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Equation of state of nuclear and neutron matter at third-order in perturbation theory from chiral
effective field theory

J. W. Holt1 and N. Kaiser2

1Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
2Physik Department, Technische Universität München, D-85747 Garching, Germany

(Received 15 December 2016; revised manuscript received 22 February 2017; published 29 March 2017)

We compute from chiral two- and three-nucleon interactions the energy per particle of symmetric nuclear
matter and pure neutron matter at third-order in perturbation theory including self-consistent second-order
single-particle energies. Particular attention is paid to the third-order particle-hole ring diagram, which is often
neglected in microscopic calculations of the equation of state. We provide semianalytic expressions for the
direct terms from central and tensor model-type interactions that are useful as theoretical benchmarks. We
investigate uncertainties arising from the order-by-order convergence in both many-body perturbation theory and
the chiral expansion. Including also variations in the resolution scale at which nuclear forces are resolved, we
provide new error bands on the equation of state, the isospin-asymmetry energy, and its slope parameter. We
find in particular that the inclusion of third-order diagrams reduces the theoretical uncertainty at low densities,
while in general the largest error arises from omitted higher-order terms in the chiral expansion of the nuclear
forces.
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I. INTRODUCTION

The nuclear isospin-asymmetry energy S(ρ), defined as the
difference between the energy per particle of homogeneous
neutron matter and symmetric nuclear matter at a given density
ρ, offers important links between the properties of terrestrial
nuclei and extreme astrophysical systems such as core-collapse
supernovae, neutron stars, and neutron star mergers [1–3].
Clarifying the experimental and theoretical uncertainties on the
isospin-asymmetry energy is therefore an important objective
in contemporary low-energy nuclear physics. Intermediate-
energy heavy-ion collision experiments [4–7] can access the
equation of state of nuclear matter at suprasaturation densities,
and modern theoretical methods such as chiral effective field
theory (EFT) [8–10] and the renormalization group [11,12]
allow for nuclear matter calculations with reliable uncertainty
estimates up to roughly ρ � 2ρ0, where ρ0 � 0.16 fm−3 is
the saturation density. These estimates are achieved through
systematic studies [13,14] of the order-by-order convergence
in the chiral power counting together with variations in the
resolution scale [15] and low-energy constants [16] in the
chiral two-body (2N ) and three-body (3N ) potentials. In
addition, the comparison of different perturbative [17–20]
and nonperturbative methods [21–27] for solving the nuclear
many-body problem starting from identical Hamiltonians can
give insight into additional sources of error. In all cases, both
theoretical and experimental uncertainty bands grow rapidly
with the density beyond ρ = ρ0. In the vicinity of nuclear
matter saturation density, microscopic calculations [28,29] of
the isospin-asymmetry energy S(ρ) and its slope parameter
L tend to lie just outside of the experimental band [30,31].
More detailed investigations of theoretical uncertainties may
therefore shed light on this discrepancy.

In the present work, we explore the role of third-
order perturbative contributions to the nuclear and neutron
matter equations of state as well as the effects of self-

consistent second-order single-particle energies. Numerous
works [18,19,32,33] have studied the importance of particle-
particle and hole-hole ladder diagrams at third-order, but the
third-order particle-hole diagram is often neglected due to its
more complicated momentum and spin recouplings when ex-
pressed in terms of partial waves, which significantly increase
the computational cost. In Ref. [20] it was found that the
third-order particle-hole diagram gives a contribution on the
order of |E(3)

ph (ρ0)| ∼ (1-2) MeV in symmetric nuclear matter
when computed from coarse-resolution chiral NN potentials
with momentum-space cutoffs � � 500 MeV. Third-order
contributions are expected to be less important in neutron
matter, which generally exhibits faster convergence [34,35]
in many-body perturbation theory, but to date no works
have computed all third-order diagrams in neutron matter
with three-body forces included. Moreover, single-particle
propagators are often treated at the (first-order) Hartree-Fock
level, which introduces a strong momentum dependence in the
mean-field potential that reduces the second- and third-order
diagrammatic contributions to the energy per particle by up to
30% and 50%, respectively, at nuclear matter saturation den-
sity. However, it is well known [16,36,37] that second-order
perturbative contributions to the nucleon self-energy in nuclear
matter from two-body forces [38] reduce the momentum
dependence of the single-particle potential in the vicinity of
the Fermi surface. A conservative estimate of this uncertainty
can therefore be obtained by employing both a free-particle
spectrum and a Hartree-Fock spectrum [33]. An additional
aim of the present work is to reduce this significant source of
uncertainty.

