction.

m1 m1/m0 Peak position

β GCM 5 11
Shifted-basis GCM (ε = 0.30) 177 24.5 22.0
Full GCM (ε = 0.30) 183 23.4 21.5
Full GCM (ε = 0.20) 176 22.7 21.5
Full GCM (ε = 0.40) 171 23.1 21.5
Peru et al. [16] 21.9
Hashimoto [21] 181 24.5 22.5

functions is large enough and if the magnitude of the shift ε is
small enough, the result should not depend on the magnitude
of ε. To investigate the convergency, I performed full GCM
calculations by changing the magnitude of the ε to 0.2 and
0.4 fm as shown in Fig. 4(b). It is clear that the strength
distribution below 25 MeV is almost unchanged, while the
peak around 28 MeV is slightly affected. Therefore, I conclude
that the result for the pygmy dipole resonance and the first
lower peak of GDR is well converged, while the higher peak
of GDR is somewhat ambiguous. I also note that the energy
weight sum of the strength and the centroid energy of GDR
are rarely affected by the choice of ε as shown in Table IV.

IV. DISCUSSIONS

Here, I first focus on the high-energy part of the calculated
E1 response and discuss the splitting of the GDR and
its relationship to the ground-state deformation. Then, I
discuss the low-energy part, i.e., the PDR and analyze its
characteristics.

A. Splitting of GDR

It is well known that the ground-state deformation affects
the distribution of the giant resonances. In the case of the
E1 response of axially symmetric nucleus, the ground-state
deformation differentiates the oscillator length for the collec-
tive vibration along the longest and shortest deformation axes,
which results in the splitting of the GDR into two components.
The QRPA calculation [18,56] shown that the Kπ = 0−
component of the GDR appears at smaller excitation energy
than the Kπ = ±1− component for the prolate deformed
nuclei, while the order is inverted in the oblate deformed nuclei
[57].

However, the discussion made by QRPA calculations is
based on the analysis in the body-fixed frame where the
deformed intrinsic state is not an eigenstate of good angular
momentum, and hence, the calculated results do not directly
correspond to the observed excitation function of 1− states.
On the other hand, in the present calculation, the results can
be directly compared with the observed data, because the
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rotational symmetry is restored by the angular momentum
projection. Because the excitation function shown in Fig. 4 also
shows the splitting of GDR, it is of interest to check if it really
originates in the ground-state deformation or not. For this
purpose, I have performed two additional GCM calculations.
In the first calculation, the value of the K quantum number
is restricted to K = 0 (or ±1) in the GCM calculation. In
other words, the summation over K in Eq. (21) is restricted to
only K = 0 or K = ±1, which will distinguish the K = 0
and ±1 components. In the second calculation, the value
of the K quantum number is unrestricted, but the shift of
Gaussian centroids [the unit vector e in Eq. (18)] is restricted
to only the z direction (or x and y directions) where the
z axis is chosen to be the longest deformation axis. This will
apparently restrict the direction of the vibration to the z (x
and y) direction. The results of the calculations are presented
in Fig. 5. As clearly seen, both calculations show that the
low-energy part of GDR is dominated by the vibration along
the longest deformation axis (Kπ = 0− and e = ez), while
the high-energy part is dominated by the vibration along the
shortest deformation axis (Kπ = ±1− and e = ex,y).

Thus, the splitting of the vibration modes parallel and
perpendicular to the longest axis in the intrinsic frame also
can be observed even after the angular momentum projection.
Hence I can safely conclude that the splitting of GDR surely
originates in the ground-state deformation. It is also noted
that the low (high) energy part of PDR is also dominated by
the Kπ = 0− (±1−) component, which is also qualitatively
consistent with the QRPA result [18].

B. Property of PDR

Figure 6 magnifies the low-energy part of the strength
function where six 1− states locate in between 4 and 10 MeV
as listed in Table V. Among them, I regard that the four 1−
states (1−

3 to 1−
6 ) which locate above the neutron threshold

(5.5 MeV) correspond to the observed PDR, because the
experiment [14] was sensitive to only the neutron decaying
states. The averaged energy of these four 1− states is 8.5 MeV

and the sum of B(E1) is 0.44 e2 fm2, which reasonably agrees
with the observed data, 9 MeV and 0.49 ± 0.16 e2 fm2. The
energy weighted sum amounts to approximately 4% of the
TRK sum rule, which is slightly smaller than the observation
which amounts to approximately 5%.

