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Spin-orbit splitting is an essential ingredient for our understanding of the shell structure in nuclei. One of the
most important advantages of relativistic mean-field (RMF) models in nuclear physics is the fact that the large
spin-orbit (SO) potential emerges automatically from the inclusion of Lorentz-scalar and -vector potentials in the
Dirac equation. It is therefore of great importance to compare the results of such models with experimental data.
We investigate the size of 2p and 1f splittings for the isotone chain 40Ca, 38Ar, 36S, and 34Si in the framework of
various relativistic and nonrelativistic density functionals. They are compared with the results of nonrelativistic
models and with recent experimental data.
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I. INTRODUCTION

Self-consistent mean-field models in the framework of
nuclear density functional theory provide a very successful
way to study nuclear structure phenomena throughout the
entire nuclear chart. The nucleons are treated as independent
particles moving inside the nucleus under the influence of
various potentials, derived from such functionals [1]. These
methods are similar to those used in electronic systems
where the form of the density functionals can be deduced
ab initio from the well-known Coulomb force between the
electrons [2,3]. Contrary to that, at present, the nuclear
density functionals are constructed phenomenologically. The
form of those functionals is motivated by the symmetries of
the underlying basic theories. The parameters of the model,
however, are adjusted to experimental data in finite nuclei.

Within the concept of density functional theory, the full
quantum-mechanical nuclear many-body problem is mapped
onto a single-particle problem, assuming that the exact ground
state of the A-body system is determined by a Slater deter-
minant and the corresponding single-particle density matrix
generated from the products of A single-particle states. By
imposing a variation principle on the energy functional with
respect to this density one derives the equations of motion of
the independently moving nucleons. The specific form of the
phenomenological density functional leads to a certain form
of the mean field.

There are two general versions of this theory. The standard
since almost fifty years ago are nonrelativistic functionals. The
most widely known forms are the Skyrme-type functionals,
based on zero-range interactions [4] and the Gogny-type
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functionals of finite-range interactions [5]. Later on, covariant
density functionals were introduced. Their relativistic form is
based on the simple model of Walecka [6,7] and its density
dependence was introduced by nonlinear meson couplings by
Boguta and Bodmer [8].

Both relativistic and nonrelativistic models have been very
successful in describing bulk and structure properties of nuclei
all along the beta stability line giving very similar results.
However, going to nuclei close to the drip line with high
isospin values there were significant differences in measuring
special quantities. A characteristic case has been the failure
of the standard Skyrme functionals used at the time to
reproduce the observed kink in the radii difference of the
chain of Pb isotopes, whereas relativistic functionals were very
successful at reproducing it [9]. It was afterwards recognized
that this qualitatively distinct result was due to the different
way the two methods treat the spin-orbit interaction. In the
Skyrme–Hartree–Fock (SHF) models the large spin-orbit in
nuclei, which is known since the early days of the shell model
[10,11], is included phenomenologically in the form of the
functional with an additional parameter that has to be adjusted
to the experimental data. In contrast, the covariant treatment
gives rise to the very large spin-orbit coupling in a natural
way. It has its origin in the fact that the nuclear Dirac equation
contains a very large attractive scalar field and a very large
repulsive vector field. For the normal potential these two fields
compensate to a large extent, but their effects add up in the
spin-orbit term [12,13].

In all the conventional nonrelativistic models the spin-orbit
term is derived from a two-body spin-orbit interaction of
zero range [4,5,14]. The corresponding Fock term leads to
a strong isospin dependence of the spin-orbit splitting. This is
the origin of the failure to reproduce the kink in the isotopic
shifts mentioned above. In covariant models the spin-orbit
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splitting is a single-particle effect, derived directly from the
Dirac equation. Its isospin dependence is given by the ρ meson.
Its strength is determined by the symmetry energy and it leads
usually only to a weak isospin dependence [6,12]. The use of
an additional scalar isovector δ meson does not change very
much this situation, because the contributions of the isovector
mesons to the spin-orbit term are small as compared with the
contributions of the isoscalar mesons [15].

Of course the strong isospin dependence of the spin-
orbit term in conventional nonrelativistic density functionals
introduced by the Fock term can be avoided if the assumption
is given up that the density functional is derived as the
expectation value of an effective Hamiltonian which leads
inevitably to exchange terms. Therefore, subsequent efforts
to correct for this result have led to modified Skyrme schemes
where the strength of the Fock term in the functional is
used as a fit parameter [16,17]. In this way an extension of
the Skyrme functional was proposed [17], reproducing also
the evolution of the nuclear radius with neutron number N for
the isotope series of Pb and Ca. The resulting functionals were
able to correct for the initial failure by changing the density
dependence of the neutron spin-orbit potential.

Another example for the differences of the models in the
spin-orbit part was observed in Ref. [18]. It was found out that,
in the framework of relativistic mean-field theory, there was
a significant reduction in the spin-orbit potential in light drip
line nuclei that have a large isospin value. This had an effect
on the energy splittings of the same spin-orbit partners which
were reduced for isotopes of Ne and Mg with the increase of
neutron number. Again it was shown that a modification of the
spin-orbit term in Skyrme has results similar to those of the
relativistic mean-field.

There has been lately a renewed interest in experimental
studies concerning the spin-orbit part of the nuclear force.
In particular, two specific experiments [19,20] were recently
published, where the structure of the N = 20 nucleus 34Si
nucleus is investigated. The reason why this particular nucleus
was chosen is its unique bubble structure, unveiled in earlier
theoretical calculations [21] using both relativistic and nonrel-
ativistic models. This bubble structure implies that there is a
large central depletion in the proton density, which is due to
the fact that the 2s1/2 proton state is essentially empty. This is
exactly what it was shown this time experimentally in the very
recent study by Mutschler et al. [20], where they used the one
proton removal (−1p) method to probe the interior of the 34Si
nucleus and to show that the 2s1/2 is indeed empty.

Following, therefore, the identification of 34Si as a bubble
nucleus [21], a very specific experiment by Burgunder et al.
[19] was conducted to attempt to set an additional constraint
on the strength of the spin-orbit force. Comparing these results
with earlier experiments on nuclei within the N = 20 isotone
chain, such as in Refs. [22,23], one was able to evaluate a
reduction in the 2p3/2-2p1/2 splitting. This effect has been
attributed to the occurrence of a bubble in the central proton
density as one advances from 36S to 34Si. This is analogous to
the case discussed in Ref. [18] where the addition of neutrons
in Ni and Sn isotopes leads to the weakening of the spin-
orbit potential and to a subsequent reduction of the size of the
spin-orbit splitting of the neutron subsystem. Therefore, it has

been suggested that this kind of specific measurement could
work complementary to the aforementioned theoretical studies
in order to investigate further the spin-orbit force in various
mean-field models.

There has already been a study within the nonrelativistic
mean-field approach [24] where the 2p and 1f neutron spin-
orbit splittings in the N = 20 isotones 40Ca, 36S, and 34Si have
been analyzed for various Skyrme and Gogny functionals.
Inspired by this work, we carried out an investigation within
self-consistent covariant density functional theory describing
the same nuclei as well as 38Ar. Concentrating on the first
1f7/2, 2p3/2, 2p1/2, and 1f5/2 neutron states, we calculated
the SO splittings of the 2p and 1f orbitals and compared
them with the corresponding nonrelativistic and experimental
results. Our goal is to examine whether the different treatments
of the spin-orbit force in relativistic and nonrelativistic mean-
field models gives rise to significantly different results, as it has
been the case for the investigations mentioned above [9,17,18].

We first neglect pairing correlations, as it has been done in
the earlier nonrelativistic work of Ref. [24] and calculate the
single-particle energies in the relativistic Hartree model (RH)
based on several modern nonlinear and density-dependent
covariant density functionals. Afterwards we go beyond these
investigations in various aspects: we study the influence of
pairing correlations within the relativistic Hartree–Bogoliubov
(RHB) scheme, we include tensor forces in relativistic
Hartree–Fock (RHF) theory, and finally we go beyond mean
field and include particle-vibration coupling (PVC).

Our article is organized in the following way: In Sec. II we
present the theoretical methods and in Sec. III we introduce
specific extensions. Section IV is devoted to numerical details
of the calculations and in Sec. V we discuss the results of our
investigations. Section VI contains conclusions and an outlook
for future work.

II. THEORY

As described in Ref. [25] in the relativistic case nucleons are
treated as four-component Dirac spinors and the interaction is
mediated by the exchange of virtual mesons. The minimal set
of meson fields required to describe bulk and single-particle
nuclear properties have the following quantum numbers and
properties:

(i) σ meson: Jπ ,T = 0+,0, medium-range attraction;
(ii) ω meson: Jπ ,T = 1−,0, short-range repulsion;

(iii) ρ meson: Jπ ,T = 1−,1, isospin channel.

