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We apply the proton-neutron deformed quasiparticle random-phase approximation (pn-dQRPA) to describe
the low-lying (E � 6 MeV) 1+ Gamow-Teller (GT) strength functions in odd-odd deformed nuclei which
participate as intermediate nuclei in two-neutrino double-β-decay (2νββ) transitions within the mass range
A = 70–176. In deriving equations of motion we use a single-particle basis with projected angular momentum,
provided by the diagonalization of a spherical mean field furnished with a quadrupole-quadrupole interaction. The
schematic residual Hamiltonian contains pairing and proton-neutron interaction terms in particle-hole (ph) and
particle-particle (pp) channels, with constant strengths. By adopting constant particle-hole and particle-particle
strengths we are able to describe the positions of the giant GT resonance and the measured half-lives of the
2νββ decays over the whole mass range A = 70–176. At the same time we obtain a good agreement with the
measured low-lying GT β− strength functions. By using the adopted ph and pp strengths, we predict the half-lives
of a number of deformed 2νββ emitters and the low-lying GT strength functions of the corresponding odd-odd
intermediate nuclei for their possible experimental tests in the future.
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I. INTRODUCTION

One of the important topics in both nuclear physics and
particle physics is the investigation of nuclear double-β (ββ)
decays [1,2]. The neutrinoless mode, 0νββ decay, is especially
interesting due to its potential to explore physics beyond the
standard model, in particular to discover the fundamental
nature of the neutrino. The major problem here is to relate the
neutrino properties, depending on the nuclear matrix elements
(NMEs) and detailed many-body features of nuclei, to neutrino
experiments [3]. At present, there are many models that are
able to describe double-β decay in medium-heavy and heavy
nuclei. For recent reviews and analyses of these models, see
Refs. [4–7].

Along the years, numerous nuclear-structure calculations
have been devoted to the description of the two-neutrino mode
of the ββ decay (2νββ decay). The 2νββ decay can be consid-
ered as the first testing ground of a nuclear theory with the aim
to describe the 0νββ mode [3,8]. The 2νββ decay proceeds
through the 1+ states of the intermediate odd-odd nucleus
and thus can be related to the Gamow-Teller (GT) strength
functions. The GT strength functions in the β− and β+ direc-
tions are quantitative measures of the magnitudes of the NMEs
related to the GT transitions to the intermediate virtual states.
Hence, comparison of the calculated strength functions with
those measured in charge-exchange reactions (CER) helps as-
sess the quality of the adopted nuclear many-body framework.
At present, the CER are a standard tool and comprise the
isospin-lowering [(p,n) and (3He,t) reactions in the β− direc-
tion] and the isospin-raising [(n,p) and (d,2He) reactions in
the β+ direction] [9]. Recently, a lot of effort has been invested
in analyzing the 2νββ NMEs via CER (see, e.g., Ref. [10–15]).

There are many nuclear many-body schemes aiming at
calculating the half-lives of ββ decays of nuclei. In some of
these schemes it is possible to address also the GT strength
function, relevant to the analysis of the 2νββ half-lives. One
very popular nuclear-structure model is the proton-neutron
interacting boson model, IBA2. In Ref. [16] it has been used
to compute 0νββ decay rates of many cases of interest for
experimental investigation. In these calculations, the closure
approximation has been exploited since the IBA2 model cannot
calculate the wave functions of the intermediate odd-odd
nucleus. On the other hand, an advantage of the model is
that it can take into account the deformation of the mother
and daughter nuclei of ββ decay. While the 0νββ-decay rates
are calculable in the closure approximation, the 2νββ-decay
rates are not [3]. This is why the IBA2 model is not suited
for calculation of NMEs for 2νββ decays and the associated
GT strength functions of the involved odd-odd intermediate
nuclei. Another problem with IBA2 model is that it can only
exploit a model space of one major shell, thus leaving out the
spin-orbit-partner orbitals in the adjacent major shells, known
to be very relevant for GT type of transitions occurring in 2νββ
decays [17,18].