Table VI suggests that there are several interesting features
to be noted in the calculated S factors of the low-lying
1− states. First, the S factors of the 1−

1 and 1−
2 states are

large in the ground-state channels [25Ne(1/2+
1 ) ⊗ lj ]. On the

other hand, those of the 1−
3 to 1−

6 states are small in the
ground-state channels but large in the excited state channels
[25Ne(5/2+

1 ) ⊗ lj , 25Ne(3/2+
1 ) ⊗ lj , and 25Ne(3/2−

1 ) ⊗ lj ] in-
dicating that the PDR of 26Ne involves the core excitation. This
may be a straightforward answer to the question, “Why does
the observed 26Ne PDR predominantly decay to the excited
state of 25Ne, not to its ground state?” The reason for the core
excitation may be attributed to the deformation of PDR. In the
strong coupling picture, it can be easily shown that PDR has a
large amount of the core excited component. Another possible
reason is the isoscalar component in PDR. I’ll discuss, in the
next section, that the large IS component in PDR possibly
induces strong quadrupole core excitation.

The second is the dominance of the p3/2 S factors over
the f7/2 S factors. There may be several explanations for this.
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FIG. 6. Distributions of the low-lying E1 strengths calculated by
full GCM and β GCM. Arrow shows the neutron threshold.
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TABLE V. Energies and B(E1) strengths of four 1− states (1−
3 to

1−
6 ) which constitute the PDR. Their averaged energy weighted by

B(E1) strength and the sum of the B(E1) strength are compared with
the observed data [14].

Ex (MeV) B(E1; 0+
1 → 1−) (e2 fm2)

1−
1 4.0 0.03

1−
2 4.6 0.01

1−
3 7.6 0.09

1−
4 8.4 0.19

1−
5 8.9 0.04

1−
6 9.4 0.12

Total (1−
3 to 1−

6 ) 8.5 0.44
Expt. 9 0.49 ± 0.16

The first reason is derived from a simple spherical shell model
picture. In the spherical shell model, the last neutron occupies
1s1/2 in the ground state. This last neutron must be excited to
p3/2 not to f7/2 to generate the 1− state. The second is given
by the deformation picture. As already shown, the PDR has a
large amount of the ν[330 1/2−] component. As is well known,
as deformation becomes larger, this Nilsson orbit has a large
contamination of p3/2. The final explanation is the quenching
of the N = 28 shell gap. It was discussed that the quenching of
the N = 28 shell gap also strongly affects the neutron-rich Ne
and Mg isotopes in the island of inversion where the N = 20
shell gap is broken. A well-known famous example is the
neutron-halo nucleus 31Ne with N = 21, in which the ground
state has the νp3/2 configuration instead of νf7/2. Even in
the case of 26Ne which is out of the island of inversion, the
quenching of the N = 28 shell gap will affect the excitation
spectra. Indeed, one is reminded that the 3/2− state is lower
than the 7/2− state in 25Ne.

C. Isoscalar component of PDR

The dominance of the core excitation discussed above
implies that the PDR has large isoscalar (IS) dipole strength

TABLE VI. Single-particle spectroscopic factors in 25Ne(J π ) ⊗
�j channels for the low-lying 1− states.