Inspired by ab initio calculations [26] one has introduced
in some models in addition an isovector scalar meson, the δ
meson [15]:

(iv) δ meson: Jπ ,T = 0+,1, isospin channel.

The model is defined by the Lagrangian density

L = LN + Lm + Lint. (1)

LN denotes the Lagrangian of the free nucleon,

LN = ψ̄(iγ μ∂μ − M)ψ, (2)
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where M is the bare nucleon mass and ψ denotes the Dirac
spinor. Lm is the Lagrangian of the free meson fields and the
electromagnetic field,

Lm = 1
2∂μσ∂μσ − 1

2m2
σ σ 2 + 1

2∂μ
�δ∂μ�δ − 1

2m2
δ
�δ 2

− 1
4
μν


μν + 1
2m2

ωωμωμ − 1
4

�Rμν
�Rμν + 1

2m2
ρ �ρμ �ρ μ

− 1
4FμνF

μν, (3)

with the corresponding masses mσ , mω, mρ , and 
μν , �Rμν ,
Fμν are the field tensors


μν = ∂μων − ∂νωμ,

�Rμν = ∂μ �ρν − ∂ν �ρμ, (4)

Fμν = ∂μAν − ∂νAμ.

The minimal set of interaction terms is contained in Lint:

Lint = −gσ ψ̄ψσ − gδψ̄ �τψ �δ
− gωψ̄γ μψωμ − gρψ̄ �τγ μψ · �ρμ − eψ̄γ μψAμ. (5)

where e vanishes for neutrons. It was recognized that this
linear model was not very successful for a quantitative
description of nuclei. Therefore Boguta and Bodmer [8] in-
troduced a density dependence by nonlinear meson couplings
replacing the quadratic term 1

2m2
σ σ 2 by a renormalizable φ4

theory:

U (σ ) = 1
2m2

σ σ 2 + 1
3g2σ

3 + 1
4g3σ

4. (6)

Later on one has also introduced nonlinear couplings in the
ω and ρ sector. As examples for such functionals we use in
this investigation the parameter set NL3 [27], NL3∗ [28], and
FSUGold [29].

Through the classical variation of the Lagrangian with
respect to the different fields we find the equations of motion,
the Dirac equation for the spinors and Klein–Gordon equations
for the mesons. In the static case with time-reversal invariance
have

[α · p + β(M + S) + V ]ψi = εiψi, (7)

where the relativistic scalar and vector fields S and V are given
by

S = gσσ + gδδ and V = gωω0 + gρτ3ρ
0
3 + eA0. (8)

Varying the Lagrangian with respect to the meson fields we
get the Klein–Gordon-type equations. Using also the Lorentz
gauge for the vector mesons they have the following form:

(−� + m2
σ

)
σ = −gσ

A∑
i=1

ψ̄iψi − g2σ
2 − g3σ

3, (9)

(−� + m2
δ

)
δ = −gδ

A∑
i=1

ψ̄iτ3ψi, (10)

(−� + m2
ω

)
ω0 = gω

A∑
i=1

ψ
†
i ψi, (11)

(−� + m2
ρ

)
ρ0

3 = gρ

A∑
i=1

ψ
†
i τ3ψi, (12)

−�A0 = e

2

A∑
i=1

ψ
†
i (1 − τ3)ψi. (13)

The sources of the fields are the various densities, such as, for
instance, the scalar density ρs and the baryon density ρ:

ρs =
A∑

i=1

ψ̄iψi, and ρ =
A∑

i=1

ψ
†
i ψi, (14)

and in a similar way we have the density for protons and
neutrons ρn and ρp. The summation runs always over the
occupied states in the Fermi sea (no-sea approximation).

More modern functionals describe the density dependence
not by nonlinear meson couplings, but rather by density-
dependent coupling constants: gi(ρ) (for i = σ, δ, ω, ρ). In-
stead of following the approach with nonlinear terms, an idea to
use density-dependent couplings was first proposed by Brock-
man and Toki [30], who derived the density dependence from
relativistic Brueckner–Hartree–Fock calculations in nuclear
matter at various densities. Modern high-precision functionals
use various phenomenological forms for the density depen-
dence, such as, for instance, the so-called Typel–Wolter ansatz
[31]:

gi(ρ) = gi(ρsat)fi(x) for i = σ,ω, (15)

gi(ρ) = gi(ρsat) exp[−ai(x − 1)] for i = δ,ρ, (16)

with

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2 (17)

being a function of x = ρ/ρsat, where ρsat is the density at
saturation of symmetric nuclear matter. The Typel–Wolter
ansatz is used for the density functionals DD-ME2 [32] and
DD-MEδ [15].

Meson exchange forces with finite meson masses are
relatively complicated, in particular for triaxially deformed
nuclei or for applications of time-dependent density functional
theory for the description of excited states. Therefore, in
analogy with the nonrelativistic Skyrme functional, one has
introduced forces with zero range, the so-called point-coupling
models [33]. These are generalizations of the Nambu–Jona–
Lasinio model [34] including derivative terms and density-
dependent coupling constants. In this investigation we use
the point-coupling functionals PC-F1 [35] with a polynomial
density dependence and the point-coupling functional DD-
PC1 [36,37] with an exponential ansatz for the density
dependence.

A. Isospin dependence of spin-orbit force

As noted in Refs. [12,13], the spin-orbit coupling arises
naturally in the relativistic formalism from the addition of the
two large fields, the vector field V produced mainly by the
short-range repulsion of the ω meson, and the scalar field S
produced mainly by the attractive σ mesons. The isovector
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mesons δ and ρ contribute to the iso-vector dependence of the
spin-orbit splitting [15].

In the nonrelativistic expansion of the Dirac equation [38]
the spin-orbit term obtains the form

VSO = W · ( p × σ ), (18)

with

W = 1

2M̃2
∇(V − S) (19)

and the effective mass

M̃ = M − 1
2 (V − S). (20)

In the spherical case we have

VSO = 1

4M̃2

1

r

d(V − S)

dr
� · s. (21)

To have a rough estimate for the isospin dependence we
make the following approximations: (i) we neglect nonlinear
meson couplings as well as the density dependence of the
coupling constants, (ii) we neglect the difference between
scalar and vector density, and (iii) we solve the Klein–Gordon
equations in the local density approximation, i.e., we neglect
the Laplacians.

We thus obtain for the meson-coupling models with Ci =
g2

i /m2
i ,

V − S = (Cω + Cσ )(ρp + ρn) + τ3(Cρ + Cδ)(ρp − ρn),
(22)

where for the meson-coupling models Ci = g2
i /m2

i (i =
σ, ω, δ, ρ) and for the point-coupling models Ci =
αS,αV ,αT S,αT V . This leads to

W τ = W1∇ρτ + W2∇ρτ ′ �=τ , (23)

with W1 very close to W2:

W1

W2
≈ 1 + 2

Cρ + Cδ

Cω + Cσ

. (24)

Of course, there is also a small isospin dependence in the
effective mass M̃ and, because of the density dependence,
these parameters depend on r . However, in the relevant region,
for all the models, the isovector coupling constants Cρ + Cδ

reach only 10%–20% of the isoscalar values.
In principle the fit to experimental data in finite nuclei

only allows us to determine Cρ − Cδ and not Cρ and Cδ

independently [15]. Therefore the δ meson is neglected in
most of the successful parameter sets (Cδ = 0). In principle
Cρ + Cδ could have a large value, as happens in the isoscalar
case with the extremely large scalar and vector potentials S
and V , which cancel in the normal mean field, but add up
in the spin-orbit term. There are, however, strong indications
from ab initio calculations that this is not the case. In fact,
in the parameter set DD-MEδ [15] the coupling gδ(ρ) was
adjusted to the splitting of the effective Dirac mass between
protons and neutrons, as has been calculated in relativistic
Brueckner–Hartree–Fock calculations in nuclear matter by the
Tuebingen group [26].

