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Low- and high-energy spectroscopy of 17O and 17F within a microscopic multiphonon approach
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The extension of an equation of motion phonon method to odd nuclei is described step by step. Equations
of motion are first constructed and solved to generate an orthonormal basis of correlated n-phonon states
(n = 0,1,2, . . . ), built of constituent Tamm–Dancoff phonons, describing the excitations of a doubly magic core.
Analogous equations are then derived within a subspace spanned by a valence particle coupled to the n-phonon
core states and solved iteratively to yield a basis of correlated orthonormal multiphonon particle-core states. The
basis so constructed is used to solve the full eigenvalue problem for the odd system. The formalism does not
rely on approximations but lends itself naturally to simplifying assumptions, as illustrated by its application to
17O and 17F. Self-consistent calculations using a chiral Hamiltonian in a space encompassing up to three-phonon
basis states generate spectra having a high level density, comparable to that observed experimentally. The
spectroscopic properties are investigated at low energy through the calculation of moments, electromagnetic and
β-decay transition strengths, and at intermediate and high energy through the computation of the electric-dipole
spectra and pygmy and giant dipole resonance cross sections. The analysis of the particle-phonon composition of
the eigenfunctions contributes to clarify the mechanism of excitation of levels and resonances and gives unique
insights into their nature.
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I. INTRODUCTION

The particle-vibration coupling (PVC) model is the most
popular approach adopted to determine the corrections by
the core excitations to the single-particle energies. The core
excitations were described in the past within macroscopic
collective models [1] or, microscopically, in the random-phase
approximation (RPA) [2].

In recent years, more refined approaches, extending in some
cases RPA, were developed within the framework of the energy
density functional (EDF) theory. Different functionals were
adopted for this purpose. Many of them were derived from
Skyrme forces [3–10] or were based on the theory of finite
Fermi systems [11]. Others were deduced from relativistic
meson-nucleon Lagrangians within the covariant relativistic
mean-field framework which describes the core vibrations
in the relativistic RPA or the time-blocking approximation
[12–15].

Several recent calculations have directly used bare or
effective interactions. A Gogny potential was used to evaluate
the perturbative contribution of the core excitations, described
in RPA, to quadrupole and magnetic moments of several
odd nuclei with a valence nucleon external to a magic
core [10]. A microscopic quasiparticle model (MQPM) was
formulated to evaluate spectra and to study β-decay properties
of chains of heavy isotopes [16]. The quasiparticle-phonon
model (QPM) was adopted to study the influence of ground-
state correlations combined with the Pauli principle on the
spectroscopic properties of odd nuclei far from closed shells
[17]. Ground-state correlations were also investigated in an
extension of the RPA formalism to odd nuclei [18].

Several calculations using bare nucleon-nucleon (NN) plus
three-nucleon (3N ) interactions were performed in several

approaches. An equation of motion method (EOM) rooted
within the coupled cluster (CC) theory was specifically
developed for studying bulk properties and low-lying spectra
of light and medium odd-mass nuclei [19–23]. Most of the CC
numerical applications used NN + 3N chiral forces. Analo-
gous interactions were adopted in a self-consistent Green’s
function theory approach [24], a no-core shell model (NCSM)
[25], and a many-body perturbation theory calculation [26].

We have recently extended to odd nuclei [27] an equation
of motion phonon method (EMPM) formulated for even-even
nuclei [28–30]. In even systems, the EMPM derives a set
of equations yielding a basis of orthonormal multiphonon
states, built of phonons obtained in the particle-hole (p-h)
Tamm–Dancoff approximation (TDA), and then solves the
full eigenvalue problem in the space spanned by such a basis.

The method was mainly adopted to investigate the dipole
response in heavy neutron-rich nuclei [31–33] in a space
including up to two phonons. More recently, it was formulated
in a Hartree–Fock–Bogoliubov (HFB) quasiparticle scheme
and employed to study the full spectrum as well as the dipole
response of neutron-rich 20O [34].

In its extension to odd nuclei [27], an analogous set of
equations is derived and solved iteratively to generate an
orthonormal basis of states composed of a valence particle cou-
pled to n-phonon states (n = 1,2, . . . ,n, . . . ), also generated
within the EMPM, describing the excitations of a doubly magic
core. The basis is then adopted to solve the full eigenvalue
problem. A numerical application to 17O has illustrated the
potential of the method.

Here, we describe the formalism in greater detail by going
through the different steps leading to the final eigensolutions,
specify how it is implemented numerically, and investigate
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thoroughly the spectroscopic properties of 17O and 17F at low
and high energy.

The same nuclei were investigated in a restricted shell-
model calculation embedded in the continuum by using a
phenomenological interaction [35]. Energies and widths of
a few low-lying states of these A = 17 isobars were already
determined by an EOM-CC calculation employing a chiral
interaction at next-to-next-to-next leading order (N3LO) and
a Hartree–Fock (HF) basis coupled to the continuum [20].
In 17O, the pygmy (PDR) and giant (GDR) electric-dipole
resonances were explored in a shell-model calculation using
the empirical WB10 interaction [36] and performed in the
{0p,(sd),(pf )} model space up to 3h̄ω [37].

We adopt a HF basis derived from a chiral NN potential
at next-to-next leading order optimized (NNLOopt) so as to
minimize the contribution of the three-body term [38]. This
potential, while producing too much attraction in medium- and
heavy-mass nuclei, reproduces well the experimental binding
energies of light nuclei and oxygen isotopes. Thus, we will not
add any corrective term as we did for heavy nuclei [33].

Upon solving the equations of motion, we produce a basis
of states composed of a valence particle coupled to a full set of
TDA phonons generated in a large configuration space plus a
subset of two- and three-phonon states, the latter obtained by
an approximate procedure which will be described later.

The solution of the eigenvalue problem in a space spanned
by the multiphonon basis so derived yields the full set of
eigenvalues and eigenstates allowed by the space dimensions.
It is thus possible to compare the theoretical level schemes with
the full experimental spectra of the two nuclei and to explore
in detail their low-lying spectroscopic properties through the
calculation of momenta and transition strengths. Finally, the
calculation of the electric-dipole strength distribution enables
us to investigate the damping and fragmentation of the GDR
and the structure of the PDR. By analyzing the phonon
composition of the states it is possible to gain a deep insight
into the excitation mechanism and to catch the nature of levels
and resonances.

II. A BRIEF OUTLINE OF THE METHOD

Let us consider the Hamiltonian

H = H0 + V, (1)

where

H0 =
∑

r

[r]1/2εr (a†
r × br )0, (2)

and

V = −1

4

∑
rstq�

[�]1/2V �
rstq[(a†

r × a†
s )� × (bt × bq)�]0. (3)

In the above formulas, a
†
r = a

†
xr jrmr

[br = (−)jr+mr axr jr−mr
]

creates (annihilates) a particle of energy εr and V �
rstq is an

unnormalized and antisymmetrized two-body matrix element.
The notation [r] stands for [r] = 2jr + 1 and the symbol ×
denotes angular-momentum coupling.

It is useful for our purposes to write the two-body potential
in the recoupled form

V = 1

4

∑
rsqtσ

[σ ]1/2Fσ
rsqt [(a

†
r × bs)

σ × (a†
q × bt )

σ ]0 (4)

obtained by the use of the Pandya transformation

Fσ
rsqt =

∑
�

[�](−)r+t−σ−�W (rsqt ; σ�)V �
rqst , (5)

where W (rsqt ; σ�) are Racah coefficients.