We employ as a starting point realistic NN potentials at
different orders {(q/�χ )2,(q/�χ )3,(q/�χ )4} in the chiral
expansion, corresponding to next-to-leading order (NLO),
next-to-next-to-leading order (N2LO), and next-to-next-to-
next-to-leading order (N3LO). The short-range contact terms
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are fitted to elastic nucleon-nucleon scattering phase shifts and
deuteron properties, while the intermediate- and long-range
interactions are determined uniquely by one- and multi-pion
exchange processes constrained by chiral symmetry. We
vary the momentum-space cutoff �, which sets the scale
at which nuclear forces are resolved, over the range � �
(400-500) MeV [39–41], which is suitable for many-body
perturbation theory calculations of the energy density. We
include as well the chiral three-nucleon force at order (q/�χ )3,
which is fitted to the binding energy and β-decay lifetime of
3H [13]. Extension to a consistent treatment at order (q/�χ )4

requires the refitting of the cD and cE low-energy constants,
which is currently a work in progress. In the following we refer
to this partly incomplete treatment at order (q/�χ )4 as N3LO*.
The coarse-resolution chiral potentials employed in the present
work have also been used to study the response functions
of neutron matter [42] as well as numerous thermodynamic
properties of symmetric nuclear matter and neutron matter [43]
(for recent reviews see Refs. [44,45]).

The present paper is organized as follows. In Sec. II we
outline the calculation of the ground-state energy density
of symmetric nuclear matter and pure neutron matter at
third-order in perturbation theory, including self-consistent
single-particle spectra. As a benchmark for the complicated
partial-wave decomposition of the third-order particle-hole
ring diagram for realistic NN potentials, we present semi-
analytic results for the direct terms from central and tensor
model-type interactions. In Sec. III we present a comprehen-
sive study of the theoretical uncertainties for the equation of
state of symmetric nuclear matter and pure neutron matter.
We extract the isospin-asymmetry energy S0 and its slope
parameter L at saturation density, including also the results
from nuclear forces at NLO and N2LO in the chiral power
counting. Furthermore, the third-order particle-hole diagrams
from an S-wave contact interaction (with two parameters as

and at ) allow us to examine the commonly used quadratic
approximation in the isospin-asymmetry. We end with a
summary and conclusions.

II. ENERGY PER PARTICLE AT THIRD ORDER
IN PERTURBATION THEORY

The first-, second-, and third-order perturbative contribu-
tions to the energy density of nuclear (or neutron) matter are
shown diagrammatically in Fig. 1. The wavy line represents the
(antisymmetrized) density-dependent NN interaction as given
by the sum of the free-space NN potential and the in-medium
NN interaction derived from the N2LO chiral three-nucleon
force. The latter is obtained by closing two external legs and
summing over the filled Fermi sea of (free) nucleons [16,46].
The method is equivalent to constructing a normal-ordered
Hamiltonian with respect to the noninteracting ground state
and neglecting the residual three-body contribution [47]. This
approximation has been improved in other works by including
three-body forces at N3LO [48] and by keeping the residual
three-body force after normal ordering [33,49]. The first-,
second-, and third-order contributions to the energy density
ρE (with ρ being the density and E the energy per particle)

(a) ( )

(c) (d) (

b

e)

FIG. 1. First-, second-, and third-order diagrammatic contri-
butions to the ground-state energy density of isospin-symmetric
nuclear matter and pure neutron matter from the (effective) chiral
two-nucleon potential described in the text. The wavy line includes the
(antisymmetrized) density-dependent NN interaction derived from
the chiral three-body force at N2LO.

are given by

ρE(1) = 1

2

∑
12

n1n2
〈
12

∣∣(V NN + V
med
NN/3

)∣∣12
〉
, (1)

ρE(2) = −1

4

∑
1234

|〈12|V eff|34〉|2 n1n2n̄3n̄4

e3 + e4 − e1 − e2
, (2)

ρE(3)
pp = 1

8

∑
123 456

〈12|V eff|34〉〈34|V eff|56〉〈56|V eff|12〉

× n1n2n̄3n̄4n̄5n̄6

(e3 + e4 − e1 − e2)(e5 + e6 − e1 − e2)
, (3)

ρE
(3)
hh = 1

8

∑
123 456

〈12|V eff|34〉〈34|V eff|56〉〈56|V eff|12〉

× n̄1n̄2n3n4n5n6

(e1 + e2 − e3 − e4)(e1 + e2 − e5 − e6)
, (4)

ρE
(3)
ph = −

∑
123 456

〈12|V eff|34〉〈54|V eff|16〉〈36|V eff|52〉

× n1n2n̄3n̄4n5n̄6

(e3 + e4 − e1 − e2)(e3 + e6 − e2 − e5)
, (5)

where nj = θ (kf − | �pj |) is the (steplike) distribution function,
n̄j = 1 − nj , and V = V − P12V is the (Fierz) antisym-
metrized NN potential, with P12 being the exchange-operator
in spin-, isospin-, and momentum-space. The effective NN
potential is given by the sum Veff = VNN + V med

NN . Note that the
third-order particle-particle and hole-hole Goldstone diagrams
have a symmetry factor of 1

8 = 1
23 arising from three pairs of

equivalent lines, while the third-order particle-hole diagram
has no equivalent pairs of lines and consequently an overall
symmetry factor of 1.