The IBA2 model is essentially based on the seniority
scheme, as also the more microscopic interacting shell model
(ISM) [19]. The ISM suffers from similar problems as the IBA2
by using the closure in the 0νββ-decay calculations and leaving
mostly out the spin-orbit-partner orbitals in its one-major-shell
approach. However, the ISM can avoid the closure in the
2νββ-decay calculations since the GT transitions are easier to
handle than the higher-multipole transitions of the 0νββ decay.
Still, calculations of the GT strength functions are challenging
and only their very-low-energy tail can be computed due to the
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limitations in the single-particle model space. The ISM cannot
access the GT giant-resonance region at all.

The projected Hartree-Fock-Bogolyubov model (PHFB) of
Ref. [20] has been used to compute both 2νββ and 0νββ decay
rates for quite some time now. The model is based on a de-
formed Hartree-Fock-Bogolyubov mean field complemented
by a summation method to take into account, in an effective
way, the correlations beyond the mean field. However, this
model is still basically just a mean-field model that is unable
to calculate the wave functions of the intermediate odd-odd
nucleus and thus the related GT strength functions.

Another interesting model is the mean-field model [21]
based on a Gogny energy-density functional. The sore point of
this approach is the same as for IBA2: Both these models have
to use closure approximation, thus excluding calculations of
2νββ decay rates and GT strength functions.

A further model, designed to calculate GT and other nuclear
transitions, is the projected shell model (PSM) [22]. It starts
from a deformation-dressed single-particle basis with good
spherical quantum numbers. Since the PSM is applied to
(axially) deformed nuclei, the effectively deformed single-
particle wave functions lead to an efficient handling of nuclear
structure and small dimensions of the many-body model
space. It is also a multishell model suited to description of,
e.g., parity-changing decay operators. As far as we know, its
feasibility for calculations of 2νββ-decay properties has not
been tested yet.

The traditionally used microscopic model for double-β
calculations is the proton-neutron quasiparticle random-phase
approximation (pn-QRPA) [23]. In this approach, all the wave
functions of states of the intermediate odd-odd nuclei, in both
2νββ and 0νββ decays, can be calculated and no closure
is forced in the ββ-decay calculations. At the same time,
the full GT strength function, including the giant-resonance
region, of the intermediate nucleus can be accessed without
difficulty. Mostly the pn-QRPA based on a spherical mean
field has been used in the calculations. However, many β
and double-β decaying nuclei are more or less deformed and
therefore it is very important to extend the description to a
deformed mean field. This is the starting point of the deformed
pn-QRPA (pn-dQRPA). Most earlier approaches describe GT
β decays by using a pn-dQRPA phonon in the intrinsic system
of coordinates, i.e., in terms of pairs of Nilsson quasiparticles
coupled to a K = 1 spin projection. The physical observables,
like β-decay transition probabilities, are then estimated by
rotating the intrinsic phonon to the laboratory system of
coordinates [24,25]. This formalism was applied in order to
describe the 1+ GT states and 2νββ decays in several papers
[26–29].

Let us mention that this projection procedure restores only
the symmetry of the phonon, by leaving the pn-dQRPA ground
state deformed. A more consistent approach is to use a single-
particle (sp) basis with good angular momentum, directly in
the derivation of the pn-dQRPA equations.

One way to obtain this basis is projecting good angular
momentum from the product between a coherent state,
describing the deformed core, and a spherical sp state [30]. The
pn-dQRPA phonon, describing GT β decays, is built by using
pairs of these quasiparticles that are “dressed by deformation,”

coupled to the spin J = 1 [31,32]. In Ref. [33] this approach
was generalized, by considering all allowed spherical sp states
in order to build a sp state “dressed by deformation.” A
particular case is the adiabatic limit, which coincides with
the usual Nilsson wave function rotated to the laboratory
frame. We successfully described the available experimental
B(E2) values for collective states in the range 50 � Z � 100
in even-even nuclei, by using the adiabatic version of this
formalism [33].

In the present work we use the pn-dQRPA to predict the
2νββ half-lives and the low-lying β− GT strength functions
of the involved intermediate odd-odd nuclei for a total of 20
ββ emitters within the mass range A = 70–176. The involved
nuclei have quadrupole deformations ranging from β = 0.00
(spherical) to β = 0.28 (rigid rotor). The deformation plays an
important role in quantitative prediction of the 2νββ half-lives,
in particular through a deformation difference between the
mother and daughter nuclei.