A. Generation of n-phonon basis

We need to generate first a basis of n-phonon correlated
states of the form

|αn〉 =
∑
λαn−1

C
αn

λαn−1
|(λ × αn−1)αn〉

=
∑
λαn−1

C
αn

λαn−1
{O†

λ × |αn−1〉}βn, (6)

where

O
†
λ =

∑
ph

cλ
ph(a†

p × bh)λ (7)

is the p-h TDA phonon operator acting on the (n − 1)-phonon
basis states |αn−1〉, assumed to be known. As illustrated in
Ref. [30], we start with the equations of motion

〈αn||[H,O
†
λ]||αn−1〉 = (

Eαn
− Eαn−1

)
X

αn

λαn−1
, (8)

where

X
αn

λαn−1
= 〈αn||O†

λ||αn−1〉 =
∑

λ′α′
n−1

Dαn

λαn−1λ′α′
n−1

C
αn

λ′α′
n−1

, (9)

and

Dαn

λαn−1λ′α′
n−1

= 〈(λ × αn−1)β |(λ′ × α′
n−1)β〉 (10)

is the overlap or metric matrix which reintroduces the exchange
terms among different phonons and, therefore, re-establishes
the Pauli principle.

After expanding the commutator, expressing the p-h oper-
ators in terms of the phonon operators O

†
λ upon inversion of

Eq. (7), and exploiting Eq. (9), we obtain [30]∑
λ′α′

n−1

(AD)αn

λαn−1λ′α′
n−1

C
αn

λ′α′
n−1

= Eαn

∑
λ′α′

n−1

Dαn

λαn−1λ′α′
n−1

C
αn

λ′α′
n−1

,

(11)

where Aαn is a matrix of the simple structure

Aαn

λαn−1λ′α′
n−1

= (
Eλ + Eαn−1

)
δλλ′δαn−1α

′
n−1

+ Vαn

λαn−1λ′α′
n−1

,

(12)

and Vαn

λαn−1λ′α′
n−1

is a phonon-phonon potential [30].
This is a generalized eigenvalue equation in the over-

complete basis |(λ × αn−1)αn〉. Following the procedure out-
lined in Refs. [28,29], based on the Cholesky decomposition
method, we extract a basis of linearly independent states
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spanning the physical subspace and obtain a nonsingular eigen-
value equation whose solution yields a basis of orthonormal
correlated n-phonon states of the form (6).

Since recursive formulas hold for all quantities entering
A and D, it is possible to solve the eigenvalue equa-
tions iteratively starting from n = 1 (TDA phonons) and
thereby generate a set of orthonormal multiphonon states
{|0〉,|α1〉(=|λ〉), . . . ,|αn〉, . . . }.

The diagonalization of the Hamiltonian in such a mul-
tiphonon space yields correlated eigenstates, including the
ground state. This is a linear combination of the HF vacuum
and of the states |αn〉 describing the excitations of fully
interacting np-nh configurations. Our approach, in fact, is
equivalent to a large-scale shell model in a space spanned by
many p-h configurations. In this respect, it differs from RPA
and its extensions, where noninteracting np-nh ground-state
correlations are accounted for effectively and in quasiboson
approximation.

B. Eigenvalue problem in odd nuclei

For a valence nucleon external to a doubly magic the basis
states |νn〉 of spin v have the form [27]

|νn〉 =
∑
pαn

Cνn
pαn

|(p × αn)v〉 =
∑
pαn

Cνn
pαn

{a†
p × |α〉}v, (13)

where an odd particle p is coupled to an n-phonon core state
of the form (6).

To generate such a basis we started [27] with the equations

〈αn‖ [bp,H ]p ‖νn〉 = (
Eνn

− Eαn

)
Xνn

pαn
, (14)

where Eνn
are the eigenvalues to be determined and

Xνn
pα = 〈αn‖bp‖νn〉. (15)

A procedure analogous to the one adopted for even nuclei leads
to the generalized eigenvalue equation∑

p′α′
np

′′α′′
n

{(
εp + Eαn

− Eνn

)
δpp′δαnα′

n
+ Vν

pαnp′α′
n

}

×Dν
p′α′

np
′′α′′

n
Cν

p′′α′′
n

= 0, (16)

where Vνn

pαnp′α′
n

is the particle-phonon potential and Dν
pαnp′α′

n
=

〈(p × αn)v|(p′ × α′
n)v〉 the overlap matrix which reintroduces

the exchange terms among the odd particle and the n-phonon
states and thereby re-establishes the Pauli principle. The
expression of both quantities can be found in Ref. [27].

Following the same procedure adopted for even nuclei,
based on the Cholesky decomposition method, we have
extracted from the over-complete set |(p × αn)v〉 a basis of
linearly independent states and obtain a nonsingular eigenvalue
equation. Its iterative solution, starting from n = 1, yields the
particle-core states |νn〉 (13) of energies Eνn

for n = 1,2, . . .,
which, together with the single-particle states |ν0〉, form an
orthonormal basis.

We have now all the ingredients necessary for solv-
ing the eigenvalue problem in the full space spanned by
{|ν0〉,|ν1〉, . . . ,|νn〉, . . . }:∑

νn′

{(
Eνn

− Eν

)
δνnνn′ + Vν

νnνn′
}Cν

νn′ = 0, (17)

where the matrix elements of V are nonvanishing for n′ =
n ± 1 and n′ = n ± 2 and have the structure

Vν
νnνn′ = [v]−1/2

∑
pαnp′αn′

Cνn
pαn

Vν
pαnp′αn′ X

νn′
p′αn′ . (18)

The expressions of the particle-phonon interactions Vν
pαnp′αn′

are given in Ref. [27].
Equation (17) yields all the eigenvalues allowed by the

space dimensions. The eigenfunctions have the structure

|�ν〉 =
∑
νn

Cν
νn

|νn〉 =
∑
pαn

Cν
pαn

|(p × αn)v〉, (19)

where Cν
pαn

= ∑
νn
Cν

νn
Cνn

pαn
, having made use of Eq. (13).

The procedure leading to this result does not rely on any
approximation. It has the same accuracy of shell model.
In fact, the Pauli principle is fulfilled and the interaction
among valence particles and phonons as well as among
phonons is fully taken into account. On the other hand, the
particle-phonon scheme allows naturally for reliable and useful
approximations.

C. Transition amplitudes

In the coupled scheme, the multipole operator has the
structure

M(λμ) = 1

[λ]1/2

∑
rs

〈r‖Mλ‖s〉(a†
r × bs)

λ
μ. (20)

Using the wave functions (19), we get the transition amplitudes

〈ψν ′ ‖M(λ)‖ψν〉 =
∑
nn′

M(νν ′)
nn′ (λ), (21)

where

M(νν ′)
nn′ (λ) =

∑
νnν

′
n′

Cν
νn
Cν ′

ν ′
n′
〈ν ′

n′ ‖M(λ)‖νn〉. (22)

If the initial and/or final states have dominant single-particle
character we can safely use the truncated formula

〈ψν ′ ‖M(λ)‖ψν〉 � M(νν ′)
00 (λ) + M(νν ′)

01 (λ) + M(νν ′)
10 (λ),

(23)

where M(νν ′)
00 (λ), M(νν ′)

01 (λ), and M(νν ′)
10 (λ) are, respectively,

the particle-particle, particle-phonon, and phonon-particle
transition amplitudes, given by

M(νν ′)
00 (λ) =

∑
pp′

Cν
pCν ′

p′ 〈p′‖Mλ‖p〉, (24)

M(νν ′)
01 (λ) =

∑
pk

Cν
pMλk

P
(ν ′)
pλk

, (25)

Mνν ′
10 (λ) = (−)v−v′Mν ′ν

01 (λ). (26)

Mλk
are the amplitudes of the transitions to the kth TDA state

having spin Jk = λ. They are given by

Mλk
= 〈kλ‖M(λ)‖0〉 = 1

[λ]1/2

∑
ph

c
(λk )
ph 〈p‖Mλ‖h〉.