The third-order particle-particle and hole-hole contribu-
tions can be straightforwardly decomposed in terms of partial-
wave matrix elements of V and written as integrals over
the relative momenta of the interacting nucleons. The third-
order particle-hole contribution, on the other hand, is more
conveniently calculated by integrating over the individual
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FIG. 2. Four ring diagrams representing the third-order particle-
hole contribution, organized according to the number of direct and
exchange interactions. Diagrams (a), (b), (c), and (d) have 0, 1, 2, and
3 exchange interactions, respectively.

particle-momenta, which however leads to more complicated
expressions when written in terms of partial-wave matrix
elements. We therefore provide semianalytical expressions for
several of the third-order particle-hole ring diagrams from
model-type interactions, which are useful to benchmark the
results of extensive numerical calculations. We begin by
decomposing the third-order particle-hole ring contribution
into four parts, shown in Fig. 2, according to the number
of direct (dir) and exchange (exch) interactions. We denote
diagram (a) in Fig. 2 as the dir3 term, diagram (b) as
the dir2 · exch term, diagram (c) as the dir · exch2 term,
and diagram (d) as the exch3 term. We have computed all
contributions (a)–(d) for various model-type interactions and
one-pion exchange, but the parts involving multiple exchange
terms lead to very lengthy expressions, and for brevity we
present the semianalytic results here only for diagrams (a) and
(b) in Fig. 2.

We consider first a scalar isoscalar boson-exchange inter-
action of the form

Vdir(q) = − g2

m2 + q2
, (6)

with q being the momentum transfer. The contribution to the
energy per particle E(ρ) of symmetric nuclear matter from

diagram (a) = dir3/6 is given by

E(ρ)(a) = − g6M2

32π7kf

∫ ∞

0
ds

∫ ∞

0
dκ

[
Q0(s,κ)

s2 + β

]3

, (7)

where M is the nucleon mass, β = m2/4k2
f , and the Fermi

momentum is related to the density by ρ = 2k3
f /3π2. The

(Euclidean) polarization function Q0(s,κ), arising from an
individual nucleon ring in diagram (a) of Fig. 2, has the
following analytical form:

Q0(s,κ) = s − sκ arctan
1 + s

κ
− sκ arctan

1 − s

κ

+ 1

4
(1 − s2 + κ2) ln

(1 + s)2 + κ2

(1 − s)2 + κ2
. (8)

The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = −dir2 · exch/2 can be
represented by a sixfold integral:

E(ρ)(b) = 6g6M2

(2π )7kf

∫ ∞

0
ds

∫ ∞

0
dκ

∫ 1

0
dl1

∫ 1

0
dl2

∫ l1

−l1

dx

×
∫ l2

−l2

dy
l1l2 Q0(s,κ) (s2 + β)−2

[(s + x)2 + κ2][(s + y)2 + κ2]

× {
[(s + x)(s + y) − κ2]

×W−1/2
a + [(s + x)(s + y) + κ2]W−1/2

b

}
, (9)

with the auxiliary functions Wa = [4β + l2
1 + l2

2 − 2xy]2 −
4(l2

1 − x2)(l2
2 − y2) and Wb = [4β + l2

1 + l2
2 + 4s(s + x +

y) + 2xy]2 − 4(l2
1 − x2)(l2

2 − y2).
For a modified pseudoscalar isovector boson-exchange

interaction of the form

Vdir = −g2 �τ1 · �τ2
�σ1 · �q �σ2 · �q
(m2 + q2)2

, (10)

the contribution to the energy per particle of symmetric nuclear
matter from diagram (a) = dir3/6 reads

E(ρ)(a) = − 3g6M2

32π7kf

∫ ∞

0
ds

∫ ∞

0
dκ

[
s2Q0(s,κ)

(s2 + β)2

]3

. (11)

The contribution to the energy per particle of symmetric
nuclear matter from diagram (b) = −dir2 · exch/2 is on the
other hand given by

E(ρ)(b) = 18g6M2

(2π )7kf

∫ ∞

0
ds

∫ ∞

0
dκ

∫ 1

0
dl1

∫ 1

0
dl2

∫ l1

−l1

dx

∫ l2

−l2

dy
l1l2s

4 Q0(s,κ) (s2 + β)−4

[(s + x)2 + κ2][(s + y)2 + κ2]

(
[(s + x)(s + y) − κ2]

× [
4β

(
l2
1 + l2

2 − 2x2 − 2y2 + 2xy
) + (

l2
1 − l2

2 − 2x2 + 2xy
)(

l2
1 − l2

2 + 2y2 − 2xy
)]