II. THEORETICAL BACKGROUND

In order to describe the 1+ GT states in odd-odd deformed
nuclei, we will proceed by using the steps described in
Ref. [34].

(1) We first build a deformed sp basis with good angular
momentum. To this purpose we use the sp Nilsson rep-
resentation, but transformed in the laboratory system
of coordinates [33]

|τjm) = a
†
τjm(�)|0)

=
∑

J=even

∑
js�j

X Jks

τj [YJ (�) ⊗ |τks〉]jm,

|τksν〉 = c
†
τksν

|0〉, τ = p,n. (1)

Here, � denotes Euler angles of the intrinsic sym-
metry axis with respect to the laboratory system and
j ≡ (ε,jπ ) (deformed eigenvalue, total spinparity). The
creation operators c

†
τksν

describe the eigenstates of
a spherical nuclear plus proton Coulomb mean field
having the quantum numbers ks ≡ (e,l,js), (spherical
eigenvalue, orbital angular momentum, total spherical
spin), with ν being the z projection of js . The expan-
sion coefficients are proportional to standard Nilsson
amplitudes with j = K , where K is the spin projection
on the intrinsic symmetry axis

X Jks

τj =
√

2〈jj ; js − j |J0〉xks

τj , (2)

where by brackets we denoted the Clebsch-Gordan
coefficient. The amplitudes x

ks

τj are found by diag-
onalizing the quadrupole operator in the spherical
Woods-Saxon basis. Let us mention that both ampli-
tudes satisfy orthonormality relations. In the spherical
limit, where one has x

ks

τj = δjsj , the operator (1) is
proportional to the usual spherical sp creation operator
with a “statistical” coefficient

X Jks

τj =
√

2

2j + 1
δjsj , (3)
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expressing the fact that two particles with intrinsic
projections K = ±j are distributed over 2j + 1 pro-
jections in the laboratory system of coordinates.

(2) We transform the one-body operators in this represen-
tation, because we use a Hamiltonian with separable
forces. For a particle-hole (ph) operator

Qλμ =
∑
j1j2

(τ1j1||Qλ||τ2j2)

λ̂

[
a
†
τ1j1

⊗ ãτ2j2

]
λμ

, (4)

where for simplicity we dropped the Euler angles �,
the reduced matrix element in the deformed basis (1) is
given by the integration over Euler angles. The result
is a superposition of standard spherical reduced matrix
elements

(τ1j1||Qλ||τ2j2)

= ĵ1ĵ2

∑
Jks1ks2

X Jks1
τ1j1

X Jks2
τ2j2

(−)js1+j2+λ−J

×W (j1js1j2js2; Jλ)〈τ1ks1||Qλ||τ2ks2〉, (5)

where ĵ = √
2j + 1 and W is the Racah symbol.

Obviously one has a similar result for a particle-particle
(pp) operator. For the monopole particle-number and
pairing operators in the laboratory system, we will
consider the leading J = 0 component

Nτj ≈ (
x

j
τj

)2 2

2j + 1

∑
m

a
†
τjmaτjm,

P
†
τj ≈ (

x
j
τj

)2 2

2j + 1

∑
m

a
†
τjma

†
τj−m(−)j−m. (6)

We use a monopole pairing plus a separable proton-
neutron interaction, with constant strengths, in both
the ph and pp channels

H =
∑

p

(εp − λprot)Np − G
prot
pair

4

∑
pp′

P †
pPp′

+
∑

n

(εn − λneut)Nn − Gneut
pair

4

∑
nn′

P †
nPn′

+ gph

∑
μ

D−
1μ(D−

1μ)† − gpp

∑
μ

P −
1μ(P −

1μ)†, (7)

where the meaning of the short-hand notation is
τ ≡ (τ,εjπ ). Here, the chemical potential for protons
(neutrons) is denoted by λprot (λneut). The strength pa-
rameters gph (particle-hole) and gpp (particle-particle)
are the ones of the corresponding spherical limit in
Refs. [35,36] and are given in units of MeV.
The GT operators are given by

D−
1μ = 1√

3

∑
pn

(p||σ ||n)[a†
p ⊗ ãn]1μ,

P −
1μ = 1√

3

∑
pn

(p||σ ||n)[a†
p ⊗ a†

n]1μ. (8)

Here, σμ is the Pauli operator and the reduced matrix
element in the deformed basis (1) is given in terms of

the standard spherical matrix element by Eq. (5) with
λ = 1.