1/2+
1 ⊗ p3/2 1/2+

1 ⊗ p1/2 3/2+
1 ⊗ p3/2 3/2+

1 ⊗ p1/2

1−
1 0.8 0.3 0.2 0.0

1−
2 0.2 0.7 0.0 0.3

1−
3 0.1 0.1 0.4 0.0

1−
4 0.3 0.0 0.3 0.1

1−
5 0.2 0.0 0.2 0.1

1−
6 0.1 0.1 1.1 0.2

5/2+
1 ⊗ p3/2 5/2+

1 ⊗ f7/2 3/2−
1 ⊗ s1/2 3/2−

1 ⊗ d3/2

1−
1 0.0 0.1 0.2 0.0

1−
2 0.0 0.3 0.0 0.1

1−
3 1.2 0.9 0.4 0.2

1−
4 1.1 0.6 0.3 0.1

1−
5 0.3 0.1 0.7 0.4

1−
6 0.2 0.1 0.5 0.3

FIG. 7. Schematic figure for the internal coordinates ξ i and the
relative coordinate r .

as well as the IV strength. This is explained as follows. The
first line of Eq. (32) is the standard definition of the IS dipole
transition operator in terms of the single-particle coordinate r i

and the center-of-mass coordinate rc.m. = ∑A
i=1 r i/A.

Mμ(IS1) =
A∑

i=1

(r i − rc.m.)
2Y1μ(r i − rc.m.)

=
A−1∑
i=1

ξ 2
i Y1μ(ξ i) + (A − 1)(A − 2)

A2
r2Y1μ(r)

− 5

3A

A−1∑
i=1

ξ 2
i Y1μ(r)

+ 4
√

2π

3A

[
A−1∑
i=1

Y2(ξ i) ⊗ Y1(r)

]
1μ

� 4
√

2π

3A

[
A−1∑
i=1

Y2(ξ i) ⊗ Y1(r)

]
1μ

. (32)

Then, I divide the system into the core nucleus with mass A − 1
and the valence neutron, and introduce the internal coordinate
of the core ξ i and the relative coordinate between the core and
the valence neutron r (see Fig. 7),

ξ i = r i − 1

A − 1

A−1∑
i=1

r i , i = 1,2, . . . ,A − 1, (33)

r = rA − 1

A − 1

A−1∑
i=1

r i . (34)

Using these coordinates, the operator is equivalently rewritten
as the second line of Eq. (32) (see Appendix C and Ref. [58]).
Now I examine each term of the second line. The first term is
the IS dipole excitation of the core nucleus and should have
only negligible contribution to PDR, because it involves the
change of the core density, and hence, it cannot contribute to
the low-energy excitation modes. The second term is the dipole
excitation of the relative motion between the core and the
valence neutron. The third term is also the dipole excitation of
the relative motion, but it is coupled to the monopole operator
of the core. One can also expect that these two terms cancel
out to each other and their contribution can be negligible. To
elucidate it, let us simplify the wave functions of the ground
state and PDR as

|GS〉 = |�C〉 |φn〉, (35)

|PDR〉 =
√

1 − c2 |�C〉 |φ∗
n〉 + c |�∗

C〉 |φ∗∗
n 〉, (36)
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where |�C〉 and |�∗
C〉 are the ground and excited state wave

functions of the core. |φn〉 is the valence neutron in the ground
state, while |φ∗

n〉 and |φ∗∗
n 〉 are those in the PDR coupled to the

ground and excited states of the core. The antisymmetrization
between the core and the valence neutron is neglected for
simplicity. Using these wave functions, the IS dipole transition
matrix between the ground state and PDR may be estimated
as follows. The second term of Eq. (32) yields

(A − 1)(A − 2)

A2

√
1 − c2 〈φ∗

n|r2Y1μ(r)|φn〉, (37)

and the third term contribution is

−5

3

A − 1

A

√
1 − c2

〈
r2
C

〉 〈φ∗
n|Y1μ(r)|φn〉. (38)

Here, I assumed that |�C〉 and |�∗
C〉 have different angular

momenta, and hence, 〈�∗
C |�C〉 = 〈�∗

C | ∑A−1
i=1 ξ 2

i |�C〉 = 0.
〈r2

C〉 denotes the mean-square radius of the core ground state,
i.e., 〈r2

C〉 = 〈�C | ∑A−1
i=1 ξ 2

i |�C〉 /(A − 1). If the radius of the
core |�C〉 and that of the valence neutron |φn〉 are almost
the same size, one might expect that the matrix elements
〈φ∗

n|r2Y1μ(r)|φn〉 and 〈r2
C〉 〈φ∗

n|Y1μ(r)|φn〉 are the same order
of magnitude. Hence, one would expect that the second and
third terms largely cancel out each other for such a situation
[59].