W−3/2
a + [(s + x)(s + y) + κ2]

× {
4β

[
l2
1 + l2

2 − 4s(s + x + y) − 2x2 − 2y2 − 2xy
] + [

l2
1 − l2

2 − 4s(s + x + y) − 2x(x + y)
]

× [
l2
1 − l2

2 + 4s(s + x + y) + 2y(x + y)
]}

W
−3/2
b

)
. (12)

In Fig. 3 we compare the sum of all four contributions,
(a) + (b) + (c) + (d), to the third-order particle-hole diagram

in symmetric nuclear matter from the two test interactions in
Eqs. (6) and (10) employing both a partial-wave decomposition
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FIG. 3. The density dependence of the third-order particle-hole
contribution to the ground-state energy per particle, E, of symmetric
nuclear matter from the scalar-isoscalar test interaction in Eq. (6) and
the modified pseudoscalar-isovector test interaction in Eq. (10). The
contribution from the latter is multiplied by −1 for better clarity in
the figure. The results of numerical calculations based on a partial-
wave decomposition are shown together with semi-analytic results
involving only multidimensional integrals.

(used in Sec. III below for realistic chiral two- and three-
nucleon forces) and a semianalytic evaluation. The boson
mass is taken to be m = 500 MeV for both interactions and
the coupling constant is chosen to be g = 5. For the modified
pseudoscalar-isovector force model, labeled Vps,iv in Fig. 3, we
have changed the overall sign of the interaction to more easily
differentiate the two terms in the figure. We see from Fig. 3
that the two sets of calculations agree almost perfectly. In the
case of the scalar-isoscalar test interaction, large cancellations
among the four terms computed with the semianalytic method
result in numerical noise on the order of (4–8)% relative to the
results from the partial-wave decomposition. In comparison,
the two methods agree to within 1% across all densities for
the energy per particle of symmetric nuclear matter from
the modified isovector-pseudoscalar test interaction. A further
case to check our numerical calculations is given by the third-
order ring contributions from an S-wave contact interaction
of the form Vct = − π

M
[as + 3at + (at − as)�σ1 · �σ2]. Using the

polarization function Q0(s,κ) in Eq. (8) and integrating over
its cube, one finds for symmetric nuclear matter

E(ρ) = 1.04814
k5
f

π4M
(as + at )

(
5a2

s − 14asat + 5a2
t

)
(13)

and for pure neutron matter

En(ρn) = 2.79505
k5
n

π4M
a3

s , (14)

with kn being the neutron Fermi momentum related to the
neutron density by ρn = k3

n/3π2. For various choices of the
scattering lengths as and at , we reproduce these results with
an accuracy of 1% and better.

Until now we have assumed a free-particle spectrum for
the single-particle energies occurring in the denominators

0 0.5 1 1.5 2 2.5 3
p (fm

-1
)

-100

-50

0

50

100

150

200

250

e(
p)

 (
M

eV
)

p
2
/2M + Σ(1)

(p)

p
2
/2M*

0.66
 + Δ−65

p
2
/2M*

0.71
 + Δ−63

p
2
/2M*

0.75
 + Δ−61

p
2
/2M + Σ(1)

(p) + ReΣ(2)
(p,e(p))

FIG. 4. Nucleon single-particle energy in symmetric nuclear
matter at saturation density including the first-order �(1) and second-
order �(2) perturbative contributions to the self-energy. The effective
mass and energy shift parametrization is shown for three different
choices of the fitting region in momentum space, and the values of
the effective mass (M∗/M) and the energy shift � (in units of MeV)
are shown as subscripts.

of the second- and third-order perturbative contributions
to the equation of state. For calculations involving high-
precision chiral two- and three-body forces, it is convenient
to employ Hartree-Fock single-particle energies, which are
well approximated by the effective mass M∗ plus energy shift
� parametrization:

e(p) = p2

2M∗ + �, (15)

where � is independent of the momentum p. At the mean-field
level, the single-particle potential has a strong momentum
dependence that gives rise to nucleon effective masses in
the vicinity of M∗/M � 0.7 at nuclear matter saturation
density. This leads to a reduction of the second-order energy
contribution in Eq. (2) by roughly 30%. All third-order
contributions are likewise scaled by (M∗/M)2 � 0.5 at nuclear
saturation density. A second-order perturbative treatment of
the nucleon self-energy in symmetric nuclear matter, however,
gives rise to an effective mass that is itself strongly momentum
dependent, and the parametrization in Eq. (15) is no longer
valid. In particular, close to the Fermi momentum the effective
mass peaks at a value close to the free-space mass [36].
The associated uncertainty in the symmetric nuclear matter
equation of state at saturation density is on the order of
5 MeV [20] while for neutron matter the uncertainty is
2–3 MeV [19].