In the nonrelativistic density functionals of Skyrme and
Gogny type the spin-orbit term is derived from a zero-range

two-body spin-orbit interaction of the form

V
(SO)

12 (r12) = iW0(σ1 + σ2) · (k̂† × δ(r12)k̂), (25)

with r12 = r1 − r2, and k̂ = −(i/2)(∇1 − ∇2). The parame-
ter W0, together with the remaining parameters, is determined
phenomenologically through a fit to finite nuclei. Since these
are Hartree–Fock calculations, the exchange term leads to a
very specific isospin dependence and the spin-orbit term has
the form of Eq. (18) with

W τ (r) = W1∇ρτ + W2∇ρτ ′ �=τ , (26)

where the parameters W1 and W2 are constants and because of
the exchange term one finds

W1

W2
= 2. (27)

As we see in this standard formulation of nonrelativistic
forces, there is no explicit isospin or density dependence
in the spin-orbit term, but the exchange part of the force
introduces a strong isospin dependence because of the isospin
exchange operator P̂ τ = 1

2 (1 + τ̂1 · τ̂2). It has been found that
this particular property of the SO term leads to considerable
problems in reproducing the isotope shifts in nuclear charge
radii in the Pb region (see Refs. [9,17]), which is not the
case for the relativistic models. Of course, density functional
theory does not necessarily have to start with a Hamiltonian
treated in the Hartree–Fock approximation. In principle one
can also use general density functionals, where the exchange
contribution contains a free parameter xW. In this case the
density functional, i.e., the expectation value of the energy,
is determined in the Hartree approximation from a slightly
modified spin-orbit term [17,39]:

VSO = iW0
1
2 (1 + xwP̂ τ )(σ 1 + σ 2)k̂† × δ(r12)k̂. (28)

When the single-particle field is derived from this functional
we end up with a spin-orbit potential of the form (26)
with W1 = W0(1 + xw)/2, W2 = W0/2. Using the modified
Skyrme ansatz there is the ability to allow for change in the
isospin dependence of Skyrme forces through the parameter
xw [17,39]. With this kind of modification one was able to
reproduce the kink isotopic shifts of Pb nuclei.

B. Pairing correlations

The theory we have presented above remains in the
relativistic mean-field level and since we neglect any ex-
change terms we have a relativistic Hartree approximation to
describe the long-range particle-hole correlations in a nucleus.
However, in open-shell nuclei we know that particle-particle
correlations are important and one should have to take them
into account explicitly. In the nonrelativistic functionals this is
done in the Hartree–Fock–Bogoliubov (HFB) theory [40,41]
that provides a unified picture for the mean-field and pairing
correlations. The relativistic version of the transformation is
a hybrid where the long-range interaction is given by the
Lorenz-covariant Lagrangians we have given above, and the
short-range interaction is produced by effective nonrelativistic
forces. Pairing correlations can be easily included in the
framework of density functional theory by using a generalized
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Slater determinant |�〉 of the Hartree–Bogoliubov type. The
ground state of a nucleus |�〉 is represented as the vacuum
with respect to independent quasiparticle operators

α+
k =

∑
l

Ulkc
+
l + Vlkcl, (29)

where Ulk , Vlk are the Hartree–Bogoliubov coefficients. They
determine the Hermitian single-particle density matrix

ρ̂ = V ∗V T , (30)

and the antisymmetric pairing tensor

κ̂ = V ∗UT . (31)

The energy functional depends not only on the density matrix
ρ̂ and the meson fields φm, but also on the pairing tensor,

E[ρ̂,κ̂,φm] = ERMF[ρ̂,φm] + Epair[κ̂], (32)

where ERMF[ρ̂,φ] is the RMF functional. The pairing energy
Epair[κ̂] is given by

Epair[κ̂] = 1
4 Tr[κ̂∗V ppκ̂]. (33)

V pp is a general two-body pairing interaction.
To get a static solution for ground states of open-shell nuclei

in this framework, we have to solve the Hartree–Bogoliubov
equations(

ĥ − m − λ �̂

−�̂∗ −ĥ + m + λ

)(
Uk(r)
Vk(r)

)
= Ek

(
Uk(r)
Vk(r)

)
.

(34)
This system of equations contains two average potentials:

the self-consistent mean field ĥ, which encloses all the long-
range particle-hole (ph) correlations, and the pairing field
�̂, which includes the particle-particle (pp) correlations. The
single-particle potential ĥ results from the variation of the en-
ergy functional with respect to the Hermitian density matrix ρ̂,

ĥ = δE

δρ̂
, (35)

and the pairing field is obtained from the variation of the
energy functional with respect to the pairing tensor

�̂ = δE

δκ̂
. (36)

The chemical potential λ is determined by the particle
number subsidiary condition in order that the expectation
value of the particle number operator in the ground state
equals the number of nucleons. The column vectors denote
the quasiparticle wave functions, and Ek are the quasiparticle
energies. The dimension of the RHB matrix equation is two
times the dimension of the corresponding Dirac equation. For
each eigenvector (Uk,Vk) with positive quasiparticle energy
Ek > 0, there exists an eigenvector (V ∗

k ,U ∗
k ) with quasiparticle

energy −Ek . Since the baryon quasiparticle operators satisfy
fermion commutation relations, the levels Ek and −Ek cannot
be occupied simultaneously. For the solution that corresponds
to a ground state of a nucleus with even particle number, one
usually chooses the eigenvectors with positive eigenvalues Ek .

The eigensolutions of Eq. (34) form a set of orthogonal
(normalized) single quasiparticle states. The corresponding

eigenvalues are the single quasiparticle energies. The self-
consistent iteration procedure is performed in the basis of
quasiparticle states. The resulting RHB function is analyzed
in the canonical basis [42], where it has the form of a BCS
function. In this basis the density matrix Rkk′ = 〈Vk(r)|Vk′(r)〉
is diagonal and its eigenvalues are the BCS-occupation
probabilities

v2
μ = 1

2

⎡
⎣1 − εμ − λ√

(εμ − λ)2 + �2
μ

⎤
⎦. (37)

Here the εμ = 〈μ|ĥ|μ〉 are the single-particle energies in the
canonical basis and �μ = 〈μ|�̂|μ̄〉 are the corresponding gap
parameters.

If the pairing field �̂ is diagonal and constant, HFB reduces
to the BCS approximation. The lower and upper components
Uk(r) and Vk(r) are equivalent, with the BCS-occupation
amplitudes uk and vk as proportionality constants. In that case
we use the odd-even mass difference to obtain the value of
experimental gap parameter

� = (−1)N+1

2
[E(N + 2) − 2E(N + 1) + E(N )], (38)

and the occupation probabilities are given by the BCS formula
(37).

The problem with this simplified method is the ultraviolet
divergence of the pairing field for high momenta. This means
that it is necessary to have a fixed pairing window or an energy
cutoff, which adds an extra parameter in the model that cannot
be fixed experimentally.

This can be avoided for finite-range effective pairing forces.
One way suggested in Ref. [43] is using a nonrelativistic
pairing interaction based on the pairing part of the well-known
and very successful Gogny force [44],

V pp(1,2) =
∑
i=1,2

e−(r1−r2)/μ2
i

× (Wi + BiP
σ − HiP

τ − MiP
σP τ ), (39)

with the set D1S [44] for the parameters μi , Wi , Bi , Hi , and
Mi (i = 1,2). This force has been very carefully adjusted to the
pairing properties of finite nuclei all over the periodic table.
In particular, the basic advantage of the Gogny force is the
finite range, which automatically guarantees a proper cutoff in
momentum space.

This method has been very successful but it requires great
computational effort. So an alternative was developed in
Ref. [45] by Tian et al. (TMR), which has been formulated
as a separable force in momentum space. Therefore it can
be determined by two parameters adjusted to reproduce the
pairing gap of the Gogny force in symmetric nuclear matter.
In the 1S0 channel the gap equation reads

�(k) = −
∫ ∞

0

k′2dk′

2π2
〈k|V 1S0 |k′〉 �(k′)

2E(k′)
, (40)

and the pairing force separable in momentum space is

〈k|V 1S0 |k′〉 = −Gp(k)p(k′). (41)
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The two parameters determining the force are the pairing
strength G and α that goes in the Gaussian ansatz p(k) =
e−α2k2

. Their value has been adjusted to G = 728 MeV fm3 and
α = 0.644 fm in order to reproduce the density dependence
of the gap at the Fermi surface, calculated with the D1S
parametrization of the Gogny force [46].

III. SPECIFIC EXTENSIONS

A. Tensor forces

It is generally acknowledged that the tensor part of the
nuclear force plays an essential role in the description of
the several nuclear properties. The standard formulation of
covariant density functionals is based on the relativistic Hartree
approximation, i.e., exchange terms are not taken into account
explicitly. This is in most cases a good approximation, because
the coupling constants in the various spin-isospin channels
are adjusted to experimental data. For zero-range forces the
Fierz theorem shows that exchange terms can be expanded
over direct terms with new effective coupling constants being
linear combinations of the old coupling constants in the
different spin-isospin channels. For meson-exchange forces
with heavy meson masses, such as the σ , ω, δ, and ρ mesons,
the corresponding ranges are short and therefore this is still a
reasonable approximation.

Following this arguments, in conventional covariant density
functional theory the contributions of the exchange terms are
taken into account effectively through the adjustment of the
parameters to experimental data. As already mentioned, this
model has been extremely successful in describing a vast range
of nuclear bulk properties, such as binding energies, radii,
deformation parameters, giant resonances, etc. [47].

Of course, the pion mass is small and, therefore, its
exchange term should be taken into account explicitly. There
have been also recent studies, which found that the inclusion
of a tensor force has an effect on very specific single-particle
observables. It has been shown, for instance, in Ref. [48],
that tensor forces are responsible for the shift of effective
single-particle levels in shell-model calculations for exotic
nuclei. Furthermore, the spin-orbit alignment is crucial to the
strongly repulsive or attractive character of the tensor force
between proton or neutrons. So, in our case, where we want to
study the spin-orbit coupling, the effect of tensor forces may
prove to have some quantitative importance, as this has also
been investigated in the nonrelativistic study in Ref. [24].