(3) We then introduce quasiparticle representation for
protons and neutrons via

a†
τm = uτα

†
τm + vτατ−m(−)jτ −m, (9)

where u and v are the BCS vacancy and occupation
amplitudes, respectively, in order to obtain the β-decay
operators entering the Hamiltonian (7). The BCS
equations have formally the same form as for the
spherical case due to the “statistical” factors, entering
the particle-number and pairing operators (6).

(4) Finally we diagonalize the proton-neutron interaction
within the pn-dQRPA by using the phonon

�
†
1μ(ω) =

∑
pn

[
Xω

pnA
†
1μ(pn) − Yω

pn(−)1−μA1−μ(pn)
]
,

(10)

where ω is the eigenvalue index, in terms of the creation
pair operator

A
†
1μ(pn) = [α†

p ⊗ α†
n]1μ. (11)

The equations of motion are derived by using the
projection procedure over the Euler angles, i.e.,∫

d�
{
A1μ,

[
H,�

†
1μ(ω)

]} = ω

∫
d�

[
A1μ,�

†
1μ(ω)

]
,

(12)

and a similar relation with A
†
1−μ. In this way, one

obtains the standard pn-dQRPA equations of motion
determining the eigenvalues ω and amplitudes Xω,Yω

[33,37]. They formally coincide with the spherical
pn-QRPA equations, but the pair basis in the phonon
(10) couples proton and neutron states with deformed
sp spectra. Thus, in the present approach the QRPA
vacuum is spherical, in contrast to the approximations
adopted earlier where the spherical symmetry of the
phonon was restored after deriving the equations of
motion, still leaving the vacuum itself deformed.

We will estimate the β− strength function by using the GT
β-decay transition matrix elements [37]

(ω||β−||0) =
∑
pn

(p||σ ||n)
[
upvnX

ω
pn + vpunY

ω
pn

]
,

(ω||β+||0) =
∑
pn

(p||σ ||n)
[
vpunX

ω
pn + upvnY

ω
pn

]
. (13)

The 2νββ GT matrix element is written as follows [23]:

MGT =
∑
mn

(
0||β−||ωf

m

)〈
ω

f
m

∣∣ωi
n

〉(
ωi

n||β−||0)
Dm

, (14)

where the energy denominator is given by

Dm =
1
2

(
�exp + ω̃i

m + ω̃
f
m

) + Eex(1+
1 ) + �M

exp
i

mec2
. (15)

Here, ω̃m = ωm − ω1, �exp is the nuclear mass difference
between initial and final states, Eex(1+

1 ) is the experimental
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energy of the first 1+ state in the intermediate odd-odd nucleus,
�M

exp
i is the measured difference of the mass energies of

the intermediate and initial nuclei, and mec
2 is the electron

rest mass. Here we use as much as possible experimental
information in constructing the energy denominator (15)
in order to avoid additional uncertainties rising from the
description of nuclear mass differences by the pn-dQRPA
formalism. The overlap between the initial 1+

n and final 1+
m

states in (14), 〈ωf
m|ωi

n〉, is given by a relation similar to Eq. (29)
of Ref. [27], where we use pn-dQRPA amplitudes. This permits
the use of a different deformation in the initial and final nucleus
of double-β decay.

III. NUMERICAL APPLICATION

We analyzed the β-decay strength function by using our
pn-dQRPA formalism. To this purpose we describe the 1+
states of the odd-odd nucleus by using pn-dQRPA eigenstates.
We use as spherical sp states c

†
τksν

the eigenstates of the Woods-
Saxon plus proton Coulomb mean field with the universal
parametrization of Ref. [38]. The deformed eigenstates a

†
τjm,

given by Eq. (1), are obtained by diagonalizing the quadrupole-
quadrupole interaction in the adiabatic limit. The deformation
parameters are taken from Ref. [39]. The u and v amplitudes
were determined by solving the BCS equations with monopole
interaction reproducing the experimental pairing gaps in the
initial and final nuclei.