Thus, I expect that only the fourth term has the sizable
contribution to the low-lying dipole mode as written in the last
line of Eq. (32). It is the dipole excitation of the valence neutron
coupled to the quadrupole operator of the core. Assuming that
the ground state of the core has no quadrupole moment (this is
true for the 1/2+ ground state of 25Ne), the contribution from
the fourth term is estimated as

4
√

2π

3A
c 〈QC〉 〈φ∗∗

n |rY1μ(r)|φn〉, (39)

where the quadrupole matrix element of the core is defined as
〈QC〉 = 〈�∗

C | ∑A
i=1 Y2μ(ξ i)|�C〉. Remember that the first and

second excited states of 25Ne have large B(E2) value (Table II).
Hence the matrix element 〈QC〉 should be large and the fourth
term should yield a large IS dipole transition matrix. In other
words, the IS dipole transition is sensitive to the quadrupole
excitation of the core, and the PDR of 26Ne should have a
large IS dipole transition matrix if the core excited component
is important as discussed in Sec. IV B.

The above discussion is based on many assumptions,
and must be verified by the numerical calculation without
approximations. Figure 8(a) shows the calculated IS dipole
strength. Note that the results shown in Fig. 8(a) are obtained
from the full GCM wave function without any truncation of the
IS dipole operator and wave functions. One clearly sees that
the PDR has pronounced IS dipole strength as expected from
the above discussion. To make the argument more visible,
Fig. 8(c) shows the IS dipole strength of the excited state
that has the sizable E1 strengths (B(E1) > 0.05 e2 fm2). It is
obvious that only the PDR has large E1 and IS dipole strengths
simultaneously, while the other excited states do not. Thus, the
IS dipole strength is correlated well with the core excitation
of PDR and its mechanism may be explained by Eq. (32). I
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FIG. 8. (a) Calculated IS dipole strength distribution. (b) Cal-
culated electric dipole strength distribution which is the same as
Fig. 4(a). (c) Calculated IS dipole strengths of the states having sizable
magnitude of E1 strengths [B(E1) > 0.05 e2 fm2].

expect that IS dipole strength will provide good insight into
the structure of PDR, if it is experimentally measured.

Knowing the above-mentioned results, one may also be able
to conjecture as follows. Imagine that the PDR is dominated
by the neutron single-particle excitation and proton excitation
plays only a minor role. In such cases, the PDR is not an
eigenmode of the isospin, but a mixture of the IV and IS
components,

|PDR〉 ∝ M(E1) |GS〉 + M(IS1) |GS〉. (40)

Indeed, this kind of contamination of the isoscalar component
has already been discussed by many authors [60–63]. Then,
suppose that the core nucleus has strong low-lying quadrupole
collectivity. From the above discussions, one can expect that
M(IS1) |GS〉 is strongly amplified, and as a result, the PDR
is predominated by the core excited component. In short,
I conjecture that the PDR will be dominated by the core
excited component, if the core nucleus has low-lying strong
quadrupole collectivity. A good candidate of this conjecture is
neutron-rich Ne isotopes which have very strong quadrupole
collectivity owing to the breakdown of the N = 20 magic
number in the island of inversion. This conjecture will be
tested by the undergoing numerical calculations.

V. SUMMARY

In summary, I have investigated the pygmy dipole resonance
of 26Ne by using the shifted-basis AMD. The ordinary AMD
framework, β GCM, reasonably described the low-lying
spectra of 24,25,26Ne, but failed to describe the E1 response
of 26Ne. The shifted-basis AMD introduces various 1p1h
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configurations by the shift of the nucleon wave packets and
is able to describe the E1 response. The global feature of the
calculated E1 response function was consistent with the QRPA
calculations which employ the same Gogny D1S interaction.
It also showed that the splitting of the GDR originates in the
ground-state deformation.