In Fig. 4 we show the nucleon single-particle energy in nu-
clear matter at saturation density calculated at the Hartree-Fock
level, e(p) = p2/2M + �(1)(p), together with three different
effective mass plus energy shift parametrizations fitted over
the ranges in momentum: p < 2.0 fm−1, p < 2.5 fm−1, and
p < 3.0 fm−1. The subscripts on the M∗ and � terms refer
to the values of (M∗/M) and � (in units of MeV). The
momentum dependence of the single-particle energy at the
Hartree-Fock level remains nearly quadratic, but we observe
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that the values of M∗/M and � depend on the choice of the
fitting region.

In Sec. III below, we compute the single-particle energies
in Eqs. (2)–(5) self-consistently at second-order:

e(p) = p2

2M
+ �(1)(p) + Re �(2)(p,e(p)). (16)

The Hartree-Fock contribution, �(1)(p), to the nucleon self-
energy in nuclear matter depends only on the momentum and is
manifestly real. The second-order contribution, �(2)(p,e(p)),
is in general complex and energy dependent. In practice
Eq. (16) is solved iteratively until a converged solution is
reached. The inclusion of a density-dependent two-body force
derived from the leading chiral three-body force requires
an additional symmetry factor of 1/2 in the Hartree-Fock
contribution �(1)(p). For additional computational details we
refer the reader to Refs. [50,51]. We show in Fig. 4 the
nucleon single-particle energy in symmetric nuclear matter
including also the second-order contribution �(2)(p,e(p)) to
the self-energy. In contrast to the Hartree-Fock approximation,
the momentum dependence of the single-particle energy is no
longer approximately quadratic.

The nucleon self-energy in infinite nuclear matter is
related to the volume components of the nucleon-nucleus
optical potential probed in elastic scattering experiments.
If Refs. [50,51] we employed low-momentum chiral two-
and three-body forces at second-order in perturbation theory
and found very good agreement with the isoscalar and
isovector real components of the optical potential compared to
phenomenology [52–54] for energies E � 200 MeV.

III. RESULTS

In this section we calculate the energy per particle of
symmetric nuclear matter and pure neutron matter at third-
order in perturbation theory with self-consistent single-particle
energies at second-order. Our aim is to provide improved
theoretical error estimates on the equations of state E(ρ)
and En(ρn), the density-dependent symmetry energy S(ρ),
and the slope parameter L of the symmetry energy. We
account for theoretical uncertainties arising from the con-
vergence in perturbation theory, the choice of resolution
scale, and the omission of higher-order terms in the chiral
expansion.

We begin with the equation of state of symmetric nuclear
matter at first-order in perturbation theory, shown in Fig. 5
as a function of density for three different chiral potentials
with momentum-space cutoffs of � = (414, 450, 500) MeV.
Each of the N3LO two-nucleon forces are supplemented with a
density-dependent NN interaction constructed from the N2LO
three-body force, whose low-energy constants cD and cE are
fitted to the binding energy and lifetime of the triton. In
Table I we also show the specific values of the first-order
contribution (in units of MeV) at nuclear matter saturation
density ρ0. For comparison the noninteracting Fermi gas
contribution [i.e., the kinetic energy Ekin(ρ) = 3k2

f /10M] at
this density is Ekin = 22.1 MeV. At the mean-field level there
is a large uncertainty associated with the choice of resolution
scale, a feature observed already in Ref. [15]. However,

0 0.05 0.1 0.15 0.2 0.25
ρ (fm

-3
)
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M
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)

Chiral_414 (1st)
Chiral_450 (1st)
Chiral_500 (1st)

FIG. 5. First-order diagrammatic contribution to the energy per
particle of symmetric nuclear matter from N3LO* chiral two- and
three-nucleon forces defined at different resolution scales: � = (414,
450, 500) MeV.

the error band at this order in the perturbative expansion
does not pass through the empirical saturation point at
ρ0 = 0.16 fm−3 and E(ρ0) = −16 MeV, and therefore varying
the resolution scale over the range typically chosen in
constructing chiral potentials does not encompass the full
theoretical uncertainty.

The results for the equation of state of symmetric nuclear
matter including second-order perturbative contributions are
shown in Fig. 6. We consider both a Hartree-Fock spectrum
(labeled “2nd HF”) for the intermediate-state energies and
a self-consistent second-order approximation (labeled “2nd
SC”). As expected, the latter leads to additional attraction
resulting from a reduced momentum-dependence of the single-
particle potential. The differences between the second-order
contributions with a HF and a SC spectrum reach up to
(2–3) MeV for densities below ρ = 0.25 fm−3, a feature that
is largely independent of the choice of resolution scale. In
Table I we show the specific values at nuclear matter saturation
density and include also the results, labeled E(2), employing
a free-particle spectrum. By comparing the magnitude of

TABLE I. The contribution to the energy per particle E(ρ0) of
symmetric nuclear matter from the first-, second-, and third-order
perturbation theory diagrams employing chiral two- and three-
nucleon forces. For the second-order contribution we list the values
using a free single-particle spectrum, E(2), a Hartree-Fock spectrum,
E(2HF), and self-consistent single-particle energies at second-order,
E(2SC). All values are in units of MeV and the noninteracting
contribution (not included) is Ekin = 22.1 MeV.