In the relativistic scheme, tensor terms usually show up if
one takes into account exchange terms. Relativistic Hartree–
Fock (RHF) theory including tensor terms has a long history
[49–51], but such calculations require a considerable compu-
tational effort. Therefore, for a long time computer power was
too limited to determine in a consistent and successful way
the parameters of a relativistic density functional containing
tensor terms. In the meantime two groups have overcome these
problems. Long et al. developed a spherical RHF code [52–54]
in r space containing all the exchange terms for the σ , ω,
and ρ mesons and for the π meson with density-dependent
coupling constants. By adjusting the corresponding parameters
to the usual data of binding energies and radii in finite nuclei

they determined several successful parameter sets for the RHF
description of nuclei all over the periodic table. Serra et al.
[55,56] developed a RHF code in oscillator space taking into
account only the exchange term of the π meson because
the other mesons σ , ω, and ρ are relatively heavy and the
corresponding force is of short range. Therefore, as discussed
before, the exchange terms of these mesons can be represented
in the static case to a good approximation by direct terms with
effective coupling constants.

In this work we follow this method to take into account
tensor terms in the relativistic scheme. Basically two terms are
added in the Lagrangian of the system, the first is the term of
the free pion field included in Lm as given in Eq. (3),

Lπ = 1
2

(
∂μ �π∂μ �π − m2

π

)�π2, (42)

where the mass of the pion is set to its experimental value
mπ = 138 MeV. The second term is the pseudovector Yukawa
type of force included in Lint as given in Eq. (5),

Lpv = − fπ

mπ

ψ̄γ5γμ∂μ �π �τψ. (43)

f 2
π = λf 2 free

π is the strength of the one-pion-exchange inter-
action in this model and f free

π is the experimental value of
pion-nucleon coupling in free space. A factor

√
λ is used as

a multiplier to vary the coupling constant of the pion from
zero (λ = 0) to its free value f free

π (λ = 1). This comprises
now a relativistic Hartree–Fock model and its parameters have
been readjusted for different values of λ. This has been done
following the same procedure that was used to adjust the
parameters of NL3 [27].

Concentrating in this fit only to binding energies and radii of
finite nuclei, it was shown that the optimal fit was achieved for
λ = 0, i.e., for vanishing pion-nucleon interaction. However,
a parameter set NL3RHF0.5 with half the strength of the
free pion (λ = 0.5) describes in addition to the other data
the evolution of single-particle structure in the tin isotopes
measured by the Argonne group [57] in (α,t) transfer reactions.

B. Particle-vibrational coupling

So far we discussed only mean-field methods to describe
single-particle energies. In this description of the nuclear
many-body system the nucleons move independently. In the
next step we go beyond the mean-field description and include
correlations by the method of particle-vibration coupling
(PVC). This is important for our investigation of single-particle
excitations, since the coupling of the single-particle motion
to the low-lying phonons leads to a fragmentation of the
single-particle spectrum, a feature most prominent in spherical
nuclei [58]. Even though conventional DFT reproduce fairly
well the gross structure of the SO splitting, the inclusion
of particle-vibration coupling produces a denser spectrum
near the Fermi surface which is in better agreement with
experimental observations.

In fact, it is well known from Landau–Migdal theory [59,60]
that particles in the many-body system can interact with
low-lying surface phonons and form Landau quasiparticles
surrounded by a cloud of excitons. Such phenomena lead
to a fragmentation of the single-particle energies. In DFT
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such effects can be taken into account in the framework
of time-dependent density functional theory (TDDFT) [61].
In contrast to static DFT, which depends only on the exact
static density ρ0(r), its basis is the exact time-dependent
density ρ(r,t), which depends on four variables. In static
Kohn–Sham theory the static density ρ0(r) is mapped onto
a static single-particle potential, the Kohn–Sham potential, or
the static self-energy �KS, which is easy to diagonalize and
whose local single-particle density is identical to the exact
local ground-state density ρ0(r). In full analogy to the static
DFT, in the time-dependent case there exists a time-dependent
single-particle field, the time-dependent self-energy �(r,t)
with a time-dependent density identical to the exact local
single-particle density ρ(r,t) of the time-dependent many-
body problem. This is the Runge–Gross theorem [62]. The
problem is that we know very little about this time-dependent
self-energy. It is very complicated because it contains all the
memory effects of the system.

In the case where the time-dependent motion is of a small-
amplitude character, one can apply linear-response theory and
determine the time-dependent self-energy in a perturbative
approach. In Fourier space one ends up with a self-energy
depending on the energy ω. Green’s function techniques and
diagrammatic expansions are used to provide a model for the
energy-dependent self-energy �(r,ω).

In a first step one starts with the ground state of the even
system determined by static DFT and allows for small am-
plitude vibrations around this static solution. In the adiabatic
approximation one assumes that, at each time, the self-energy
is identical to the static self-energy calculated with the density
ρ(r,t). This leads to time-dependent mean-field theory and in
the limit of small amplitudes to the well-known random-phase
approximation (RPA), in the relativistic case to relativistic
RPA (RRPA), and in the case of pairing to quasiparticle
RPA (QRPA). In this way one calculates collective excitations
such as, for instance, the surface phonons, which are linear
superpositions of ph excitations, by the diagonalization of the
RPA matrix. The interaction between these ph pairs is given
as the second derivative of the energy density functional with
respect to the density,

V (r1,r2) = δ2E[ρ]

δρ(r1)δρ(r2)
. (44)

One obtains harmonic vibrations |μ〉 with the eigenfrequencies

μ and the transition densities δρ

μ
12 = 〈μ|a†

2a1|0〉.
In the next step one goes back to the description of single-

particle motion in the presence of the collective vibrations.
Starting from the static mean field in the self-energy, one adds
terms which describe the coupling of single-particle motion
to the vibrations. These terms are energy dependent. The
coupling is provided by the vertices of the form

γ
μ
12 =

∑
34

〈14|V |23〉δρμ
34, (45)

where 〈14|V |23〉 are the matrix elements of the interaction
(44) and δρ

μ
34 are the transition densities of the corresponding

phonons.

Finally, the energy-dependent part of the self-energy �(ω)
is found in second order of the particle-vibration coupling:

�
(e)
12 (ω) =

∑
kμ

(
γ

μ
1kγ

μ∗
2k

ω − εk − 
μ + iη
+ γ

μ
k1γ

μ∗
k2

ω − εk + 
μ − iη

)
,

(46)
where a virtual phonon with the frequency 
μ is emitted,
moving the particle from level 1 to level k. More details can be
found in Refs. [63,64] as well as an extension of the approach
to superfluid systems in Refs. [65,66].

Combining this energy-dependent part of the self-energy
with the static part we obtain the full self-energy �. It contains
all the forces that act on a single nucleon. It is nonlocal in space
and time coordinates which gives rise to an energy dependence
of its Fourier transform:

�(r,r ′; ω) = �̃(r)δ(r − r ′) + �(e)(r,r ′; ω), (47)

where the static part �̃ of the self-energy, i.e., the Dirac
Hamiltonian of the ground state, reads

ĥ = αp + β(m + S) + V = αp + βm + �̃. (48)

This leads to the Dyson equation describing the motion of the
quasiparticles in the presence of the vibrating mean field. It
can be written in terms of a Green’s function as

(ε − ĥ − �e(ε))G(ε) = β, (49)

and in the Dirac basis, which diagonalizes the energy-
independent part of the Dirac equation, it is rewritten as∑

l

{
(ε − εk)δkl − �e

kl(ε)
}
Glk′(ε) = δkk′ . (50)

In the diagonal approximation it has the form[
ε − εk − �e

k(ε)
]
Gk(ε) = 1. (51)

For each quantum number k, there exist several solutions
ε

(λ)
k , which are characterized by the index λ. So the inclusion of

a coupling between the single-particle states and the vibrations
leads to the fragmentation of each single-particle state k.
Taking into account the pole structure of the self-energy (46),
we get as an outcome an effective spectroscopic factor S

(λ)
k

which determines the occupation probability for each fragment
λ of the state k.

IV. NUMERICAL DETAILS

Throughout this work, the Dirac equation (7) and the Klein–
Gordon equations (9)–(13) are solved by an expansion of the
large and small components of the Dirac spinors and of the
meson fields in a spherical oscillator basis (see Ref. [67])
with the frequency h̄ω = 41A−1/3. Since these eigenfunctions
form an infinite set it is necessary to truncate this basis to
NF = NB = 20 major oscillator shells for the fermion and the
meson fields, respectively. As explained in the following, in
order to study states that belong to the continuum, we have been
changing the number NF to vary from NF = 14–20 shells.