(27)
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These amplitudes are weighted by

P
(ν ′)
pλk

=
∑
ν ′

1

Cν ′
ν ′

1
X

ν ′
1

pλk
, (28)

P
(ν)
p′λk

=
∑
ν1

Cν
ν1

X
ν1
p′λk

(29)

in the particle-phonon (M01) and phonon-particle (M10)
transitions, respectively. P

(ν ′)
pλk

(P (ν)
p′λk

) incorporate the joint
contributions of the one-phonon components |ν ′

1〉 (|ν1〉) of the
final (initial) states |�ν ′ 〉 (|�ν〉) and of the λ-multipole particle-
phonon configurations |[p × λk]ν

′
1〉 (|[p′ × λk]ν1〉) present in

|ν ′
1〉 (|ν1〉).

III. CALCULATION DETAILS

We used the intrinsic Hamiltonian

H = Tint + VNN, (30)

where

Tint = 1

2m

∑
i

p2
i − Tc.m. (31)

is the intrinsic kinetic operator and VNN = NNLOopt is the
NN optimized chiral potential derived in Ref. [38] by fixing
the coupling constants at next-to-next leading order through a
new optimization method in the analysis of the phase shifts,
which minimizes the effects of the three-nucleon force. It can
be written in the more standard form

H = T + V, (32)

where

T =
(

1 − 1

A

)
1

2m

∑
i

p2
i (33)

is a modified one-body kinetic term and

V = VNN + T2 (34)

includes the two-body kinetic term

T2 = − 1

2mA

∑
i �=j

�pi · �pj . (35)

The above Hamiltonian was employed to generate the HF basis
in a space encompassing all harmonic oscillator (HO) shells up
to Nmax = 15. A subset of the HF states so obtained, spanning
a space of dimensions corresponding to twelve major shells,
was used to determine the TDA phonon basis.

Following the prescription discussed in Ref. [40], we
removed from the Jπ = 1− TDA phonons the spurious
components induced by the center of mass (c.m.) motion by
a Gramm–Schmidt orthogonalization of the p-h basis to the
c.m. state. This was defined as

|λ1〉 = 1

N1
Rμ|0〉 = 1

N1

∑
ph

c
λ1
ph|(p × h−1)1−〉, (36)

where Rμ is the c.m. coordinate, c
λ1
ph are the unnormalized

coefficients

c
λ1
ph =

√
4π

9

1

A
〈p‖rY1‖h〉, (37)

and N1 is the normalization constant

N2
1 =

∑
ph

∣∣cλ1
ph

∣∣2
. (38)

The basis states |�i〉 obtained by such an orthogonalization
procedure are linear combinations of the p-h states |(p ×
h−1)1−〉. They were used to construct and diagonalize the
Hamiltonian matrix yielding eigenstates rigorously free of spu-
rious admixtures. These eigenstates recover the standard TDA
structure given by Eq. (7) once the states |�i〉 are expressed
in terms of the original p-h configurations |(p × h−1)1−〉.

The multiphonon basis is composed of all one-phonon
particle-core states |(p × α1)v〉, the |(p × α2)v〉 of two-phonon
energies Eα2 � 35 MeV, and the |(p × α3)v〉 of energies
εp + Eα3 � 55 MeV.

We had to make several approximations in order to include
the three phonons. We ignored the interaction V (ν)

pα3p′α′
3

in the
eigenvalue equation (16) and neglected the phonon-phonon
potential (Vβ

λα,λ′α′ = 0) in Eq. (11) determining the core states
|α3〉. Furthermore, we neglected in the eigenvalue equation
(16) the exchange terms between the odd particle and the
phonons and put D(ν)

(pα3)(p′α′
3) � δpp′δα3α

′
3
. Under these ap-

proximations, the three-phonon eigenstates are simply |ν3〉 ∼
|(p × α3)v〉 and the couplings (18) become

Vν
νnν3

=
∑
pp′αn

Cν1
pαn

Vν
pαnp′α3

. (39)

The lack of antisymmetrization between the odd particle and
|α3〉 in |(p × α3)ν3〉 may yield some linear dependence among
these states and might overestimate their couplings to the one-
phonon and two-phonon particle-core components. The other
two approximations affect the energy distribution of states
lying at high energies and, therefore, do not have appreciable
consequences.

IV. SPECTRA AND PHONON COMPOSITION
OF WAVE FUNCTIONS

The theoretical spectra obtained for 17O and 17F are
compared to one another and with experiments in Fig. 1. At
high energies, the density of levels is comparable with or higher
than the experimental one in both nuclei. The low-energy
spectra, instead, are less dense, especially in 17O.

To get useful insights into the nature of the levels, it is useful
to investigate the effect of the different phonon subspaces and
the structure of the wave functions.

A. 17O

The action of the different phonon subspaces was discussed
in Ref. [27]. By inducing a depression of the lowest 5/2+

1 , the
particle-phonon coupling brings most of the low-lying levels of
single-particle nature closer to the experimental ones. No new
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FIG. 1. Theoretical versus experimental [39] spectra of 17O and
17F. The dashed levels have unknown spin or parity or both.

levels, however, occur in the low-energy spectrum. The one-
phonon particle-core states, in fact, fall at energies �11 MeV
and increment greatly the level density of the high-energy
spectrum. The low-energy region is not affected by the two
phonons, either. These components contribute to enrich further
the high-energy sector.

Only the three phonons are able to push a few states, all
of negative parity, down in energy and, therefore, modify the
low-energy spectrum. This, however, remains much less dense
than the experimental low-energy-level scheme.

As shown in Table I, the low-energy intruders, of negative
parity, have a dominant one-phonon character and, in a
few cases, mix strongly single-particle and particle-phonon
components. All low-lying positive-parity states have single-
particle nature.

At high energies (E � 11 MeV), most of the states of both
parities have dominant one-phonon components. States com-
bining one- and two-phonon pieces appear at E � 13 MeV.
Those of dominant two-phonon character are at higher energies
(E � 16 MeV).

The different impact of two- and three-phonon states was
established already for 16O [29,30] and can be understood by
observing that the coupling between one and three phonons
is intimately correlated with the zero-phonon to two-phonon
coupling through the formula

〈α3|V |α1〉 =
∑
α2

〈α3|(α1 × α2)α3〉〈α2|V |0〉. (40)

One should therefore expect that such a coupling is strong
since the HF vacuum is strongly coupled to two phonons.

The one-phonon to two-phonon coupling is, in general,
not sufficiently strong to affect the low-energy phonons. It is

TABLE I. Phonon composition of selected states |�ν〉 [Eq. (19)]
in 17O.