E(2) E(3)

� E(1) E(2) E(2HF) E(2SC) E(3SC)
pp E

(3SC)
hh E

(3SC)
ph

414 − 30.1 − 11.0 − 7.9 − 9.7 0.8 − 0.3 − 0.3
450 − 25.9 − 15.9 − 11.5 − 13.2 1.0 − 0.2 − 1.5
500 − 19.5 − 18.7 − 13.3 − 15.7 2.2 − 0.1 − 2.1
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FIG. 6. The equation of state of symmetric nuclear matter at
second- and third-order in many-body perturbation theory from
N3LO* chiral two- and three-body forces. Both a Hartree-Fock
(HF) spectrum and a self-consistent (SC) second-order single-particle
spectrum were employed for the three chiral potentials with different
momentum-space regulator scales.

the second-order contributions E(2SC) to the leading-order
Hartree-Fock contributions E(1) at nuclear matter saturation
density, we observe an improved convergence pattern as
the momentum-space cutoff � is lowered. At second-order
in perturbation theory, the error estimate obtained through
varying the cutoff scale now encompasses the empirical
saturation point.

The third-order contributions to the energy per particle
of symmetric nuclear matter, with single-particle energies
computed self-consistently at second-order, are shown in Fig. 6
and labeled “3rd SC.” We observe that taken together the
three contributions E(3)

pp , E
(3)
hh , and E

(3)
ph give rise to additional

attraction at both low and high densities. In particular, for
densities less than ρ � 0.08 fm−3, where a spinodal instability
is expected [55], the third-order terms cannot be neglected.
At and above saturation density, the perturbation theory
expansion appears to be better converged, though generically
both repulsive particle-particle and attractive particle-hole
contributions are individually on the order of (1–3) MeV.
In Table I we show the values of the three third-order
contributions at nuclear matter saturation density including
self-consistent second-order single-particle energies, for each
of the three chiral potentials considered in this section. Given
the systematic cancellations that occur between the third-order
particle-particle and particle-hole diagrams (independent of
resolution scale �), we suggest that these terms should be
included together or not at all. From Fig. 6 we see that the
largest source of theoretical uncertainty comes from the choice
of resolution scale, as was found previously in Ref. [13]. The
empirical saturation point is nearly at the central value of the
error band, but there remains a �E � 6 MeV uncertainty in
the energy per particle at ρ = ρ0.

We next consider the equation of state of pure neutron
matter from chiral two- and three-nucleon forces at order
N3LO*. In Fig. 7 we show the results at first-, second-,

0 0.05 0.1 0.15 0.2 0.25
ρ

n
 (fm

-3
)

0

10

20

30

40

E
n (

M
eV

)

Chiral_414 (1st)
Chiral_450 (1st)
Chiral_500 (1st)
Chiral_414 (2nd SC)
Chiral_450 (2nd SC)
Chiral_500 (2nd SC)
Chiral_414 (3rd SC)
Chiral_450 (3rd SC)
Chiral_500 (3rd SC)

FIG. 7. Neutron matter equation of state at first-, second-, and
third-order in many-body perturbation theory from N3LO* chiral
two- and three-nucleon forces. For both the second- and third-
order contributions, the nucleon self-energies are computed self-
consistently (SC) at second-order. Results are shown for chiral
potentials constructed with a range of momentum-space cutoffs:
� = (414,450,500) MeV.

and third-order in perturbation theory from chiral potentials
with momentum-space cutoffs � = (414,450,500) MeV. At
leading-order in perturbation theory there is again a large
dependence on the choice of resolution scale, but at both
second- and third-order the variations are about �En � 2 MeV
at ρn = 0.16 fm−3 and �En � 3 MeV at ρn = 0.25 fm−3. The
inclusion of the third-order diagrams has relatively little effect
for the chiral potentials with � = 414 MeV and 450 MeV,
which we see give nearly identical equations of state at each
order in perturbation theory across all densities considered.
In contrast, the equation of state from the � = 500 MeV
potential receives important contributions at low densities that
significantly reduce the scale dependence. In fact, for densities
up to ρn � 0.10 fm−3, all N3LO* chiral potentials give a nearly
unique neutron matter equation of state. At higher densities the
third-order contributions do not reduce the scale dependence
in any meaningful way.