The shifted-basis AMD showed that the PDR appears
approximately at 8.5 MeV and exhausts 4% of the TRK
sum which is consistent with the observation. The structure
of the PDR was examined by the analysis of the spectroscopic
factors. It was found that the PDR is dominated by the neutron
excitation coupled to the quadrupole excited core nucleus
25Ne, which explains the observed decay of PDR to the
excited states of 25Ne. I suggested that the quadrupole core
excitation induces the large contamination of the isoscalar
component in PDR. It was shown by the analytic calculation
by rewriting the isoscalar dipole operator in terms of the
internal coordinates and the relative coordinate between the
core and the valence neutron. This estimation was confirmed
by the numerical calculation using shifted-basis AMD. From
this result, I conjecture that the PDR will be dominated by
the core excited component, if the core nucleus has low-lying
strong quadrupole collectivity. By the undergoing numerical
calculations, this conjecture will be tested in neutron-rich Ne
isotopes in which the low-lying strong quadrupole collectivity
is well known.
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APPENDIX A: OVERLAP AMPLITUDE AND
SINGLE-PARTICLE SPECTROSCOPIC FACTOR

OF SLATER DETERMINANTS

In this Appendix, I derive the equations to calculate the
overlap amplitude and spectroscopic factor. The following
equations are applicable for nuclear models based on Slater
determinant wave functions such as Hartree-Fock as well as
AMD.

I first consider the Slater determinant wave functions of A
and A + 1 body systems given as

�(r1, . . . ,rA) = 1√
A!

det {φ1 · · · φA}, (A1)

�(r1, . . . ,rA+1) = 1√
(A + 1)!

det {ψ1 · · · ψA+1}. (A2)

Using the A × (A + 1) overlap matrix Bij = 〈φi |ψj 〉 and its
submatrix B(p) formed by removing the pth column from B,
the overlap amplitude is calculated as

ϕ(r) ≡ √
A + 1〈� | �〉

=
∑

p1,...,pA+1

sgn

(
1,...,A + 1
p1,...,pA+1

)
B1p1 ...BApA

ψpA+1 (r)

=
A+1∑
p=1

(−)p det B(p)ψp(r), (A3)

where a trivial factor (−)A+1 is omitted for simplicity. Using
this result, I consider the overlap amplitude of angular
momentum projected Slater determinants P J

MK� and P J
MK�.

Their overlap amplitude is calculated as follows.

ϕ(r) ≡ √
A + 1

〈
P

J2
M2K2

�
∣∣P J1

M1K1
�

〉 = (2J1 + 1)(2J2 + 1)

(8π2)2

∫
d�1d�2D

J2
M2K2

(�2)DJ1∗
M1K1

(�1)
√

A + 1 〈RA(�2)�|RA+1(�1)�〉

= (2J1 + 1)(2J2 + 1)

(8π2)2

∑
K

∫
d�1d�′

2D
J2
M2K

(�1)DJ2
KK2

(�′
2)DJ1∗

M1K1
(�1)

√
A + 1 〈�|R†

A(�′
2)R†

A(�1)RA+1(�1)|�〉, (A4)

where �′
2 satisfies the relation R(�2) = R(�1)R(�′

2), and hence, D
J2
M2K2

(�2) = ∑
K D

J2
M2K

(�1)DJ2
KK2

(�′
2). Note that RA(�)

rotates r1, . . . ,rA, while RA+1(�) rotates r1, . . . ,rA+1. Then, using Eq. (C2), the bracket in the integral is calculated.

√
A + 1 〈�|R†

A(�′
2)R†

A(�1)RA+1(�1)|�〉 =
A+1∑
p=1

(−)p det B(p)(−�′
2){R(�1)ψp(rA+1)}. (A5)

Here, B(p)(−�′
2) is a A × A submatrix of Bij (−�′

2) = 〈φi |R†(�2)|ψj 〉.
Now using the multipole expansion,

ψp(r) =
∑
j lk

ψ
(p)
j lk (r)[Yl(r̂) ⊗ χ ]jk, (A6)

the rotation of ψp(r) is written as

R(�1)ψp(r) =
∑
j lmk

ψ
(p)
j lm(r)Dj

mk(�1)[Yl(r̂) ⊗ χ ]jm. (A7)
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Substituting Eqs. (A5) and (A7) into Eq. (C6), the integral over �1 is analytically performed. Simplifying the equation, one
obtains the overlap amplitude for the angular momentum projected Slater determinants.