J ν
π Eν |Cν

0 |2 |Cν
1 |2 |Cν

2 |2 |Cν
3 |2

5
2

+
1

0.0000 0.9510 0.0484 0.0005 0.0001
1
2

+
1

0.8808 0.9408 0.0586 0.0002 0.0004
5
2

−
1

2.9796 0.0003 0.7500 0.0120 0.2377
3
2

−
1

4.9733 0.8855 0.0942 0.0021 0.0182
1
2

−
1

5.2635 0.9787 0.0198 0.0001 0.0014
3
2

+
1

5.4730 0.9457 0.0535 0.0004 0.0004
3
2

−
2

5.6798 0.0969 0.7137 0.0185 0.1709
1
2

+
2

7.0899 0.9710 0.0247 0.0001 0.0002
11
2

−
1

7.1942 0.0006 0.8822 0.0752 0.0420
5
2

+
2

7.9645 0.9862 0.0128 0.0002 0.0008
7
2

−
1

8.1929 0.4278 0.4856 0.0195 0.0671
1
2

−
2

8.4706 0.0171 0.8459 0.0108 0.1262
7
2

−
2

8.6719 0.1446 0.7575 0.0350 0.0629
5
2

−
2

8.8762 0.3692 0.5663 0.0336 0.0309
5
2

−
3

9.3157 0.6084 0.3481 0.0231 0.0204
9
2

+
1

10.9115 0.0074 0.8290 0.0944 0.0692
5
2

+
3

11.1951 0.0067 0.8545 0.0208 0.1180
3
2

+
3

11.4801 0.0075 0.8534 0.0108 0.1283
9
2

−
1

11.5319 0.0005 0.9342 0.0345 0.0308
7
2

+
1

11.9392 0.0081 0.8449 0.0680 0.0790
9
2

+
3

13.3058 0.0175 0.5434 0.4057 0.0334

more effective in the high-energy sector where one and two
phonons have comparable energies and, therefore, mix with
one another, as shown in Table I.

The two phonons couple strongly to four phonons as
indicated by the formula

〈α4|V |α2〉 =
∑
β2

〈α4|(α2 × β2)α4〉〈β2|V |0〉. (41)

One should, therefore, expect the occurrence of low-energy
intruders of dominant two-phonon nature and of mixed phonon
structure as a result of such a strong coupling.

The different behavior of states of different parities may
be traced back to the HO constituents of the HF states. The
HF p-h configurations are built of p-h HO states, whose
energies are (2n + 1)h̄ω and (2n + 2)h̄ω (n = 0,1,2, . . . ) for
negative and positive parity, respectively. Correspondingly,
the negative-parity phonons have in general lower energies
than the corresponding phonons of positive-parity. Several
three-phonon states are composed entirely of negative-parity
phonons and, therefore, have lower energies as well. Also
an appreciable number of positive-parity two-phonon states
composed of two negative-parity phonons lie at relatively
low energies. Only if coupled to four phonons, however,
would these states have intruded into the low-energy sector.
Unfortunately, the four phonons are not included in our
calculation.
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TABLE II. Weights Wν
λ [Eq. (42)] of the one-phonon components

of selected states |�ν〉 in 17O.

Wν
λ × 102

�����ν

λ
1− 2− 3− 4− 1+ 2+ 3+ 4+

17O 5
2

+
1

0.3 0.4 0.5 0.2 0.4 0.8 0.6 0.4
1
2

+
1

0.6 0.6 0.5 0.1 0.9 1.2 0.6 0.2
5
2

−
1

12.9 14.6 21.5 10.2 4.1 6.0 1.1 0.7
3
2

−
1

2.9 2.6 1.7 0.4 0.4 0.4 0.2 0.1
1
2

−
1

0.6 0.4 0.4 0.0 0.1 0.1 0.0 0.0
3
2

+
1

0.5 0.6 0.5 0.2 0.9 1.0 0.5 0.3
3
2

−
2

23.5 19.8 12.1 3.0 3.4 2.8 1.5 0.6
1
2

+
2

0.2 0.2 0.2 0.0 0.4 0.5 0.2 0.1
11
2

−
1

0.2 0.2 86.8 0.6 0.0 0.2 0.1 0.3
5
2

+
2

0.0 0.1 0.1 0.0 0.2 0.3 0.1 0.0
7
2

−
1

10.7 5.6 24.8 3.9 0.3 1.1 0.6 0.4
1
2

−
2

25.2 16.5 23.4 0.5 3.8 2.3 1.3 0.5
7
2

−
2

11.1 6.0 52.6 2.3 0.4 1.1 0.6 0.6
5
2

−
2

3.7 3.9 46.4 1.6 0.5 0.6 0.3 0.2
5
2

−
3

3.0 3.5 24.6 0.2 0.3 0.4 0.2 0.1
9
2

+
1

2.3 0.7 60.1 0.3 0.3 12.9 0.0 3.7
5
2

+
3

0.3 2.5 13.0 0.5 17.7 33.7 9.8 1.2
3
2

+
3

6.3 1.8 9.9 0.2 21.8 30.1 11.2 0.7
9
2

−
1

0.0 8.3 84.6 0.1 0.1 0.1 0.1 0.1
7
2

+
1

0.4 1.4 0.9 0.2 33.2 37.0 2.1 0.2

The different multipoles enter the one-phonon components
|(p × λ)v〉 of the total wave functions |�ν〉 with weights

Wν
λ =

∑
p

Wν
pλ, (42)

where

Wν
pλ = 1

[v]1/2

∑
kν1

∣∣Cν
ν1

∣∣2
C

ν1
pλk

X
ν1
pλk

. (43)

This formula is deduced from inserting the expansion of the bra
〈�ν | in terms of n-phonon components into the normalization
condition

〈�ν |�ν〉 =
∑
αn

Wν
αn

= 1. (44)

As Table II indicates, all multipoles are present with com-
parable small weights in the states of single-particle nature.
As for the states with dominant phonon components, all
odd multipoles contribute with comparable weights to most
negative-parity states while few of them have a full octupole
character. The octupole components are dominant also in
few positive-parity states like 9/2+

1 . The even multipoles
are all present in the positive-parity states with an overall
predominance of the quadrupole components.

B. 17F

The coupling to the one-phonon space has a strong impact
also on the HF level scheme of 17F (Fig. 2). As in 17O, it
acts more strongly on the 5/2+

1 state thereby promoting the
inversion between the 1/2+

1 and 5/2+
1 levels. The correct

ground state is thus obtained. The 1/2+
1 level, however, is

only ∼100 keV above 5/2+
1 and about ∼300 keV below the

corresponding experimental level.
Due to the more pronounced depression of the 5/2+

1 state,
the other low-lying levels appear at higher energies in better
overall agreement with the experiments.

The particle-phonon levels are at too high energies and
enhance greatly the level density only in that region. The two-
phonon components increment further the density in the high-
energy sector but affect marginally the low-lying level scheme.

In analogy with 17O, the strongest effect is produced by
the coupling to the three-phonon subspace which pushes a
few negative-parity levels down in the low-lying spectrum,
although not in sufficient number to approach closely the
experimental level scheme. In fact, two or three loopholes
appear in the theoretical level scheme which originate from the
much larger gaps of the HF spectrum. Apparently the phonon
coupling is not strong enough to wipe them out.

As in 17O, most of the intruders have particle-phonon
nature, while few are linear combinations of HF and particle-
phonon states (Table III). All negative-parity multipole compo-
nents are present in these states with comparable amplitudes.
Only few high-spin states have a dominant octupole nature
(Table IV).

No positive-parity particle-core states intrude into the low-
energy spectrum (Table III). In fact, only positive-parity levels
of single-particle nature with small phonon admixtures occur
at low energy. Consequently, the amplitudes of all the different
multipoles entering these states are very small (Table IV).

Positive-parity states of one-phonon or two-phonon nature
or characterized by a mixture of both components appear at
high energies. The quadrupole components prevail in several
states (Table IV).