Theoretical uncertainties on the neutron matter equation of
state estimated from the convergence pattern of many-body
perturbation theory and variations in the resolution scale are
relatively small. The error estimates on the density-dependent
isospin-asymmetry energy, defined as the difference S(ρ) =
En(ρ) − E(ρ), are correspondingly tight, similar to what has
already been reported in previous studies with microscopic
two- and three-body forces [28,29], which predict values of
the isospin-asymmetry energy and the slope parameter that
lie just outside of the experimental uncertainty band [30,31].
To better understand this discrepancy we consider now the
errors due to neglected higher-order contributions in the
chiral expansion. In particular, three- and four-body forces
at N3LO are neglected in the present treatment as well as
N4LO two- and many-body forces. The two-body forces
at N4LO have been shown to improve significantly in
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FIG. 8. Order-by-order convergence pattern of the neutron matter
equation of state from NLO, N2LO, and N3LO* chiral two-
and three-body potentials at third-order in many-body perturbation
theory with self-consistent second-order single-particle energies. Two
momentum-space cutoffs were chosen: � = 450 MeV and 500 MeV.

particular the NN -scattering phase shifts in F and G partial
waves [56].

We show in Fig. 8 the equation of state calculated at third-
order in perturbation theory from the NLO, N2LO, and N3LO*
chiral potentials with two choices of the momentum-space
regulating scale: � = 450 MeV and 500 MeV. In all cases the
low-energy constants in the chiral two-body force are refit-
ted [41] as a function of � to NN -scattering phase shifts and
deuteron properties. As originally observed in Ref. [13] there
is a large change from NLO to N2LO and also from N2LO to
N3LO*, indicating that neglected contributions may be a very
significant source of theoretical uncertainty. Comparing the
ratio of differences R�

4 = (E(4)
n − E(3)

n )/(E(3)
n − E(2)

n ) for the
two sets of chiral potentials, where E(i)

n is the neutron matter
energy per particle at order (q/�χ )i , we find that R450

4 � 0.4
and R500

4 � 0.8 for all but the lowest densities.
In Fig. 9 we show a comprehensive theoretical uncertainty

estimate for the neutron matter equation of state that accounts
for errors due to truncations in many-body perturbation theory,
missing terms in the chiral effective field theory expansion, and
the choice of resolution scale. The largest source of error in
the present analysis is estimated to arise from missing higher-
order contributions in chiral EFT. We have used the values
of R450

4 and R500
4 to calculate associated error bands on the

N3LO* equations of state according to E�
N3LO∗ ± R�

4 (E(4)
n −

E(3)
n ). In the case of the N3LO* chiral potential with � =

500 MeV, the lower band on the equation of state computed
according to the above prescription would be well below even
NLO results which include no repulsive three-body forces.
We therefore limit the lower band of the uncertainty estimate
by the scale dependence error, namely, E500

N3LO∗ − (E450
N3LO∗ −

E500
N3LO∗)/2. In comparison to a recent calculation [33] of the

neutron matter equation of state and associated uncertainty
estimate, our results exhibit a smaller theoretical error at low
densities but comparable uncertainties beyond ρ = ρ0. The
reduction in the low-density error is directly attributed in the
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FIG. 9. Theoretical uncertainty estimate for the neutron matter
equation of state from chiral effective field theory, including errors
arising from the convergence in many-body perturbation theory,
missing terms in the chiral expansion, and choice of resolution scale.

present calculation to the inclusion of third-order perturbative
contributions.

Theoretical predictions for the isospin-asymmetry energy
and its density dependence can be extracted directly from
our equations of state of symmetric nuclear matter and pure
neutron matter. However, due to the large uncertainties in
the symmetric matter equation of state, it is more reliable
to instead expand about the known empirical saturation point
at ρ0 = 0.16 fm−3 and E(ρ0) = −16 MeV. We consider the
three neutron matter equations of state calculated at third-order
in perturbation theory employing N3LO* chiral two- and
three-body potentials. We include as well the minimum and
maximum on the uncertainty band shown in Fig. 9. This gives
a total of five neutron matter equations of state from which
we extract the isospin-asymmetry energy at saturation density,
S0 = S(ρ0), and the associated slope parameter,

L = 3ρ0
∂S(ρ)

∂ρ

∣∣∣∣
ρ0

. (17)

In Fig. 10 we show the correlation between L and S0

computed from NLO, N2LO, and N3LO* chiral two- and
three-body forces at third-order in many-body perturbation
theory. The error bars on individual points are obtained by
varying the saturation density between ρ0 = 0.155 fm−3 and
0.165 fm−3, keeping the saturation energy fixed at E(ρ0) =
−16 MeV. The two LO results from the chiral potentials
with � = 450 MeV and 500 MeV are shown in black
and give the lowest values of both S0 and L in the range
26 MeV < S0 < 29 MeV and 15 MeV < L < 25 MeV. The
NLO results are shown in blue and give the largest values of the
isospin-asymmetry energy and its slope parameter: 34 MeV <
S0 < 36 MeV and 70 MeV < L < 80 MeV. Finally, the five
equations of state at N3LO* give the S0 and L values shown
in red, which are in very good agreement with the results from
previous microscopic calculations [28,29].