In the case of tensor forces (see Sec. III A) the Dirac–
Hartree–Fock equations are solved in the same spherical
oscillator basis with NF = 20 major oscillator shells and, as
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FIG. 1. Proton densities of the nuclei 40Ca, 38Ar, 36S, and 34Si for
the functional DD-ME2.

discussed in Refs. [55,56], the matrix elements of the exchange
term are evaluated in this basis.

For the calculations with particle-vibration coupling a
seniority zero pairing force was used. In this case the pairing
potential is a multiple of the unity matrix and the RHB
equations are identical to the RMF + BCS equations. The
strength of the coupling constant of the pairing force is adjusted
in such a way that the resulting gap parameter is � = 2 MeV
which is close to its empirical value. Further details of the
particle-vibration coupling are given in Refs. [63,65,66]. Non-
spin-flip phonons μ with natural parities, angular momenta
Lμ � 6, and frequencies 
μ � 20 MeV have been included
into the self-energy (46) if their reduced transition probabilities
exceed 5% of the maximal ones for each Lμ. This has been
established as a standard truncation scheme for the relativistic
PVC calculations.

V. RESULTS

As mentioned in the introduction we concentrate our study
to the series of N = 20 isotones. We start with the nucleus 40Ca
with Z = 20 protons, where the last four protons fill the 1d3/2

orbit. By removing two protons we go to 38Ar and by removing
two more we reach 36S which has its last two protons in the
2s1/2 orbit. The density distribution of this state is peaked in
the center of the nucleus, and the removal of the two protons,
as we go to 34Si, leads to an occupation probability close
to zero. Therefore we have a central depletion in the proton
density and the formation of a dimple around the center of the
nuclear charge density. This is shown in Fig. 1, where we plot
the proton densities with respect to the nuclear radius. For the
first three nuclei in this chain we can see clearly a peak of the

proton density at the center of the nucleus whereas for 34Si
there is a dimple, (see also Ref. [21]).

Experimental evidence of the existence of this bub-
ble structure has been given very recently by Mutschler
et al. in Ref. [20], where the one-proton removal reaction
34Si(−1p) 33Al has been studied. Even though the occupancy
of a single-particle orbit is not a direct observable, its value
can be calculated by using experimental data, as explained in
the methods section of that reference. Therefore, an occupancy
of 0.17(3) has been deduced for the 2s1/2 proton state in 34Si,
which is only 10% of the 1.7(4) occupancy of the same state
in 36S, resulting in an occupancy change of �(2s1/2) = 1.53.

This result came in addition to the findings of the earlier
experiment by Burgunder et al. [19], where the energies
and spectroscopic factors of the first 1f7/2, 2p3/2, 2p1/2,
and 1f5/2 neutron states in the nucleus 35Si were measured
through a (d,p) transfer reaction. Together with the results
of Refs. [22,23], it was discovered that the 2p = 2p1/2-2p3/2

spin-orbit splitting was considerably reduced as one goes from
36S to 34Si.

An important aspect of the spin-orbit force is its density
and isospin dependence. It is clearly stated in Refs. [19,20]
that the results of these two experiments are ideal for a further
theoretical investigation of the SO force deduced from the
various nuclear density functionals. In particular, the extreme
neutron-to-proton density asymmetry in the case of 34Si and
the subsequent large and abrupt reduction in the size of the p
spitting can provide a better constraint of the SO force, since
these results isolate the contributions coming mostly from its
density and its isospin dependence.

As discussed in Sec. II A, the way the spin-orbit force is
included in relativistic density functional theory is substan-
tially different from the nonrelativistic case. The ratio W1/W2

plays an important role. In the first case this ratio is density
dependent and has a value close to one, whereas for the latter
case it has a fixed value equal to two. As we have already
noted, this is the main reason why we get such different results
in the calculations of the spin-orbit splitting.

Nonrelativistic investigations have been carried out in
Ref. [24] for the Skyrme SLy5 [68] and Gogny D1S [46]
functionals and certain tensor extensions of those functionals.
The neutron f and p splittings for the nuclei 40Ca, 36S, and
34Si were studied for the pure mean-field Hartree–Fock level.
The corresponding results are shown in Table I.

Following the above experimental and theoretical studies
we calculate the energies of the same neutron states and also
the occupation probabilities of the 2s1/2 proton state in 36S and
in 34Si for several covariant density functionals.

As in the nonrelativistic case [24] the state 1f5/2 in the
nuclei 40Ca, 38Ar, and 36S and the states 1f5/2 and 2p1/2 in

TABLE I. Sizes and relative reductions of neutron p and f splittings for the nonrelativistic case given in Ref. [24].

Splitting 40Ca 36S 34Si 40Ca → 36S 36S → 34Si

f p f p f p Splitting f p f p

SLy5 8.39 2.19 7.88 2.01 5.86 1.21 SLy5 6% 8% 26% 40%
D1S 8.66 2.16 7.98 1.88 6.37 1.07 D1S 8% 13% 20% 43%
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FIG. 2. Radial profiles of the 2p1/2 (full) and the 1f5/2 (dashed)
neutron state for 40Ca and 34Si.

34Si are unbound for all forces we have used. In contrast to
Ref. [24] where the Schrödinger equation was diagonalized in
a box with finite radius, we expand the single-particle solutions
in an oscillator basis. So instead of increasing the box radius,
we change the number of oscillator shells. To determine the
energies of the unbound states we follow the same criteria
mentioned in Ref. [24]. More specifically the energies of the
single-particle resonant states should not change within their
width by changing the number of oscillator shells. Also the
radial profile of those states is similar to that of bound states. As
an example we shown in Fig. 2 the radial profiles of the wave
functions of the states 1f5/2 and 2p1/2 calculated with DD-
ME2. For 40Ca they are bound and for 34Si they are unbound.

A. Pure mean-field effects

We begin our investigations with simple mean-field cal-
culations without pairing: we solve the relativistic Hartree
equations and investigate the behavior of the single-neutron
energies in the N = 20 isotone chain. In this case the single-
particle orbits are either fully occupied or completely empty.
Thus the occupancy of the 2s1/2 proton state is two for the nu-
clei 40Ca, 38Ar, and 36S and zero for 34Si. This will give us the
pure relativistic mean-field effect on the spin-orbit splittings.

The results for this case are given in Table II. In the upper
part we show the f = 1f7/2 − 1f5/2 and p = 2p3/2-2p1/2

energy splittings for each specific functional and for each of
the nuclei 40Ca, 38Ar, 36S, and 34Si. In the lower part we present
the relative reduction of the f and p splittings again for every
functional, first as we move from 40Ca to 36S and then as we go
from 36S to 34Si. We also show in the last row the experimental
values of the splittings and the reductions for 40Ca [22], 36S
[23], and 34Si [19].

For 40Ca we use the values of the centroids for the
distribution of the respective fragments. These data can be
compared directly with our theoretical results. In the other two
cases this is not possible, because the experimental centroids
are not known. Therefore for the 2p3/2-2p1/2 in both 36S and
34Si we use the major fragment of each state. For the 1f5/2

state in 36S we use the major contribution that comes from three
states centered at 5.61 MeV with a total spectroscopic factor
SF = 0.36, and in 34Si the broad structure around 5.5 MeV
with a calculated SF = 0.32. Even though this is not directly
comparable with our results, we use it as an indication of the
size of the reduction we should expect.

A schematic representation of our results together with the
results for the nonrelativistic SLy5 and D1S models is given

TABLE II. Spin-orbit splittings in MeV (upper part) and their relative reductions (lower part) for f and p neutron states in the case of no
pairing.

W1
W2

40Ca 38Ar 36S 34Si

f p f p f p f p

NL3 1.11 7.21 1.69 6.90 1.77 6.43 1.80 6.08 0.71
NL3* 1.11 7.07 1.76 6.77 1.85 6.30 1.90 5.92 0.75
FSUGold 1.03 7.14 1.38 6.75 1.37 6.18 1.31 5.80 0.60
DD-ME2 1.07 7.40 1.71 7.04 1.72 6.52 1.65 6.12 0.87
DD-MEδ 1.32 6.97 1.51 6.97 0.93 6.36 1.32 5.96 0.80
DD-PC1 1.07 7.83 1.77 7.57 1.74 7.12 1.64 6.61 0.88
PC-PF1 1.11 6.88 1.76 6.64 1.87 6.25 1.93 5.87 0.84
Expt. 6.98 1.66 5.61 1.99 5.5 1.13

40Ca → 36S 36S → 34Si

f p f p

NL3 11% −6% 5% 61%
NL3* 11% −8% 6% 60%
FSUGold 13% 5% 6% 54%
DD-ME2 12% 3% 6% 47%
DD-MEδ 9% 13% 6% 40%
DD-PC1 9% 8% 7% 46%
PC-PF1 9% −10% 6% 57%
Expt. 20% −20% 2% 43%
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FIG. 3. Evolution of spin-orbit splittings for the neutron levels p

(left panel) and f (right panel) with respect to the mass number A,
without pairing.

in Fig. 3. For all the models we plot the evolution of the p and
the f spin-orbit splittings as a function of the mass number A.