V. MOMENTS AND TRANSITIONS

A. Magnetic moments and β-decay f t value

For the magnetic-dipole operator

�μ =
∑

k

(gl(k)�lk + gs(k)�sk), (45)

we used bare gyromagnetic factors, gl(k) = 1 and gs(k) =
5.59 for protons, gl(k) = 0 and gs(k) = −3.83 for neutrons.

We also computed for the ground-state β decay of 17F the
f t value

f t1/2 = κ

BF + BGT

, (46)

where κ = 6146 s. The reduced strengths are

BF (i → f ) = 1

[Ji]
|〈f,Jf ‖MF ‖i,Ji〉|2,

BGT (i → f ) = 1

[Ji]
|〈f,Jf ‖MGT ‖i,Ji〉|2, (47)
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FIG. 2. Level schemes of 17F determined in different multiphonon spaces. Nph denotes the maximum phonon number.

TABLE III. Phonon composition of selected states |�ν〉 in 17F.

J ν
π Eν |Cν

0 |2 |Cν
1 |2 |Cν

2 |2 |Cν
3 |2

5
2

+
1

0.0000 0.9647 0.0351 0.0002 0.0000
1
2

+
1

0.0892 0.9675 0.0323 0.0001 0.0001
3
2

−
1

2.8437 0.9899 0.0098 0.0001 0.0002
1
2

−
1

3.0131 0.9897 0.0100 0.0000 0.0003
3
2

+
1

4.0666 0.9796 0.0203 0.0000 0.0001
5
2

−
1

4.6630 0.0215 0.7483 0.0220 0.2082
1
2

+
2

5.2050 0.9721 0.0277 0.0001 0.0001
5
2

−
2

6.2479 0.3456 0.4573 0.1710 0.0261
7
2

−
1

6.4988 0.9740 0.0244 0.0008 0.0008
5
2

−
3

7.0536 0.6353 0.2550 0.0888 0.0209
3
2

−
2

8.1726 0.0009 0.8486 0.0157 0.1348
3
2

+
2

8.3989 0.9447 0.0546 0.0002 0.0005
3
2

−
3

8.9938 0.4756 0.4722 0.0086 0.0436
1
2

−
2

9.6875 0.5268 0.4416 0.0032 0.0284
9
2

+
1

9.9913 0.9859 0.0137 0.0003 0.0001
7
2

−
2

10.0064 0.0053 0.9278 0.0335 0.0334
7
2

+
1

10.0325 0.9866 0.0131 0.0002 0.0001
1
2

−
3

10.1882 0.4312 0.5326 0.0043 0.0319
7
2

−
3

11.1503 0.4717 0.4972 0.0169 0.0142
9
2

−
1

11.5656 0.0030 0.9400 0.0300 0.0270
11
2

−
1

11.8336 0.0061 0.8985 0.0510 0.0444

TABLE IV. Weights Wν
λ of the one-phonon components of

selected states |�ν〉 in 17F.

Wν
λ × 102

�����ν

λ
1− 2− 3− 4− 1+ 2+ 3+ 4+

17F 5
2

+
1

0.2 0.3 0.3 0.2 0.3 0.6 0.4 0.3
1
2

+
1

0.3 0.2 0.2 0.1 0.5 0.6 0.4 0.2
3
2

−
1

0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0
1
2

−
1

0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0
3
2

+
1

0.2 0.2 0.1 0.0 0.3 0.4 0.2 0.1
5
2

−
1

14.0 16.7 23.5 6.9 2.4 3.5 1.5 0.1
1
2

+
2

0.3 0.2 0.2 0.0 0.5 0.5 0.3 0.1
5
2

−
2

8.8 11.4 9.6 3.4 2.7 3.1 2.4 1.1
7
2

−
1

0.5 0.3 0.8 0.3 0.0 0.1 0.1 0.1
5
2

−
3

4.8 6.1 5.6 2.3 1.3 1.7 1.2 0.5
3
2

−
2

34.9 27.1 12.7 2.9 1.6 1.5 0.9 0.3
3
2

+
2

0.4 0.6 0.4 0.1 1.0 1.1 0.6 0.4
3
2

−
3

28.2 8.3 4.6 2.4 0.9 0.8 0.4 0.2
1
2

−
2

18.1 15.1 6.9 0.2 1.0 0.7 0.3 0.1
7
2

−
2

4.2 4.5 76.8 5.5 0.1 0.6 0.2 0.3
7
2

−
3

13.2 5.9 20.7 5.0 0.3 1.8 0.7 0.8
9
2

−
1

0.2 3.6 88.8 0.6 0.1 0.1 0.1 0.1
11
2

−
1

0.7 0.4 85.1 1.2 0.0 0.5 0.1 0.5
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TABLE V. Ground-state magnetic μ (μN ) and electric-
quadrupole Q (ef m2) moments, B(Eλ; J π

i → J π
f ) (e2f m2λ) and f t

value. The experimental data are taken from Ref. [39]. The sign of
the experimental quadrupole moment of 17F is not known.

HF EMPM Expt.

17O μ −1.91 −1.83 −1.89

Q 0 −0.841 −2.578
B(E2; 5/2+

1 → 1/2+
1 ) 0 0.17 2.18(16)

B(E1; 5/2+
1 → 5/2−

1 ) 0.0083 0.0042 0.0004
B(E1; 1/2+

1 → 1/2−
1 ) 0.482 0.249 0.0005

B(E1; 1/2+
1 → 1/2−

2 ) 0.0173 0.0005
17F μ +4.79 +4.63 +4.72

Q −9.9 −7.6 5.8(4)
B(E2; 5/2+

1 → 1/2+
1 ) 40.71 21.89 21.64

B(E1; 5/2+
1 → 5/2−

1 ) 0.015 0.0004 0.0018
B(E1; 1/2+

1 → 1/2−
1 ) 0.60 0.40 0.0006

B(E1; 1/2+
1 → 1/2−

2 ) 0.0087 0.0265
B(E1; 1/2+

1 → 1/2−
3 ) 0.0000 0.0013

logf t 3.294 3.391 3.358(2)

where the Fermi and Gamow–Teller operators are

MF = gv

∑
k

t+(k), (48)

MGT = gA

∑
k

t+(k)�σ (k). (49)

We have introduced the spherical components tμ of the isospin
single-particle operator and used the bare weak charges gv = 1
and gA = 1.25.

In both 17O and 17F, the magnetic moments are practically
determined at the HF level (Table V). The weak quenching due
to the core brings the total moments slightly more distant from
the experimental values. It may be worth to point out that the
core contribution originates from the spin-flip partners present
in the HF p-h configurations entering the TDA phonons and,
therefore, is ultimately ascribed to HF.

The β decay is also ruled by HF. Indeed, the f t value
comes almost entirely from the transition between the HF
components of the 17O and 17F 5/2+

1 ground states (Table V).
The weak quenching caused by the phonon coupling brings
the f t value slightly above the measured quantity.

B. Electric quadrupole moments and low-lying transitions

We used the electric multipole operator

M(Eλμ) =
∑

i

eir
λ
i Yλμ(r̂i) (50)

for λ = 2 with bare charges ei = e for protons and ei = 0 for
neutrons.