ϕ(r) = √
A + 1

〈
P

J2
M2K2

�
∣∣P J1

M1K1
�

〉 =
∑
j l

C
J1M1
J2M2,jM1−M2

ϕjl(r)[Yl(r̂) ⊗ χ ]jM1−M2 , (A8)

ϕjl(r) =
∑

k

C
J1K1
J2K1−k,jk

A+1∑
p=1

(−)pψ
(p)
j lk (r)

2J2 + 1

8π2

∫
d� D

J2∗
K2K1−k(�) det B(p)(�), (A9)

where CJM
j1m1,j2m2

denotes Clebsch-Gordan coefficient. It is obvious that the overlap amplitude of the GCM wave functions given
in Eqs. (12), (20), and (21) are obtained by a linear transformation of Eq. (A9).

By a similar manner calculation, the equation for two-body overlap amplitude ϕ(r1,r2) for A and A + 2 body systems is also
obtained as follows.

ϕ(r1,r2) ≡
√

(A + 1)(A + 2)
〈
P

J2
M2K2

�
∣∣P J1

M1K1
�

〉
=

∑
j

C
J1M1
J2M2,jM1−M2

∑
j1l1j2l2

ϕj ;j1l1j2l2 (r1,r2)
[[

Yl1 (r̂1) ⊗ χ1
]
j1

⊗ [
Yl2 (r̂2) ⊗ χ2

]
j2

]
jM1−M2

, (A10)

ϕj ;j1l1j2l2 (r1,r2) =
∑

k

C
J1K1
J2K1−k,jk

A+2∑
p<q

(−)p−qϕ
(p,q)
jk;j1l1j2l2

(r1,r2)
2J2 + 1

8π2

∫
d� D

J2∗
K2,K1−k(�) det B(p,q)(�), (A11)

ϕ
(p,q)
jk;j1l1j2l2

(r1,r2) =
∑
k1

C
jk
j1k1,j2k−k1

{
ψ

(p)
j1l1k1

(r1)ψ (q)
j2l2k−k1

(r2) − ψ
(q)
j1l1k1

(r1)ψ (p)
j2l2k−k1

(r2)
}
, (A12)

where B(p,q)(�) is an A × A submatrix which is formed by removing p and q columns from the A × (A + 2) matrix Bij (�) =
〈φi |R(�)|ψj 〉. A similar formula for the two-body overlap function was also derived in Ref. [64].

APPENDIX B: SHIFT OF GAUSSIAN CENTROIDS
AND ELECTRIC DIPOLE OPERATOR

Here, I briefly explain why the shift of the Gaussian wave
packets can efficiently describe various 1p1h configurations
which coherently contribute the electric dipole modes. The
meaning of shifting the Gaussian centroid becomes clear when
one rewrites the Gaussian wave packet given in Eq. (4) as the
coherent state as

ϕi(r; Z) =
∏

σ=x,y,z

(
2νσ

π

) 1
4

e
−νσ (rσ − Ziσ√

νσ
)2+ 1

2 Z2
σ χiξi,

= 〈r|e−Z2/2eZ·â† |0〉χiξi = 〈r|Z〉 χiξi, (B1)

where â† = (â†
x,â

†
y,â

†
z) is the creation operator of the harmonic

oscillator with h̄ωσ = 2h̄2νσ /m and Z = (Zx,Zy,Zz). The
shift of the centroid, Z → Z + �Z, is written as

ϕi(r; Z + �Z) = 〈r|e−(Z+�Z)2/2e(Z+�Z)·â† |0〉 χiξi

∝ 〈r|e�Z·â† |Z〉 χiξi = e�Z·â†
φi(r; Z).