The GT strength of a β− transition from the 0+ ground
state of the even-even mother nucleus to the 1+ state ω in the
odd-odd daughter nucleus nucleus is given by the square of
the corresponding transition amplitude, i.e., by

B(GT−)(ω) = [gA(ω||β−||0)]2, (16)

where gA is the axial-vector coupling constant of the weak
current. The GT strength function consists of the strengths (16)
as a function of the 1+ energy E(ω) in the daughter nucleus,
taken relative to the ground state of the daughter (i.e., relative
to the 2− ground state of 76As in the case of the transitions
76Ge → 76As). A convenient way to represent the evolution
of the GT strength function is to use the cumulative strength
defined by

S(E) =
∑

E(ω)�E

B(GT −)(ω), (17)

where the sum runs over all 1+ states ω with their energies
E(ω) being less or equal to a given energy E. The total GT
strength, B(GT)tot, is obtained by letting E → ∞. Most of the
total strength is gathered by the GT giant resonance (GTGR)
located between 10 and 20 MeV in the odd-odd daughter. The
corresponding energy EGTGR is obtained as the centroid of
energies of the 1+ states belonging to the GTGR.

In Table I we summarize our results for the centroid EGTGR

of the GTGR (column 8) and the total GT strength (last
column). These results are compared with the available data
in columns 7 and 9, respectively. In Table I we give also
the charge and mass number of the parent nucleus (columns
2 and 3), and quadrupole deformations [39] of the 2νββ
mother (Z,N ) and daughter (Z − 2,N + 2) nuclei (columns

TABLE I. Charge and mass number of the 2νββ parent nucleus,
quadrupole deformations [39] of the 2νββ mother (Z,N ) and
daughter (Z − 2,N + 2) nuclei, experimental and theoretical values
of the centroid of the GT giant resonance (relative to the ground state
of the odd-odd nucleus), and total GT strength.

n Parent nucleus Deformation EGTGR (MeV) B(GT)tot

Z A βi βf Exp Th Exp Th

1 Zn 30 70 0.04 −0.24 11.32 7.51 18.18
2 Ge 32 76 0.15 0.20 11.13 11.56 19.89 21.03
3 Se 34 80 0.15 0.06 10.66 10.44 20.85
4 Se 34 82 0.15 0.07 11.71 11.27 24.01
5 Kr 36 86 0.16 0.05 11.95 10.61 23.87
6 Zr 40 94 0.06 0.05 12.85 12.84 24.22
7 Zr 40 96 0.22 0.08 13.28 13.35 27.36
8 Mo 42 100 0.24 0.16 13.57 12.50 27.45
9 Ru 44 104 0.25 0.16 13.20 12.09 27.51
10 Pd 46 110 0.22 0.14 13.49 13.33 30.80
11 Te 52 128 0.00 0.14 13.14 12.28 40.08 41.14
12 Te 52 130 0.00 −0.11 13.59 12.73 45.90 44.51
13 Xe 54 134 0.00 −0.11 13.51 12.72 44.42
14 Xe 54 136 0.00 0.00 14.22 13.77 47.77
15 Ce 58 142 0.00 0.00 15.04 13.84 44.33
16 Nd 60 148 0.21 0.16 15.43 15.47 47.37
17 Nd 60 150 0.24 0.21 15.00 16.42 47.74 50.69
18 Sm 62 154 0.27 0.24 15.37 16.51 50.67
19 Gd 64 160 0.28 0.27 16.15 16.89 54.03
20 Yb 70 176 0.28 0.28 16.98 18.01 60.77

5 and 6). In the calculations we used a common value of the
particle-hole strength, gph = 0.16 MeV, in order to reproduce
the experimental centroid of the GT β−-type strength B(GT−)
in the giant-resonance region. For the nuclei 76Ge, 128,130Te,
and 150Nd we could use the measured values of EGTGR, while
for the other ββ emitters we applied the empirical relation
of Ref. [37]. We adopted a quenched value of the effective
axial-vector coupling gA = 0.75 according to the analyses per-
formed in Ref. [40]. This choice of gA value is also consistent
with the experimental total GT strength of the same nuclei, as
seen by comparison of the numbers in columns 9 and 10.

