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General form of the boson-fermion interaction in the interacting boson-fermion model-2
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The boson-fermion interaction in the interacting boson-fermion model-2 (IBFM-2) is derived in a systematic
and general form from a quadrupole-quadrupole force using several nondegenerate levels. The boson-fermion
quadrupole operator employed is obtained from the boson-fermion image of the one nucleon transfer operator
which in turn can be calculated following two alternative schemes: the Otsuka-Arima-Iachello and generalized
Holstein-Primakoff schemes. Four different terms (two quadrupole and two exchange) were obtained. Application
of the new expressions to a single- j model is studied and analyzed.
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I. INTRODUCTION

In recent years nuclear structure studies have been present
and have contributed in open questions in fundamental physics
problems as the nature of the neutrino or the origin of the
elusive dark matter. In both cases considerable efforts, from
theoretical and experimental sides, have been made, but still
new developments are necessary. The nature of the neutrino
(Majorana or Dirac particle) and its absolute mass scale are
being tackled through the study of the neutrinoless double g
decay. In the case of the dark matter origin many candidates
have been proposed to account for the unobserved matter
in astronomical and cosmological studies. One of the most
promising candidates are weakly interacting massive particles
(WIMPs). Apart from the fact that their predicted energy
density can naturally explain the dark matter density, they can
interact directly with quarks, which makes them especially
suitable for direct detection by scattering off nuclei. In all
these cases nuclear matrix elements are involved and a reliable
nuclear structure model is required for their calculation. In
this context, the nuclear shell model (SM) is one of the most
successful phenomenological models in describing nuclear
spectroscopic data of light nuclei. However, as the number
of valence nucleons increases, current computer capabilities
are soon exceeded. The interacting boson model (IBM) [1] is
a very good approximation of the shell model to describe the
low lying collective states in many nuclei of the nuclear chart
without the computer handicap of the shell model. In addition
this model naturally unifies different nuclear regimes, which
makes it suitable for the study of transitional nuclei and also
it can be handled relatively easily. The most simple form of
the IBM deals with even-even nuclei by replacing pairs of
valence nucleons with bosons of angular momenta zero and 2.
By coupling a fermion to the system of bosons, odd-A nuclei
can be studied in this framework. This extension of the model
is called the interacting boson-fermion model (IBFM) [2].
These models were used in phenomenological fits with great
success when they were introduced. Soon the link with the
shell model was posed and to this end extended versions of the
model were presented where the isospin degrees of freedom
were explicitly taken into account. The different versions were
named IBM-k and IBFM-k, where k = 1 refers to those models
where only one kind of bosons is present; k = 2 indicates
those versions where two kinds of bosons are present, one
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for protons and another one for neutrons (technically they
correspond to bosons withisospin 7 = land T, = £+1);k =3
includes another kind of bosons with 7 = 1 and 7, = 0; and
finally k = 4 includes bosons with T = T, = 0 besides those
of previous versions.

The usual way to connect the shell model and the interacting
boson model is through mappings between states belonging
to both models and boson expansions of SM operators, the
so-called Otsuka-Arima-Iachello (OAI) method [3]. Since
then many papers devoted to study this connection have
been published successfully deriving from the SM some
IBM parameters obtained from phenomenological fits. In the
IBFM the boson-fermion interaction is particularly important
to describe well the coupling between the odd nucleon and
the system of bosons. Scholten obtained it starting from a
proton-neutron quadrupole force in the SM [4]. He used the
boson image of the SM one nucleon transfer operator, which
is simply the one nucleon creation operator in a particular
single-particle state, to construct the boson image of the
quadrupole operator and finally he coupled it to the boson
quadrupole operator. In this derivation matrix elements of the
one nucleon transfer operator between SM states with well
defined generalized seniority are required and the number
operator approximation (NOA) [5] was employed in their
evaluation to simplify the calculations. Very recently this
approximation was removed in the boson image of the transfer
operator [6] because it produces undesirable subshell effects
and it was shown that the computation of spectroscopic factors
[6] and log ft [7] without it improves in realistic cases. These
calculations were done using wave functions obtained using a
boson-fermion interaction based in the NOA. Then the natural
next step is to rederive it following Scholten’s method without
using the NOA. The advantage of the Scholten’s method is
that it provides relatively closed expressions in terms of a
reduced number of parameters, in contrast to other alternative
methods [8—10], where a large number of SM matrix elements
are needed as an input.

In this work we derived the boson-fermion interaction in the
IBFM following Scholten’s method in general terms, without
assuming a particular form for the boson image of the one
nucleon transfer operator. This is the main goal of this work
and it is explained in detail in the next section. In Sec. III we
propose to use two alternative forms for the boson image of
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the transfer operator. The first one [6] is obtained following
the OAI method without using the NOA. The second one
is obtained using the generalized Holstein-Primakoff (GHP)
boson expansion [11]. While the first form is suitable for
spherical nuclei, the second one is more suitable for deformed
nuclei. In Sec. IV we study the behavior of a single-j model
using both alternatives for the transfer operator in constructing
the boson-fermion interaction and compare their results.
Section V summarizes the main conclusions of this work.