In this first approach we observe a gradual reduction in the
f splittings of about 0.3–0.4 MeV at each step as we move
down the chain of isotones. This is also apparent from the
fact that the curves that show the evolution of the f splitting
in Fig. 3 have a similar slope for the different functionals.
The total relative reduction is between 15%–19% and around
5%–7% at each step.

In contrast to the f splittings, the p splittings change only
slightly for the three first nuclei, the only exception being the
functional DD-MEδ. Only when we move from 36S to 34Si we
find a large reduction for the p splittings of the order of 40% to
60%. Qualitatively this picture is in line with the experiment.
However, the absolute size of the p splitting in 34Si for most of
our models is smaller than the respective experimental value.
This leads in certain cases to an even larger relative reduction
than what we should expect.

The results of the nonrelativistic pure mean-field calcula-
tions shown in Table I provide a similar qualitative picture.
From 40Ca to 36S the f and p splittings are only slightly
decreasing with relative reductions 6% and 8% to 8% and 13%.
In the transition from 36S to 34Si there is also the sudden and
relatively large reduction in the size of the p splitting of about
43%, but also a bigger reduction of the size of the f splittings.

When we compare relativistic and nonrelativistic results,
we observe the following differences. In general, the sizes of
the splittings in all the relativistic models are smaller than the
respective splittings in nonrelativistic SLy5 and D1S models.
More specifically, in the nuclei 40Ca and 36S, where the proton
density has the normal profile, i.e., no central depletion, the
difference in the size of f splittings is in the order of 1–2 MeV
and the size of the p splittings is around 0.5 MeV

In the interesting case of the bubble nucleus 34Si, the f split-
tings are of the same size because of the bigger relative reduc-
tion that appears in the nonrelativistic case. This is not present
in the relativistic models. However there is a difference in the p
splittings which are relatively small in size for all the relativis-
tic functionals. This is translated into a relative reduction of
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FIG. 4. Same as Fig. 3 but with TMR pairing.

the p splitting when we go from 36S to 34Si, which is larger for
most of the relativistic models as compared with the relative
reduction for nonrelativistic models (see Tables I and II).

To understand all these results we have to investigate
explicitly the spin-orbit force and especially its isospin
dependence which is very important in the case of 34Si with
a large neutron-to-proton asymmetry. As we discussed in
Sec. II A, in both relativistic and nonrelativistic models this
force can be approximately written as in Eq. (18):

VSO = W · ( p × σ ). (52)

Here W is given by the expression

W τ = W1∇ρτ + W2∇ρτ ′ �=τ . (53)

In most of the nuclei the properties of the nuclear force lead
to an almost constant density in the interior of the nucleus.
The spin-orbit force is mostly determined by the gradient of
the densities and, therefore, by the surface diffuseness. This
creates an attractive potential peaked at the surface. States
with large � values have larger �s values. In addition, they
are peaked near the surface and, therefore, they are influenced
more by this force. This produces the large f splittings and
the much smaller p splittings in 40Ca, 38Ar, and 36S.

On the other hand, bubble nuclei like 34Si have a central
density depletion, which provides an additional component
to the spin-orbit force in the interior of the nucleus with the
opposite sign, since the derivative of the density is positive
at the origin. So, together with the attractive well around the
surface we also have a repulsive peak close to the center of
the nucleus; see also Refs. [69,70]. Neutron states with low
angular momentum have larger amplitudes near the center, as
one can see in Fig. 4. This implies that they feel a much weaker
spin-orbit force and it explains the sudden reduction of the p
splittings when we go from 36S to 34Si as shown in the left
panel of Fig. 3. This effect is not seen for the f splittings in
the relativistic models (right panel of Fig. 3).

To understand the aforementioned differences between
relativistic and nonrelativistic models, we concentrate on the
isospin dependence of the SO term W , which is determined
by the ratio between the two parameters W1 and W2. In

034318-10



SPIN-ORBIT SPLITTINGS OF NEUTRON STATES IN . . . PHYSICAL REVIEW C 95, 034318 (2017)

the relativistic models the value of this ratio depends on
the density and can take different values for various nuclei,
especially for functionals where the coupling constants are
also density dependent, as explained in Ref. [71]. In that
reference there is a calculation of this ratio for several
nuclei, including 34Si, as a function of the nuclear radius.
For the functionals DD-ME2 and DD-PC1 at the nuclear
center one has W1/W2 ≈ 1.07. We also give in Table II a
rough estimate of this ratio for the nonlinear models, using
Eq. (24) and neglecting its density dependence. In general, for
the relativistic density functionals, the value of this ratio is
close to unity and the isospin dependence is very weak. On
the other hand, for the standard Skyrme and Gogny models
one has W1/W2 = 2 and a stronger isospin dependence. As
was concluded in Ref. [17], the additional isospin dependence
in the nonrelativistic models creates a stronger spin-orbit force
around the surface and produces larger splittings for states with
large angular momentum.

This picture is reversed in the case of a bubble nucleus,
where the size of the repulsive peak is bigger for the relativistic
models, as very clearly shown in Ref. [70]. As a result the SO
force will be even weaker and the size of the splitting of the
p states is more dramatically reduced than in the standard
nonrelativistic forces. Our results lead to the same conclusion.

B. Effect of pairing correlations

Pairing correlations and the related pairing gap can affect
the size of the SO splittings. Already in Ref. [21] it was shown
within the framework of relativistic Hartree–Bogoliubov
calculations that pairing correlations reduce the size of the
bubble in 34Si. According to this result and based on the
previous discussion we expect to see a weakening of the bubble
effect and therefore larger absolute sizes and smaller relative
reductions of the p splitting, as compared with the pure Hartree
calculations without pairing.

As discussed in Sec. II B, in superfluid nuclei we deal
with quasiparticles. The occupancy of each state is calculated
self-consistently. It is determined by the strength of the pairing
force. Obviously, for cases with zero pairing the occupation
probability is one for occupied states below the Fermi surface
and zero for unoccupied states above the Fermi surface.
Subsequently, in the present work, we introduce pairing
correlations in the proton subsystem and evaluate again the
single-particle energies of the same neutron states as before.
This is done for each nucleus, except from the case of 40Ca
which is a doubly magic nucleus. We also calculate the
occupation probabilities of the proton 2s1/2 state for 36S and
34Si, since the bubble structure in 34Si is created because of
this state being almost empty.

In this context we use the TMR separable pairing force of
Ref. [45] for the short-range correlations. As we mentioned
in Sec. II B, this kind of separable pairing force has been
adjusted to reproduce the pairing gap of the Gogny force
D1S in symmetric nuclear matter [45]. Both forces are of
finite range and therefore they show no ultraviolet divergence
and do not depend on a pairing cutoff. They provide a
very reasonable description of pairing correlations all over
the periodic table with a fixed set of parameters. However,

TABLE III. Gap values calculated with the odd-even mass
formula in Eq. (54).

38Ar 36S 34Si

�
(3)
C (MeV) 0.93 0.45 1.95

careful investigations of the size of these pairing correlations
by comparing theoretical results with experimental odd-even
mass differences and experimental rotational moments of
inertia [72] have shown that the pairing correlations produced
by these forces are slightly too strong for heavy nuclei and
slightly too week for light nuclei. To avoid such problems
in the details of the description of pairing correlations in our
relatively light isotonic chain and following the prescription of
Ref. [72] we have introduced a scaling factor for the strength of
the TMR force. To adjust this factor in the proton channel we
have used the version of the three-point odd-even staggering
(OES) formula proposed in Ref. [73]:

�
(3)
C (N ) = 1

2 [B(N,Z) + B(N − 2,Z) − 2B(N − 1,Z)].
(54)

This is actually equivalent to the original three-point gap
formula (38) but given for odd nuclei �3(N − 1) (see
Ref. [74]). The binding energies were taken from the atomic
mass evaluation in Ref. [75] and the resulting gaps are shown
in Table III.

The SO splittings and the respective reductions found
in these calculations are shown in Table IV. In Fig. 4 we
present again a schematic representation of the evolution of
SO splittings for all the forces with respect to the mass number.

Comparing the results of the calculations including pairing
with the previous pure mean-field results we get the same
qualitative picture. The f splittings show again a gradual
reduction as we go down the chain of isotones. The p splittings
stay roughly the same size between the first three nuclei and
are reduced dramatically for the last nucleus where there
is the bubble structure. The inclusion of pairing correlation
increases the f splittings and reduces the p splittings in 38Ar
and 36S from the respective splittings in the pure mean-field
calculations. This change is very small for 38Ar and slightly
bigger for 36S for the p states and the other way around for
the f splittings, where in the case of 36S they are practically
unchanged. For the last nucleus 34Si this picture is reversed
and one gets smaller f splittings and larger p splittings again
in the same order of magnitude of 0.1 MeV. This last effect
corrects for the enhanced effect of the bubble structure and the
sudden reduction of the p splitting as one goes from 36S to 34Si.