The position of the centroid EGTGR is insensitive to the value
of the gpp strength but the 2νββ half-life is very sensitive to
this parameter. We computed the 2νββ matrix element (14) for
a fixed value of the particle-particle strength, gpp = 0.04 MeV,
and obtained the predicted half-lives in the sixth column of
Table II. It is worth noting that the presently adopted values
gph = 0.16 MeV and gpp = 0.04 MeV are compatible with the
ranges of values of the corresponding parameters 2χ and 2κ
used in the spherical pnQRPA calculations of the 2νββ-decay
rates, e.g., in Refs. [35,36].

In Table II, column 6, we summarize our results for the
2νββ half-life. The computed half-lives are in quite reasonable
agreement with the available eight measured half-life values,
given in the fifth column. In the seventh column of Table II we
give for comparison recent results from a nuclear shell-model
calculation [42]. The results of these calculations compare well
with our present ones, except for 128Te, where our calculations
predict a factor 5 too long a half-life but the shell model seems
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TABLE II. Charge and mass number of the 2νββ parent nucleus, and experimental and computed 2νββ half-lives in units of years.

n Z A Exp. [41] Th. Shell model [42] pnQRPA [43] pnQRPA [44]

1 Zn 30 70 1.82 × 1024 (7.0 ± 4.1) × 1022

2 Ge 32 76 (1.60+0.13
−0.10) × 1021 1.05 × 1021 (2.1–2.3) × 1021

3 Se 34 80 9.33 × 1029 (2.6 ± 1.7) × 1029

4 Se 34 82 (9.2 ± 0.7) × 1019 5.75 × 1019 (5.8–6.0) × 1019

5 Kr 36 86 4.57 × 1023

6 Zr 40 94 5.75 × 1022

7 Zr 40 96 (2.3 ± 0.2) × 1019 3.63 × 1019

8 Mo 42 100 (7.1 ± 0.4) × 1018 2.40 × 1019 4.6 × 1018 (1.1 ± 0.6) × 1019

9 Ru 44 104 3.02 × 1022 4.8 × 1021 (7.8 ± 1.7) × 1021

10 Pd 46 110 3.47 × 1020 2.2 × 1020 (1.5 ± 0.3) × 1020

11 Te 52 128 (2.0 ± 0.3) × 1024 9.77 × 1024 1.6 × 1024 2.0 × 1024 (0.8 ± 0.2) × 1024

12 Te 52 130 (6.9 ± 1.3) × 1020 5.50 × 1020 5.2 × 1020 3.4 × 1020

13 Xe 54 134 4.57 × 1024 2.2 × 1024

14 Xe 54 136 (2.20 ± 0.06) × 1021 5.01 × 1021 1.6 × 1021 (1.4–2.4) × 1021

15 Ce 58 142 3.80 × 1022

16 Nd 60 148 1.23 × 1021

17 Nd 60 150 (8.2 ± 0.9) × 1018 8.13 × 1018

18 Sm 62 154 3.89 × 1022

19 Gd 64 160 2.95 × 1021

20 Yb 70 176 1.29 × 1023

to work well. In column 8 we present the results of spherical
pnQRPA calculations conducted in Ref. [43]. In the study [43]
an extended study of the β− and β+/EC decays in the mass
range A = 100–136 was conducted to gain information on the
value of the gpp parameter and gA in the pnQRPA framework.
Although the studies were performed by using the Bonn-A
G-matrix-based effective two-body interactions, the obtained
(average) value of gA = 0.60 corresponds nicely to the one
of the present study. In addition, the gained 2νββ half-lives
were quite good, though in many cases slightly too short, and
shorter than in the present study including the deformation.
As seen from Table II, in the cases of notable deformation
(A = 100,104,110) the presently predicted half-lives deviate
substantially from those deduced in Ref. [43]. The qualitative
features of the 2νββ half-lives obtained in Ref. [43] can also
be seen in the study [44] in which a more extended global
Markov chain Monte Carlo study of the β− and β+/EC decays
was performed in the spherical pnQRPA framework in order
to access the values of gpp and gA. The derived 2νββ half-lives
of the study [44] are presented in the last column of Table II
and they follow the trends of those obtained in Ref. [43].