In 17O, the calculation underestimates the absolute value of
the ground-state quadrupole moment by a factor three and the
strength of the transition from the ground state 5/2+

1 to 1/2+
1

by an order of magnitude (Table V).
Since 5/2+

1 and 1/2+
1 have a prominent single-particle

character (Table I) and the odd particle is a neutron (ek = 0),

0

10

20

30

0

0.4

0.8

B
(E

2)
[e

2 fm
4 ]

0

0.4

0.8

0 5 10 15 20 25 30 35
0

0.4

0.8

ω(MeV)

N
ph

=2

N
ph

=3

17O

17O

17O

16O

(b)

(a)

(c)

(d)

N
ph

=1

TDA

FIG. 3. E2 strength distribution of 17O computed in spaces
including up to (b) Nph = 1, (c) Nph = 2, and (d) Nph = 3 phonons.
The TDA spectrum of (a) 16O is also shown for comparison. A
different scale is used for the latter plot.

the contribution to the moment and transition strength comes
entirely from the terms M01(E2) [Eq. (25)] and M10(E2)
[Eq. (26)] coupling the single-particle components of 5/2+

1
and 1/2+

1 to the λ = 2+ particle-phonon pieces of 1/2+
1 and

5/2+
1 , respectively.

As shown in Table I, the one-phonon terms account
for ∼5% of |�5/2+

1
〉 and ∼6% of |�1/2+

1
〉. The quadrupole

phonon content of |�5/2+
1
〉 and |�1/2+

1
〉 is W2+ ∼ 0.8% and

W2+ ∼ 1.2%, respectively (Table II). The specific components
|(5/2+

i × 2+
k )5/2〉 and |(1/2+

i × 2+
k )5/2〉, responsible for the

quadrupole moment and the E2 transition, are present in
the state |�5/2+

1
〉 with weights (43) W5/2+2+ ∼ 0.2% and

W1/2+2+ ∼ 0.3%, respectively, while |(5/2+
i × 2+

k )1/2〉 repre-
sent ∼0.7% of |�1/2+

1
〉.

It seems, therefore, that the amplitudes of the one-phonon
components and, in particular, the quadrupole phonon pieces
are not sufficiently large. Indeed, as shown in Fig. 3(a), all the
2+ TDA states are above ∼15 MeV, and those collecting most
of the strength are above ∼25 MeV. It is, therefore, natural
to expect that quadrupole phonons of such high energies get
admixed weakly with the low-energy single-particle states.
In fact, when the odd neutron is coupled to the multiphonon
core components, the E2 strength gets highly fragmented but
remains concentrated at high energy. It is, therefore, necessary
to include four-phonon states. As pointed out already, in fact,
only these configurations would push down the two-phonon
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components thereby favoring a more effective particle-phonon
and phonon-phonon mixing.

In 17F, the quadrupole moment, computed in HF, is ∼1.7
times the measured value. It gets considerably smaller and
closer to experiments once the phonon coupling is included.
This coupling is even more effective on the 5/2+

1 → 1/2+
1 E2

transition. Once the phonons are included, in fact, the E2
strength, which is ∼1.8 times larger in HF, is drastically
reduced and coincides in practice with the experimental value
(Table V).

The strong quenching action of the phonon coupling in
17F seems to clash with the analysis just made for the 17O,
especially since the HF components of 5/2+

1 and 1/2+
1 in

17F are even more dominant than in 17O (Table III). The
one-phonon piece represents only the ∼3.5% and ∼3.2%
of |�5/2+

1
〉 and |�1/2+

1
〉, respectively. The contribution of

the quadrupole configurations |[5/2+
i × 2+

k ]5/2〉 and |(1/2+
i ×

2+
k )5/2〉 to |�5/2+

1
〉 amounts to ∼0.2% and ∼0.1%, respectively,

while the |(5/2+
i × 2+

k )1/2〉 accounts for ∼0.4% of |�1/2+
1
〉.

The contradiction, however, is only apparent. In fact, the
phonons exert a twofold action. They not only get admixed
directly with the HF components, but combine the HF states
among themselves. In fact, the single-particle piece of each
wave function |�ν〉 is a linear combination of different HF
configurations. Their mutual interference causes the quenching
of quadrupole moment and transition in 17F. In 17O, this inter-
ference has no effect since the odd neutron carries no charge.

C. Low-lying electric-dipole transitions

For the E1 transitions we use the intrinsic operator referred
to the c.m. coordinate. This keeps the form (50) for λ = 1 with
effective charges ei = (N/A)e for protons and ei = −(Z/A)e
for neutrons.

The effective charges do not affect the TDA core states,
which are free of c.m. spurious admixtures in virtue of
the orthogonalization method outlined already. It modifies,
instead, the single-particle contributions, especially the transi-
tions between states of dominant single-particle character. This
contribution was ignored in computing the dipole cross section
in Ref. [27]. As we shall see, however, the changes induced
by the effective charges affect the cross section only in the
low-energy sector and do not invalidate any of the conclusions
drawn in Ref. [27].

1. 17O

As shown in Table V, the 5/2+
1 → 5/2−

1 E1 reduced
strength, although small, is an order of magnitude larger than
the experimental value (Table V). The EMPM 5/2−

1 state
involved in the transition is an intruder bearing no relation
to the corresponding HF state. As shown in Table I, it has
a very small single-particle content and a dominant particle-
phonon component. Thus, the strength comes entirely from
the core excitation. We have, in fact, M00(E1) = 0.0008ef m,
M01(E1) = 0.1587ef m, and M10(E1) = 0.00003ef m. The
overestimation of the experimental strength suggests that the
amplitude of the particle-phonon component of the EMPM
5/2−

1 is too large.

The E1 transition from 1/2+
1 to 1/2−

1 , both of single-particle
nature (Table I), carries a strength three orders of magnitude
larger than the very small experimental quantity. This, instead,
is reproduced by the strength of the transition to the second
1/2−

2 at 8.47 MeV with dominant one-phonon components
(Table I). It would be, therefore, tempting to associate this
latter state to the first experimental 1/2−, were not for its too
high energy, three times larger. To test the validity of such a
suggestion, one should check if more effective particle-phonon
and phonon-phonon couplings, advocated by the analysis of
energy levels and quadrupole transitions, are able to produce
an energy crossing between 1/2−

2 at 8.47 MeV and 1/2−
1 at

5.26 MeV.
On the ground of the present results, we can only state

that the the 1/2+
1 → 1/2−

1 transition, like other transitions of
single-particle nature we will encounter in both 17O and 17F,
carry an unrealistically large E1 strength.

2. 17F

The 5/2+
1 → 5/2−

1 E1 theoretical reduced strength is about
half of the experimental value (Table III) and is the outcome of
a partial cancellation between the single-particle [M00(E1) =
−0.039ef m] and the particle-phonon [M01(E1) = 0.020ef m
and M10(E1) = 0.001ef m] contributions. It is to be noticed
that the single-particle contribution, which is negligible in 17O,
is comparable to the one induced by the core excitation in 17F.
The reason for such a difference is due to the larger amplitudes
of the single-particle components of both 5/2+

1 and 5/2−
1 in

17F (Table III) with respect to 17O (Table I).
The 1/2+

1 → 1/2−
1 E1 transition strength is overestimated

by three orders of magnitude, just like in 17O. This unrealis-
tically large value comes entirely from the transition between
the single-particle components of the two states [M00(E1) =
0.900ef m]. The core terms are much smaller and of opposite
sign [M01(E1) = 0.017ef m and M10(E1) = −0.012ef m].
This is another example of a single-particle transition carrying
an unrealistically large strength.