(B2)

Thus, by the shift of the centroid, the wave packets are
coherently excited, and when �Z is sufficiently small, it
becomes a linear combination of 0 and 1h̄ω excitations
from the original wave packet. Therefore, when one of the
wave packets of a Slater determinant is slightly shifted, it
corresponds to the 1h̄ω excitation from the original Slater
determinant.

The shift is also closely related to the dipole response.
Suppose that the dipole resonances are well approximated by

the ground-state wave function multiplied by the E1 operator,
then it is rewritten as follows,

|E1 resoance〉 �
Z∑

i=1

Y1μ(r̂i) |GS〉 � 1

δ

Z∑
i=1

(eδY1μ(r̂i )−1) |GS〉.

(B3)

Here δ is assumed to be sufficiently small number. If
|GS〉 is a Slater determinant of the Gaussian wave packets,∑Z

i=1 eδY1μ(r̂i ) |GS〉 may be rewritten as

Z∑
i=1

eδY1μ(r̂i )A {ϕ1, . . . ,ϕA} =
Z∑

i=1

A {ϕ1, . . . ,e
δY1μ(r̂)ϕi, . . . ϕA},

(B4)

and here eδY1μ(r̂)ϕ corresponds to the shift of the centroid. For
example, in the case of μ = 0, it corresponds to the shift along
the z axis as follows:

eδY1μ(r̂)ϕ(r; Zi) = e
√

4π/3δzϕ(r; Zi) ∝ ϕ(r; Z + εez), (B5)

ε =
√

4π

3

δ

2
√

ν
. (B6)

Thus, the dipole modes with small amplitude corresponds to
the shift of the Gaussian wave packets and it generates various
1p1h configurations.

APPENDIX C: IS DIPOLE OPERATOR

Here I derive the IS dipole operator given in Eq. (32).
I assume that the single-particle coordinates r i with i =
1, . . . ,A − 1 are the coordinates of the core with mass A − 1,
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while rA is that of the valence neutron. Then, note that the following relation holds.

r i − rc.m. =
{

ξ i − 1
A

r, i = 1, . . . ,A − 1
A−1
A

r, i = A,
(C1)

where ξ i and r are the internal coordinates of the core and the relative coordinate between the core and valence neutron defined
by Eqs. (33) and (34). Using this relation, the IS dipole operator is rewritten as follows:

MIS1
μ =

A∑
i=1

(r i − rc.m.)
2Y1μ(r i − rc.m.) =

A−1∑
i=1

(
ξ i − 1

A
r
)2
Y1μ

(
ξ i − 1

A
r
)

+
(A − 1

A
r
)2
Y1μ

(A − 1

A
r
)

=
A−1∑
i=1

ξ 2
i Y1μ(ξ i) − 1

A

A−1∑
i=1

ξ 2
i Y1μ(r) − 2

A

A−1∑
i=1

(ξ i · r)Y1μ(ξ i) + (A − 1)(A − 2)

A2
r2Y1μ(r), (C2)

where the relations
∑A−1

i=1 ξ i = ∑A−1
i=1 Y1μ(ξ i) = 0, and Y1μ(αa + βb) = αY1μ(a) + βY1μ(b) are used to derive the second line.

Now using the identities,

[Y1(a) ⊗ Y1(b)]00 = −
√

3

4π
a · b, (C3)

[Y1(a) ⊗ Y1(a)]1μ = 0, (C4)

[Y1(a) ⊗ Y1(a)]2μ =
√

3/10πY2μ(a), (C5)

one finds that the third term in the last line of Eq. (C2) reads,

(ξ i · r)Y1μ(ξ i) = − 4π√
3

[Y1(ξ i) ⊗ [Y1(ξ i) ⊗ Y1(r)]0]1μ = − 4π√
3

∑
l=0,1,2

√
2l + 1

{
1 1 l
1 1 0

}
[[Y1(ξ i) ⊗ Y1(ξ i)]l ⊗ Y1(r)]1μ

= 1

3
ξ 2

i Y1μ(r) −
√

8π

9
[Y2(ξ i) ⊗ Y1(r)]1μ. (C6)

Substituting Eq. (C6) to Eq. (C2), one obtains Eq. (32).
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