In fact, the agreement of the presently computed 2νββ
half-lives with the experimental ones is better than in our
earlier paper [34] where we validated our model by comparison
with the experimental Gamow-Teller properties of 150Nd and
the 2νββ half-lives of seven measured cases. In this study the
global optimization of the interaction parameters was not done,
which explains the better results of the present calculations.
Instead, in Ref. [34] the general properties of nuclei, when
going from the spherical regime to the deformed region,
were outlined, including discussion of the effects of different
deformations in the 2νββ parent and daughter nuclei. The main
message was that in the 2νββ systems both the deformation as
such and in particular the difference in deformations reduces
the overlap of the intermediate states and thus the 2νββ decay

probability, exceptions being the (close to) semimagic systems
with zero deformation.

It is worth noting that the cumulative strength of (17), S(E),
reproduces the order of magnitude of the experimental data in
the low-energy part of the spectrum, as seen in Figs. 1 and 2. In
these figures we plot by a solid line the computed cumulative
strength versus excitation energy for the reference nuclei 76Ge,
82Se, 96Zr, and 100Mo [Figs. 1(a)–1(d), respectively] and for
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FIG. 1. Computed cumulative GT strength (17) (solid lines) vs
experimental values (dashed lines) for 76Ge [12,45] (a), 82Se [45] (b),
96Zr [13] (c), and 100Mo [14] (d). The excitation energy is always
relative to the ground state of the odd-odd daughter nucleus.
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FIG. 2. Same as in Fig. 1 for 128Te [15] (a), 130Te [15] (b), 136Xe
[10] (c), and 150Nd [11] (d).

128Te, 130Te, 136Xe, and 150Nd [Figs. 2(a)–2(d), respectively].
The experimental cumulative strength is given by dashed lines
in these figures. The experimental cumulative strength is very
well reproduced by the calculations for 76Ge [Fig. 1(a)], 100Mo
[Fig. 1(d)], 136Xe [Fig. 2(c)], and 150Nd [Fig. 2(d)]. For 82Se
[Fig. 1(b)], 128Te [Fig. 2(a)], and 130Te [Fig. 2(b)], there is a

bit too much strength at around 3 MeV. For 96Zr [Fig. 1 (c)]
the pn-dQRPA predicts too much strength beyond 4 MeV.

The interesting part of Table I are the predicted total GT
strengths of column 10 and the predicted 2νββ half-lives of the
sixth column of Table II. These predictions now await future
experimental tests. In addition to Figs. 1 and 2 we give in Table
III the low-lying total strength within bins of half an MeV for
better comparison with the present and future experimental
data.

We summarize the GT strength of Table III in Fig. 3 as a total
strength within bins as a function of the mass number A of the
even-even reference nucleus (i.e., of the ββ mother nucleus).
The panels of the figure clearly indicate that the cumulative
strength increases with increasing mass number in accordance
with the Ikeda 3(N − Z) sum rule since the difference N − Z
increases with the mass number A and the β+ strength is
always very small compared with the β− strength. This same
information can be directly read from the tenth column of
Table I where the computed total GT strength is given. We
want to stress here that our calculations obey quite accurately
the Ikeda sum rule in all the studied cases.

The projected pn-dQRPA of Refs. [24,25] was recently
used to describe low-energy GT strength functions in 150Nd
in Ref. [46] by different Skyrme forces. There similar results
as in Ref. [34] were obtained for the β− strength function
in the range 0 � ω � 30 MeV. The studies were extended
in Ref. [47] to 76Ge, 116Cd, 128Te, and 130Te, including also
150Nd. The corresponding cumulative strengths were plotted
in Fig. 3 of Ref. [47] up to 3 MeV of excitation in the daughter
nuclei. In the case of 150Nd, our computed cumulative strength
follows closer to the experiment than in Ref. [47]. Also for
76Ge, 128Te, and 130Te our computed cumulative strength is

TABLE III. Gamow-Teller strength summed over 0.5 MeV-wide energy intervals. The excitation energy is always relative to the ground
state of the odd-odd daughter nucleus.

n Parent Energy bins in MeV

Z A 0.0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5 2.5–3.0 3.0–3.5 3.5–4.0 4.0–4.5 4.5–5.0 5.0–5.5 5.5–6.0