For a better understanding how pairing correlations lead
to these differences we present in Table V the occupation
factors of the 2s1/2 proton state in 36S and 34Si. In addition
we compare in Fig. 5 the radial profiles of the total and proton
densities of 38Ar, 36S, and 34Si with and without pairing for
the parameter set NL3.

For 38Ar, pairing affects mostly the 1d proton orbit with its
two last two protons in the 1d3/2 state. Here the surface density
becomes more diffused and the spin-orbit force has a greater
overlap with the f neutron states making the corresponding
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TABLE IV. Same as Table II but for the case of TMR pairing.

40Ca 38Ar 36S 34Si

f p f p f p f p

NL3 7.21 1.69 6.92 1.64 6.46 1.68 5.94 0.80
NL3* 7.07 1.76 6.78 1.76 6.32 1.80 5.77 0.85
FSUGold 7.14 1.38 6.89 1.12 6.35 1.04 5.72 0.65
DD-ME2 7.40 1.71 7.08 1.64 6.55 1.57 6.00 0.94
DD-MEδ 6.97 1.51 6.82 1.30 6.46 1.16 5.90 0.83
DD-PC1 7.83 1.77 7.58 1.67 7.14 1.56 6.52 0.96
PC-PF1 6.88 1.76 6.65 1.78 6.27 1.83 5.71 0.98
Expt. 6.98 1.66 5.61 1.99 5.5 1.13

40Ca → 36S 36S → 34Si

f p f p

NL3 10% 1% 8% 53%
NL3* 11% −3% 9% 53%
FSUGold 11% 24% 10% 38%
DD-ME2 11% 8% 8% 40%
DD-MEδ 7% 23% 9% 28%
DD-PC1 9% 12% 9% 39%
PC-PF1 9% −4% 9% 46%
Expt. 20% −20% 2% 43%

splittings slightly bigger. In the 36S pairing influences the
central densities reducing the size of the peak with a tendency
to flatten it out. This can also be seen by the reduced occupancy
of the 2s1/2 proton state which is now smaller than two. This
creates a less attractive SO force around the center and so the
splittings of the neutron p states appear somewhat smaller.

For the case of 34Si pairing reduces the dip at the center
of the bubble as has been noted already in Ref. [21]. This is
caused by the increasing occupancy of the previously empty
2s1/2 proton state, as shown in Table V. As we have seen, this
reduction of the bubble leads to an increase of the p splittings
by almost 0.1 MeV. Together with the previous discussion
about 36S the relative reduction of this splitting comes closer
to the experimental value deduced from the major fragments.

The above analysis shows that there is a direct relation
between the size of p splittings and the occupancy of the 2s1/2

proton state. To elaborate this effect in more detail we carry out
RHB calculations with varying pairing strength by gradually
increasing the scaling factor in the TMR force. As discussed

TABLE V. Occupation probabilities of the 2s1/2 proton state in
36S and 34Si for the TMR pairing force.

36S 34Si �(2S1/2)

NL3 1.83 0.20 1.62
NL3* 1.87 0.23 1.64
FSUGold 1.25 0.16 1.09
DD-ME2 1.79 0.23 1.57
DD-MEδ 1.22 0.60 1.02
DD-PC1 1.77 0.30 1.47
PC-PF1 1.86 0.36 1.49
Expt. [20] 1.64 0.17 1.56

this leads on one side to a reduction of the corresponding
occupancy change �(2s1/2) between 36S and 34Si and on the
other side to a reduction of the relative change in the SO
splitting for the p levels.

As the pairing force increases the bubble structure becomes
less dramatic. Therefore, by studying the corresponding
change in the relative reduction of the 2p3/2-2p1/2 neutron
spin-orbit splitting we get an additional method to further
investigate the isospin dependence of the effective spin-orbit
interaction for the different covariant density functionals. This
has been done in the case of the TMR paring force and
for all the relativistic models we have used in our previous
calculations and the results are shown in Fig. 6. The empty
symbols depict the results we got using the three-point gap
formula to adjust the pairing force. For comparison we show
the combined results from the experiments in Refs. [19,20].
This helps to distinguish between the various models. We find
that DD-ME2, DD-PC1, and PC-PF1 are the most successful
in reproducing the experimental results.

C. Extensions: Tensor forces and particle-vibration coupling

In this last part we extend the standard formulation of the
covariant density functional models in two ways. First we
include explicitly a tensor term as discussed in Sec. III A.
This extension remains on the mean-field level. In the second
case we go beyond mean-field by taking into consideration the
coupling of the single-particle states to the low-lying surface
modes, as discussed in Sec. III B.

1. Effect of tensor force

As we have already stated, the tensor part of the nuclear
force plays an essential role in the description of the several
nuclear properties. In our case it affects the single-particle
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FIG. 5. Radial dependence of the total density ρtot and the proton
density ρp for NL3 with and without pairing correlations for the
nuclei 38Ar, 36S, and 34Si.

structure [48,56,76]. As discussed in Sec. III A in covariant
density functional theory exchange terms are usually not
taken into account because the Fierz theorem shows that,
for zero-range forces, they can be expanded over the direct
terms by reshuffling the coupling constants of the various spin-
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values of the centroids for 40Ca [22].

isospin channels. Since the coupling constants are adjusted
to experimental data anyhow; this seems to be a reasonable
approximation for the heavy mesons σ , ω, and ρ, which lead
to forces of relatively short range. The direct term of the pion
does not contribute because of parity conservation, but its mass
is small and, therefore, its exchange term should be taken into
account explicitly. It leads to a tensor term in the functional.
In the following we show results of relativistic Hartree–Fock
calculations as discussed in Sec. III A and in Ref. [56].

In particular, we investigate in the specific case of the bubble
nucleus 34Si and the corresponding dramatic reduction in the p
splitting as compared with 36S, whether the explicit inclusion
of the tensor force changes the size of the splitting and the
amount of the reduction.

The effect of the tensor force between neutrons and
protons has been investigated in great detail in configuration-
interaction (CI) calculations [48] and in mean-field calcula-
tions [76]. The spin-orbit alignment is very crucial for the
attractive or repulsive character of this interaction. Nucleons
occupying, for instance, a proton orbit j> (where j>;< =
� ± 1/2) can change the effective single-particle energies of
neutrons occupying the orbit j ′

> or the orbit j ′
< through the

monopole effect of the tensor force. If the spins of the two
states are antiparallel, the force is attractive and, if they are
parallel, the force is repulsive. In the particular case of the
one-pion exchange this specific effect has been also identified
in the RHF calculations of Ref. [56]. The effect of the tensor
force is mostly important between neutrons and protons; it
increases with the orbital angular momentum � and also with
the radial overlap between the orbits.

In Fig. 7 we show in a schematic way the positions of the
neutron states 2p1/2, 2p3/2, and 1f5/2 using 1f7/2 as a reference
state, calculated with the relativistic interaction NL3RHF0.5,
which includes the one-pion-exchange tensor force with half
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TABLE VI. Spin-orbit splittings of f and p neutron states (upper part) and relative reductions (bottom part), for the case of tensor forces.
For comparison we also show the results from Ref. [24].

40Ca 38Ar 36S 34Si

f p f p f p f p

NL3 7.21 1.69 6.87 1.64 6.44 1.68 5.56 0.74
NL3RHF0.5 7.87 1.92 6.82 1.74 5.80 1.64 5.12 0.66
SLy5T -2013 6.77 1.76 5.53 1.07 4.41 0.61
D1ST2c-2013 6.90 1.73 5.65 1.26 4.75 0.73
Expt. 6.98 1.66 5.61 1.99 5.5 1.13

40Ca → 36S 36S → 34Si

Splitting f p f p

NL3 10% 1% 14% 56%
NL3RHF0.5 26% 14% 12% 60%
SLy5T -2013 18% 39% 20% 43%
D1ST2c-2013 18% 27% 16% 42%
Expt. 20% −20% 2% 43%

the strength of the free one-pion-exchange force, as discussed
in Sec. III A. These calculations have been carried out within
the frozen gap approximation for the pairing channel and with
the values of the proton gap parameters given in Table III.
In Table VI we compare these results with calculation done
with NL3 on the Hartree level with the same pairing scheme
of frozen gap and to those of nonrelativistic Skyrme and
Gogny interactions SLy5T -2013 and D1ST2c-2013. These are
modified versions of the functionals SLy5 and D1S, where
tensor terms have been included and were adjusted together
with the spin-orbit parameters. Details are given in Ref. [24].
We have to emphasize, however, that the tensor force used in
the nonrelativistic calculations in Ref. [24] is of zero range,
whereas the tensor force in these relativistic calculations is of
finite range because of the low mass of the pion. We show in
Fig. 8 the corresponding single-particle energies as a function
of A. Finally, in Fig. 9 we plot the evolution of the spin-orbit
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1f7/2 and of the 2p1/2 and 2p3/2 neutron states as we move
down the chain of isotones N = 20. The red lines correspond to
the tensor results and the blue lines to the standard NL3 with
frozen �.

splittings as done in Figs. 3 and 4, but now just for the NL3
force in order to compare between pure mean-field, pairing,
and tensor effects.