A strength comparable to the experimental one is collected
by the 1/2−

3 (Table V). This state lies at 10.19 MeV, about
three times the experimental value but, unlike the 1/2−

2 in
17O, is a linear combination of single-particle and one-phonon
components of comparable amplitudes (Table III). It would be
plausible to associate such a state to the lowest experimental
1/2− level, if a crossing between the 1/2−

3 and 1/2−
1 levels

could be achieved by a stronger particle-phonon coupling.

D. Electric-dipole spectra and cross sections

We computed the dipole cross section

σ =
∫ ∞

0
σ (ω)dω = 16π3

9h̄c

∫ ∞

0
ωS(E1,ω)dω, (51)

where S(E1,ω) is the strength function

S(E1,ω) =
∑

ν

Bν(E1)δ(ω − ων)

≈
∑

ν

Bν(E1)ρ�(ω − ων). (52)
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Here ω is the energy variable, Bν(E1) is the reduced strength of
the transition to the νth excited state of energy ων = Eν − Eν0 ,
and

ρ�(ω − ων) = �

2π

1

(ω − ων)2 + (
�
2

)2 (53)

is a Lorentzian of width �, which replaces the δ function as a
weight of the reduced strength.

After integration, the cross section becomes

σ (E1) = 16π3

9h̄c
m1(E1), (54)

where

m1(E1) =
∑

ν

ωνBν(E1) (55)

is the first moment.
If the Hamiltonian does not contain momentum-dependent

and exchange terms, m1 fulfills the classical energy weighted
Thomas–Reiche–Kuhn (TRK) sum rule

m1(E1) = h̄2

2m

9

4π

NZ

A
e2, (56)
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and the total cross section assumes the value

σ (E1) = (2π )2 h̄2

2m

e2

h̄c

NZ

A
= 60

NZ

A
(MeV mb). (57)

1. Dipole response in 16O

We start with investigating the dipole response in 16O.
As shown in Fig. 4(a), the TDA cross section is displaced
slightly upward in energy with respect to experiments. The
action of the two phonons is weak. The three phonons, instead,
strongly affect the cross section, which gets shifted downward
and peaked in the right position. They have also a damping
action which shortens the height of the peaks. The shape of
the cross section is not so distant from that resulting from
the measurements. The two main peaks, for instance, are
reproduced fairly well. Each of them arises mainly from a
strong transition to a single TDA state. The other secondary
peaks are also due mainly to single transitions.

2. Dipole response in 17O

In 17O, the cross section gets displaced upward in energy by
the coupling of the odd particle to the TDA phonons. Its main
peak is too high and lies several MeV above the experimental
one [Fig. 4(b)]. As in 16O, the cross section gets damped and
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down-shifted mainly by the couplings to three phonons. The
peak, however, is still too high and ∼2 MeV above in energy.

A better understanding of the excitation mechanism is
gained by investigating the strength distribution. From compar-
ing the TDA spectrum of 16O [Fig. 5(a)] with the corresponding
one in 17O [Fig. 5(b)] one notices that adding an odd particle
to the core induces a huge damping and fragmentation. Such
an effect was largely expected, since the strength collected by
each 1− core state gets distributed among several states of spin
3/2−, 5/2−, and 7/2− (Fig. 6).

The coupling to two phonons induces an apprecia-
ble damping over the whole spectrum, especially in the
high-energy sector [Fig. 5(c)]. The three phonons deplete
almost completely the high-energy region and pack most of the
strength in the range 5–25 MeV [Fig. 5(d)]. This is the outcome
of two actions. The three phonons shift the one-phonon
energies downward and strengthen the amplitudes of several
one-phonon states at the expenses of the two phonons.

The main peak of the theoretical cross section [Fig. 4(b)]
arises from a bunch of closely packed weakly excited levels
around ∼25 MeV. As the plots in Fig. 6 show, all three 3/2−,
5/2−, and 7/2− states carry strength in this region (Fig. 6)
and, therefore, contribute to the main peak on equal footing
[Fig. 4(c)].

The unwanted secondary peak at ∼20 MeV [Fig. 4(b)]
originates mostly from the strong transitions to the 7/2−
states at the same energy [Fig. 6(c)]. At low energy, we can
distinguish four small humps [Fig. 4(c)]. The small one at
∼5 MeV comes from the excitation of the single-particle 3/2−

1

TABLE VI. Contributions of the TDA 1− phonons and their
weights P ν′

[Eq. (28)] to the strengths of the strongest E1 transitions
in 17O. W [Eq. (42)] gives the weight of the 1− phonons in the final
states |�ν′ 〉. The energies ω are in MeV and the B(E1) in e2 fm2.

ν ′ = 3/2−
6 ων′ = 12.83 Wν′

1− = 0.091 Bν′ (E1) = 0.032

λk ωλk
Mλk

P ν′
pλk

M × P

1−
5 18.61 0.155 −0.249 −0.039

1−
11 24.73 −0.469 0.152 −0.071

1−
13 26.20 0.171 −0.163 −0.028

1−
14 26.82 −0.415 0.208 −0.086

1−
17 28.77 0.186 −0.212 −0.040

1−
19 30.45 −0.221 0.183 −0.040

1−
21 32.29 0.263 −0.110 −0.029

1−
22 33.23 −0.234 0.094 −0.022

ν ′ = 5/2−
13 ων′ = 16.04 Wν′

1− = 0.078 B(E1) = 0.037
λk ωλk

Mλk
P ν′

pλk
M × P

1−
2 14.11 0.163 −0.319 −0.052

1−
5 18.61 0.155 −0.588 −0.091

1−
11 24.73 −0.469 0.195 −0.091

1−
14 26.82 −0.415 0.204 −0.085

1−
22 33.23 −0.234 0.173 −0.040

ν ′ = 7/2−
29 ων′ = 19.33 Wν′

1− = 0.061 B(E1) = 0.129
λk ωλk

Mλk
P ν′

pλk
M × P

1−
3 16.51 −0.163 −0.318 0.052

1−
5 18.61 0.155 0.767 0.119

1−
9 23.44 −0.200 −0.200 0.040

1−
11 24.73 −0.469 −0.136 0.064

1−
13 26.19 0.171 0.184 0.031

1−
14 26.82 −0.415 −0.303 0.126

1−
17 28.77 0.186 0.231 0.043

1−
18 29.45 −0.302 −0.567 0.171

1−
19 30.45 −0.221 −0.350 0.077

1−
22 33.23 −0.234 −0.276 0.065

state [Fig. 6(a)], the one within 5–10 MeV is due to the two
7/2− states at ∼8 MeV [Fig. 6(c)], the lowest one being of
single-particle nature. Also the two peaks around ∼12.5 MeV
and ∼15 MeV arise mostly from exciting a few 7/2− states
[inset of Fig. 4 (c)] with a small contribution of 3/2− states
[Fig. 6(a)] to the first peak and of 5/2− excitations [Fig. 6(b)]
to the second.

It is clear from the above analysis that the transitions of
single-particle character affect shape and magnitude of the
low-energy queue of the cross section. They are the analogs
of the too strong 1/2+

1 → 1/2−
1 transition discussed above

(Table V) and, therefore, are likely to carry unrealistically
large strengths. Without their contribution, the small peak at
∼5 MeV would disappear and the low-energy trend of the
cross section would be smoother [27].