In Fig. 10 we have also drawn S0 vs L correlation ellipses
at the 95% confidence level including only the N3LO* results
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FIG. 10. 95% confidence bands for the S0 vs L correlation at
order N3LO* from chiral two- and three-nuclear forces (shown in
red) and including also the NLO (gray) and N2LO (blue) points.

(shown in red) as well as including the values of S0 and L
from the NLO and N2LO equations of state. From the N3LO*
correlation ellipse we infer a value of the isospin-asymmetry
energy in the range 28 MeV < S0 < 35 MeV and a slope
parameter in the range 20 MeV < L < 65 MeV. The upper
and lower data points in the N3LO* band come from including
the uncertainty due to missing physics, which effectively
introduces an additional error in the theoretical prediction of
the isospin-asymmetry energy on the order of �S0 = ±2 MeV.
For the slope parameter, the effect of missing physics is to
extend the theory prediction by about �L = ±10 MeV. More
conservative estimates on the S vs L correlation are obtained
by replacing the upper and lower N3LO* points by those
from the NLO and N2LO equations of state, and the resulting
correlation ellipses are shown in gray and blue in Fig. 10.
The parameters associated with the three correlation ellipses
are given in Table II. Remarkably the inclusion of NLO and
N2LO equations of state modifies only slightly the inclination
angle of the correlation ellipse, indicating a robust uncertainty
estimate.

In passing we note that the analytical calculation of the
third-order ring diagrams from an S-wave contact interaction

TABLE II. Parameters of the S vs L correlation ellipses (at 95%
confidence level) obtained at order N3LO* and including also the
NLO and N2LO points. The center values are labeled S0 and L0, the
semimajor and semiminor axes are labeled a and b, and the inclination
angle is labeled θ .

S0 (MeV) L0 (MeV) a (MeV) b (MeV) tan θ

N3LO* 31.3 41.9 22.2 0.64 6.37
N2LO − N3LO∗ 32.3 50.0 36.0 0.86 7.32
NLO − N3LO∗ 31.5 44.8 44.5 1.10 6.91

Vct = − π
M

[as + 3at + (at − as)�σ1 · �σ2] provides also a check
on the validity of the (commonly used) quadratic approxima-
tion in the isospin-asymmetry δ = (ρn − ρp)/ρ. Introducing
a pn-mixed polarization function and expanding all occurring
terms up to order δ2, one finds the following exact expression
for the quadratic isospin-asymmetry energy:

S2(ρ) = k5
f

π4M

(
3.5124 a3

s + 11.092a2
s at

+ 10.137asa
2
t − 5.1014a3

t

)
. (18)

On the other hand the difference between the neutron matter
and the nuclear matter energy per particle [see Eqs. (13)
and (14)] gives

En(ρ) − E(ρ) = k5
f

π4M

(
3.6330a3

s + 9.4333a2
s at

+ 9.4333asa
2
t − 5.2407a3

t

)
. (19)

One observes that the numerical coefficients of the cubic
terms a3

s,t agree within 3%, whereas those of the interference
terms are underestimated by 7% and 15% in the quadratic
approximation. Moreover, when continuing the expansion in
δ further one encounters a nonanalytical term of the form
δ4 ln |δ|. It has also been found in a second-order calculation
with Vct in Ref. [57].

IV. SUMMARY AND CONCLUSIONS

We have computed the equation of state of symmetric
nuclear matter and pure neutron matter including all dia-
grams of many-body perturbation theory up to third-order
with intermediate-state energies calculated self-consistently
at second-order. We have derived semi-analytical results for
the third-order particle-hole ring diagrams from model-type
interactions that provide valuable benchmarks for numerical
calculations based on a partial-wave decomposition. We
then employed realistic chiral two- and three-nucleon forces
constructed at different orders in the chiral expansion together
with a range of momentum-space cutoffs � to compute the
energy per particle of symmetric matter and pure neutron
matter, E(ρ) and En(ρn). The main motivation is to provide
improved theoretical uncertainty estimates on the isospin-
asymmetry energy S0 at saturation density and its associated
slope parameter L. We find that the convergence in many-body
perturbation theory for the neutron matter equation of state
is well under control at third-order, and variations due to
the choice of resolution scale are also relatively small up
to ρ = 0.25 fm−3. The largest theoretical uncertainty comes
from higher-order contributions in the chiral expansion, which
we estimate by comparison of the equations of state from
NLO and N2LO chiral potentials. The derived correlation
bands between S0 and L can be used in updated global
analyses of the density-dependent isospin-asymmetry energy
S(ρ).
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