We observe that the inclusion of the tensor force has a more
pronounced effect in the transition from 40Ca to 36S than in the
transition from 36S to 34Si. Following the rule that we described
in the beginning of the current section, we recognize that, as
we move from 40Ca to 36S and remove the four protons from
the j< proton state π1d3/2, the attractive effect of the tensor
interaction on the j ′

> neutron state ν1f7/2 is reduced and, thus,
this state is shifted upwards from its starting point in 40Ca. On
the other side the j ′

<; ν1f5/2 state, which in 40Ca is repelled
by the protons of the π1d3/2 state, is shifted downwards as
we go to 36S. The combination of all these effects leads to
an enhanced quenching of the f splitting as we go from 40Ca
to 36S. This is also seen by the much steeper blue line that
corresponds to NL3RHF0.5 case in the right panel in Fig. 9.
The same behavior can be observed also for the j ′

>; ν2p3/2
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TABLE VII. Comparison for the spin-orbit splittings (upper part)
and their relative reductions (lower part) of the major fragments be-
tween the relativistic PVC model and the corresponding experimental
results.

Splitting 36S 34Si

f p f p

NL3* with PVC 6.30 2.28 5.28 1.40
Expt. 5.61 1.99 5.5 1.13

36S → 34Si

Splitting f p

NL3* with PVC 16% 39%
Expt. 2% 43%

and the j ′
<; ν2p1/2 neutron states, although the effect on the

absolute size of the splitting is smaller in those cases.
In the case of the transition from 36S to the bubble nucleus

34Si we see in Fig. 8 that both the f and p states stay at the
same distance relative to the NL3 calculations. This shows that
the large reduction of the p splitting is a pure spin-orbit effect,
a picture that also agrees with the nonrelativistic results.

Finally, we have measured an occupancy of the 2s1/2 proton
state of 0.18 with the NL3RHF0.5, which is larger than the 0.10
value in the case of NL3 on the RH level for the same pairing
scheme. This indicates that the tensor force counteracts to some
extent the effect of pairing that we described in the previous
section and leads to a smaller size, from 0.74 to 0.66 MeV, and
a slightly larger reduction, from 56% to 60%, for the particular
p splitting.

2. Effect of particle-vibration coupling

As we mentioned in Sec. III B, the coupling of the single-
particle states to low-lying phonons leads to a fragmentation
of the single-particle levels and, therefore, sometimes to
considerable shifts of the major components, i.e., of the
components with the largest spectroscopic factor. This is, in
particular, important for states close to the Fermi surface. For
our calculations we used the density functional NL3∗ [28] and
a constant pairing gap of � = 2 MeV, which is consistent with
its empirical value of 12.0/

√
A for the considered mass region.

After the solution of the Dyson equation (51) we have the
ability to isolate the major contributions to each single-particle
state and compare its energy directly with the experimental
results from Ref. [19], as shown in Table VII. This is also
done schematically in Fig. 10 where we compare the results
of the PVC calculations for the nuclei 36S and 34Si with the
experimental values of Ref. [19]. More specifically, we show
the positions of the major fragments and the splittings between
the f and p states as well as their spectroscopic factors. The
experimentally observed reduction of the spin-orbit splitting
is 43% for the p states. It is in rather good agreement with the
results obtained from the theoretical PVC calculations, which
show a reduction of 39%. In both cases these are the splittings
for the major fragments. Notice that in the PVC calculations
we have not included isospin-flip phonons as it is done, for
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instance, in Ref. [77]. It has been observed that the inclusion
of such phonons causes an additional fragmentation and shifts
of the dominant fragments, bringing the results to a better
agreement with data. However, the latter approach is, so far,
not yet adopted to the case of open-shell nuclei. It will be
considered in the future.

In Fig. 10 we show in analogy to Fig. 7 the positions of
the neutron states 2p1/2, 2p3/2, and 1f5/2 using the 1f7/2

as reference state for the nuclei 37S [Figs. 10(a)–10(c)] and
35Si [Figs. 10(d)–10(f)]. The experimental data of Ref. [19]
in Figs. 10(a) and 10(d) are compared with results of PVC
calculations with the density functional NL3∗ in Figs. 10(b)
and 10(e). In this figure the experimental energies as well
as the energies of the PVC calculations correspond to the
major components of the corresponding fragmented level.
Only for the 1f5/2 orbits we show in Fig. 10(a) the experimental
fragmentation and in Fig. 10(d) the area of the experimental
fragmentation. To study the effect of particle-vibration cou-
pling we show in Figs. 10(c) and 10(f) calculations with the
same density functional without particle-vibration coupling.

We find that in both nuclei the SO splitting of the 1f orbitals
is reproduced relatively well. Particle vibrational coupling has
only a small influence on this splitting. On the other side, all
2p orbits are shifted downwards closer to the 1f7/2 orbit as it is
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also observed in the experiment. It is well known that this effect
is in particular large for levels close to the Fermi surface, i.e.,
larger for the 2p3/2 orbit than for the 2p1/2 orbit. As a result,
the SO splitting of the 2p orbits is increased considerably by
particle-vibration coupling. As compared with the much too
small SO splitting for the 2p orbits without PVC, it is now
much closer to the experimental value.

VI. CONCLUSIONS

In this study we have calculated the single-particle energies
of the spin-orbit doublets 1f7/2-1f5/2 and 2p3/2-2p1/2 in order
to investigate the spin-orbit splittings and their evolution as
we move along the chain of isotones with N = 20: 40Ca, 38Ar,
36S, and 34Si. We used several relativistic functionals of three
different types: nonlinear meson-coupling, density-dependent
meson coupling, and density-dependent point-coupling mod-
els. Furthermore, we used the separable TMR pairing force
of finite range, which is essentially equivalent to the pairing
part of the Gogny force D1S, to determine the effect of pairing
on the size and on the reduction of the SO splittings. Finally,
we considered specific extensions that go beyond the simple
Hartree case; namely, the inclusion of one-pion exchange
which induces a tensor force and particle-vibration coupling
that takes into account correlations between single-particle
states going beyond the mean-field approximation.

In general, we observe a significant reduction of the
2p3/2-2p1/2 splitting for neutron states when we go from
36S to 34Si as is observed in the experiment. On the pure
mean-field level most of the forces show a relatively large
reduction. When we include pairing, this reduction becomes
less and less dramatic with increasing pairing correlations,
because the occupation of the 2s1/2 proton-orbit changes less
rapidly between 36S and 34Si. The isospin dependence of the
effective spin-orbit force is weaker in the relativistic models
and, therefore, the reduction is also less pronounced in these
models than in the nonrelativistic ones.

Finally, we went beyond the conventional Hartree level and
included two effects, which have a strong influence on the
single-particle structure, the tensor term and particle-vibration
coupling.

Here we found that the tensor term induced by the one-
pion-exchange force has a relatively small effect. It acts to
some extent in the opposite direction of pairing. It increases the
quenching of the spin-orbit distinctly for the f and to a smaller
extent for the p states when going from 40Ca to 36S, showing
the tensor character of those reductions. On the other hand,
for the transition from 36S to 34Si the sizes of the splittings
are only slightly reduced for both nuclei and, thus, the relative
reductions remain practically unchanged, indicating that they
come purely from the spin-orbit interaction. Such an effect is
also observed in the nonrelativistic case [24] as seen in Tables I
and VI. However, particle-vibration coupling acts in the same
direction as pairing. We find that the relative reduction of the
splitting between 2p3/2 and 2p1/2 neutron states decreases.
This is consistent with the general effect of PVC to produce
a more dense spectrum near the Fermi surface. Finally, PVC
leads to a reasonable agreement with the experimental data in
the isotone chain with N = 20.

Of course, there are many open questions: Nearly all of
the functionals used here have been adjusted to experimental
bulk properties, such as binding energies and radii. Only
the strength of the relativistic tensor force in the functional
NL3RHF0.5 has been optimized at the same time by com-
paring with the single-particle structure of tin isotopes. In
principle, the parameters of all these functionals should be
adjusted only after including the additional effects of tensor
correlations and particle-vibration coupling. This is a very
ambitious task for the future, but we have shown in this
investigation at least the influence and the relative importance
of several corrections beyond the conventional Hartree level
for a successful description of the spin-orbit splitting and its
isospin dependence.
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