Important differences between 16O and 17O emerge also
from the analysis of the integrated cross section. The exper-
imental cross section integrated up to 40 MeV over-exhausts
the TRK sum rule by a factor ∼1.26 in 16O, to be compared
with the computed fraction of ∼100%. In 17O, the theoretical
integrated cross section accounts for ∼98% of the TRK sum
rule, while the fraction exhausted by the data is ∼50%. An
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appreciable share goes to the region of the pygmy resonance.
The strength integrated up to ω � 15 MeV exhausts ∼9% of
the TRK sum rule, three times the measured value ∼3.2%.
Had we ignored the single-particle contribution, the computed
fractions would have been ∼91% and, for the pygmy, ∼3.5%
[27].

The analysis of the phonon structure of the states involved
in the transitions may contribute to clarify why the calculation
yields a too large cross section. We have pointed out already
that the single-particle levels carry too large strength. They are
very few and lie at low energy. The other states �ν ′ are linear
combinations of dominant one-phonon components and two
and three phonons. The one-phonon weights cluster around
∼65%, and the shares W of the dipole configurations |[5/2+

i ×
(1−

k )]v〉 (v = 3/2−, 5/2−, 7/2−) range from ∼5% to ∼15%.
These amplitudes would be reduced by a stronger admixing
with the particle and the other n-phonon components.

The strengths are determined by the joint contribution of
the λ = 1 TDA phonon amplitudes M1−

k
and the weights

P
(ν ′)
p1−

k

[Eq. (28)], incorporating the structural composition of
�ν ′ . How the different phonons contribute to the strengths is
illustrated in Table VI for a few selected transitions.
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The table also shows that the transitions are not determined
by a single collective 1− state. Several dipole phonons
contribute on equal footing. Moreover, the strength collected
by a given 1− phonon gets distributed among several dipole
transitions in 17O thereby determining the huge fragmentation
we discussed already.

3. Dipole response in 17F

The phonon action in 17F is analogous to the one exerted in
17O. The cross section gets quenched and shifted mainly by the
coupling to three phonons [Fig. 7(a)]. Its behavior is smoother
than in 17O. We get, in fact, a broad wiggly hump, covering
a wide energy range (20–40 MeV), which arises from a huge
number of closely packed small peaks.

The cross sections coming separately from the excitations
of 3/2−

i , 5/2−
i , and 7/2−

i states all have the same trend
[Fig. 7(b)] over the whole energy range covered by the hump.

The spectrum in Fig. 7(a) shows that the fragmentation is
astonishingly large. It is mainly induced by the coupling of
the odd proton to the TDA phonons [Fig. 8(a)] and further
enhanced by two and, especially, three phonons [Figs. 8(b)
and 8(c)]. Strong transitions are predicted only at energies
�15 MeV [Fig. 8(c)]. The lowest four are due to single-particle
excitations and yield the lowest three humps in the cross
section (Fig. 7). They are the analogs of the 1/2+

1 → 1/2−
1
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transition discussed above (Table V) and, like this, carry
unrealistically large strengths.

The fourth hump in the 13–15 MeV interval arises almost
entirely from the excitation of 7/2−

3 with small contributions
of other weak transitions, including 5/2+

1 → 7/2−
4 [inset of

Fig. 7(b)]. It is likely to correspond to the pygmy resonance,
which, according to the experimental analysis of Ref. [39],
is due to the excitation of two 7/2− states, accounting for
∼2% of the TRK sum rule. The integrated cross section up to
∼40 MeV exhausts ∼81% of the same sum.

The final states �ν ′ have a structure quite similar to the
one obtained for 17O. Except for the four low-lying states of
single-particle character, they have a multiphonon nature with
dominant one-phonon components. The weights of |ν1〉 are
concentrated around ∼65% and those of the dipole configu-
rations |[5/2+

i × (1−
k )]v〉 (v = 3/2−, 5/2−, 7/2−) range from

∼5% to ∼15%.

VI. CONCLUDING REMARKS

Let us summarize the main results of our calculation.
Concerning the energy spectra, (i) the one-phonon states
improve the description of the low-lying positive-parity levels
of single-particle character through their coupling, but remain
too high in energy; (ii) the two phonons do not alter the
low energy levels, couple weakly with the one-phonon states,
and mix only with those of comparable energies in the
high-energy region; (iii) the three phonons couple strongly
to the negative-parity one-phonon states and push a few of
them into the low-energy sector; (iv) they affect marginally
the positive-parity one-phonon and the two-phonon states. The
overall result is that the calculation is far from reproducing the
high density of the experimental level scheme at low energy.

As for moments and transitions, (i) the phonon coupling
has a very weak quenching effect on magnetic moments and
f t values, practically determined by the HF components;
(ii) the core corrections to the ground-state quadrupole
moments and to the E2 transitions between low-lying states, of
single-particle nature, are substantial but not sufficient to bring
the mentioned observables close to the experimental values;
(iii) a few low-lying E1 transitions have single-particle nature
and carry unrealistically large strengths; (iv) most of the E1
transitions and resonances are determined by the particle-
core states with dominant one-phonon components; (v) the
damping and energy shift induced by the coupling to two and
three phonons are appreciable but not sufficient to reproduce
the peak and shape of the cross section in 17O. Its magnitude
is also largely overestimated.

A detailed analysis of the phonon structure of the wave
functions indicates that all discrepancies between theory and
experiments originate from an insufficient particle-phonon
and phonon-phonon admixture. In particular, the one-phonon
components have too small weights in the states of dominant
single-particle character, lying generally at low energies, and
too large amplitudes in the dominantly particle-core states.

This insufficient admixing might be traced back to HF. In
both 17O and 17F, the levels or groups of levels above the Fermi
surface are too far apart, especially as the energy increases

(Figs. 1 and 2), a common feature of HF spectra derived
from NN interactions [40,43,44]. These gaps are reduced
substantially but not completely by the phonon coupling.

It is, therefore, desirable to investigate if it is possible to
obtain a smoother HF level scheme by a refinement of the
NNLOopt potential or by adopting other versions of chiral
potential like the NNLOsat [45], which includes explicitly
the three-body contribution and improves the description of
binding energies and nuclear radii as well [46]. A more
compressed HF spectrum would yield more closely packed
TDA phonons and, therefore, might enhance the coupling of
the one-phonon components to the HF vacuum and to the other
n-phonon states.

The positive-parity states would be marginally affected
by a more accurate HF level scheme, unless we include the
four-phonon states which are expected to couple strongly to the
two-phonons, on the ground of the heuristic argument given in
Sec. IV A. In particular, the coupling should be more effective
among the components of positive parity, which have the
lowest energies. Thus, the positive-parity two-phonon states
lying just above ∼16 MeV are likely to be pushed down in
energy and to mix strongly with the low-lying one-phonon
components above ∼11 MeV.

The presence of (2p-2h) and, even (4p-4h) positive-parity
levels at low energy in 16O was predicted long ago in the
pioneering work of Brown and Green [47] and ascertained
quantitatively by a phenomenological shell-model calculation
[48].

It is, therefore, mandatory to include at least four phonons
for a satisfactory description of the full energy spectra and
transitions in the two nuclei investigated here. Including four
phonons is a difficult but not impossible task if we are allowed
to resort to approximations analogous to those we made here
for three phonons.

The present calculation illustrates exhaustively the potential
of the EMPM. The particle-phonon structure has allowed us
to incorporate configurations of increasing complexity up to
arbitrarily high energies and, therefore, to perform large-scale,
parameter-free, self-consistent calculations starting from bare
NN forces. Having all wave functions at our disposal, we
could investigate their phonon composition and, therefore,
clarify how the different n-phonon states of each multipolarity
act selectively on the different observables. Such a detailed
investigation has also suggested reliable recipes for curing the
discrepancies between theory and experiments.
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