1 30 70 0.26 0.04 0.07 1.41 0.08 0.05 1.65 0.00 0.11 0.00 0.01 0.14
2 32 76 0.05 0.20 0.16 0.39 0.23 1.12 0.48 0.50 0.05 0.02 0.08 0.71
3 34 80 0.16 0.03 0.34 0.41 0.15 2.28 0.18 0.13 0.16 0.00 1.46 0.41
4 34 82 0.12 0.08 0.26 0.31 0.42 1.11 1.63 0.01 0.03 0.01 1.23 0.71
5 36 86 0.05 0.12 0.74 1.52 0.80 1.14 0.05 0.00 0.00 0.00 0.12 0.35
6 40 94 0.10 0.06 0.03 0.01 0.02 0.02 0.10 0.31 0.74 1.51 0.61 0.52
7 40 96 0.30 0.01 0.06 0.03 0.11 0.05 0.02 0.91 0.16 0.21 0.38 1.32
8 42 100 0.24 0.09 0.20 0.02 0.08 0.02 0.32 0.72 0.11 0.16 1.04 0.77
9 44 104 0.19 0.24 0.11 0.01 0.05 0.04 0.59 0.34 0.25 0.62 0.26 0.83
10 46 110 0.49 0.00 0.13 0.24 0.01 0.29 0.65 0.13 0.16 0.24 0.35 0.63
11 52 128 0.38 0.03 0.01 0.32 0.03 1.80 1.13 0.02 4.80 0.02 0.00 0.00
12 52 130 0.34 0.02 0.00 0.32 0.01 1.63 0.09 1.04 0.00 3.94 0.00 0.00
13 54 134 0.33 0.00 0.05 0.21 0.00 1.71 0.04 0.02 1.51 2.83 0.00 0.00
14 54 136 0.28 0.02 0.00 0.07 0.18 0.01 1.56 0.00 0.00 1.31 0.00 0.00
15 58 142 0.14 0.31 0.18 0.05 0.01 0.00 1.51 0.05 0.00 0.00 1.52 0.37
16 60 148 0.16 0.02 0.05 0.12 0.10 0.03 0.06 0.13 0.52 0.60 0.10 1.11
17 60 150 0.16 0.03 0.16 0.02 0.15 0.07 0.03 0.11 0.15 0.58 0.41 0.06
18 62 154 0.17 0.15 0.13 0.01 0.00 0.21 0.08 0.06 0.12 0.65 0.14 0.18
19 64 160 0.13 0.27 0.07 0.04 0.02 0.27 0.02 0.05 0.11 0.58 0.19 0.22
20 70 176 0.09 0.26 0.45 0.03 0.02 0.04 0.09 0.15 0.07 0.10 0.22 0.22
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FIG. 3. Cumulative GT strength vs the mass number A summed
over energy intervals E(ω) = n − (n + 0.5) MeV (solid lines) and
E(ω) = (n + 0.5) − (n + 1) MeV (dashed lines) for n = 0 (a), n = 1
(b), n = 2 (c), n = 3 (d), n = 4 (e), and n = 5 (f), given in Table III.

closer to experiment below 2.5 MeV. However, within the
bin 2.5 � ω � 3.0 MeV our computed strength exceeds the
measured one as seen also in Figs. 1(a) and Figs. 2(a) and 2(b).

Still, even up to ω = 8–10 MeV our computed strength follows
the experimental trend reasonably well.

IV. CONCLUSIONS

Concluding, we described the 1+ Gamow-Teller states in
odd-odd deformed nuclei within a consistent proton-neutron
deformed QRPA framework, by using a single-particle basis
with good angular momentum, provided by the diagonal-
ization of a spherical mean field plus quadrupole-quadupole
interaction. This approach gives a consistent description of a
deformed nucleus in the laboratory system of coordinates.

The available experimental β−-decay strengths are reason-
ably described within a schematic pairing plus proton-neutron
residual interaction in particle-hole and particle-particle chan-
nels. The value gpp ≈ 0.04 MeV reproduces quite nicely the
experimental 2νββ half-lives of eight emitters. We predict
total Gamow-Teller strengths, 2νββ half-lives, and low-lying
β−-decay strengths for a number of potential 2νββ emitters
for comparison with future experimental results.
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