II. THE ONE NUCLEON TRANSFER OPERATOR
AND THE BOSON-FERMION IMAGE OF THE
QUADRUPOLE OPERATOR

The one nucleon transfer operator in the IBFM is obtained
from the image of the SM single-nucleon creation operator in
the i shell specified by the standard single-particle level quan-
tum numbers n;, I;, 1/2, j;, and m;. We replace them vyith just
one label for simplicity and denote this operator by c}m. This
operator can be written as an infinite expansion in terms of bo-
son operators and one fermion creation aTm or annihilation d
operator, which takes single-particle degrees of freedom into
account in the IBFM. The operator ct has the general form

el = Ajal, + Bistany + > Cipdtany

J'
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K =
+ Y EjlddPal ) + GlTHO x a1
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where the sum in j’ runs over all the orbits considered in the
shell which the odd particle can occupy. For convenience,
we rewrite the transfer operator in Eq. (1) in a more compact
way, retaining terms up to two boson operators, which yields
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where ylT () is a creation (annihilation) boson operator of
angular momentum / = 0,2. The coefficients in Eq. (2) are
defined as

Qlj = Aj, (33)
B;5; [=0
Bl = ne 3b
AN ofrs 1=2, (30)
DSy, 1=00=2
: Fijdp2, 1=21'=0
¢l = 1% 3
0T B, =0 =2 G
G, I=1'=0.

The Kronecker delta §; ;- in % ; 1s written for convenience
despite that it appears naturally in the angular momentum cou-
pling, which also occurs in €%22 and €292, The corresponding
annihilation operator with good irreducible tensor character is
defined as &;,, = (—1)/™c;_,, and given by
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We are now in position to construct the quadrupole operator,
as
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according to our phase definition of the fermion annihilation
operator ¢ j,.
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The terms 2, 4, 6, and 8 can be immediately discarded since
they introduce two-particle mixing (i.e., they have two creation
or annihilation fermion operators) which are beyond the
IBFM-2 space. In addition, the last term produces three-body
interactions in the boson part of the boson-fermion interaction.
It is also not considered, because we are retaining the lowest
order terms. After recoupling conveniently some of the terms
and summing on the j’s we obtain four contributions in the
quadrupole operator:

2 2 2 2 2
()Zq() @ (2) (2) ®)

q [ +qQ2 +qE1 +qEz

where q(z) and q(z) are related to quadrupole interaction terms,

and the rest are related to exchange interaction terms. They are
the following:
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and j = /2] + 1. The fifth term in Eq. (7) was recoupled to
write the fermion operators in normal order. This recoupling

produces the term q(QZZ) and also a boson-boson interaction

(

which we do not include because we are only interested in
the boson-fermion interaction. The various terms that enter in
the contribution are illustrated diagrammatically in Fig. 1.

The operator ¢ is the most general form of the fermion
quadrupole operator up to two boson operators with expres-
sions (9)—(12). When necessary we label it with a subindex
p to indicate that it corresponds to particles of type p, where
p = v is for neutrons and p = & is for protons. Using the
boson quadrupole operator Qfoz,) for bosons of type p’, the
boson-fermion interaction between particles of type p’ and p
is then given by

Vgl =05 g2, (17)

where « is the (negative) boson-fermion interaction strength.
The obtained boson-fermion interaction now contains two
quadrupole plus two exchange terms:
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and B,(,L ) = (y,'7v) . We can compare these expressions with

those ones obtained by Scholten in the generalized seniority
scheme using the NOA [4]:
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FIG. 1. Diagrammatic representation of the terms [Egs. (9)—(12)] and the last term in Eq. (7).

where N, is the number of bosons of type p, vjz is the
occupation probability of orbit j, u; =,/1-— vjz-, and
Bjjy = Qjyujvy +vju;). When we rewrite it in our
formalism it becomes
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We can see that Scholten’s interaction includes only up to
first order in the number of d boson operators, while our
expressions go further and include a term with two d boson
operators in VBEFl when [; = [, = 2, besides the terms in V]fﬁ.
These terms can be important when dealing with states of
seniority v = 3 to account for deformation in a better way.

Below we write the exchange terms in a suitable way to
program in a computer code:
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It is interesting to note that in writing the boson-fermion
interaction in this form the quadrupole interaction VBQF2 can be
canceled with the second term in Vp:! when it is recoupled
to group separately the boson and fermion operator if both
quadrupole Q, and exchange E; interactions have the same
strength. However, in phenomenological applications they
often have different strengths and the cancellation would not
happen. As can be seen every term conserves both the boson
and fermion number and is Hermitian.

III. Vg USING OAI AND GHP

In this work we consider two different alternative schemes
in order to obtain an expression for the coefficients of the one
nucleon transfer operator (2). They are the OAI [3] and the
GHP [11] mappings. We discuss briefly both mappings and
quote the coefficients for each mapping.

A. OAI

The OAI method is based on the generalized seniority (GS)
scheme in the SM. In this scheme the SM space is truncated to
the S D pair space, where the states are constructed from the
collective nucleon pair creation operators

1(00) T(2u)
Z aj F Aji Z BijAji"

/</

(30)

Here Q; = j + 1/2 is half the occupation of the orbit j, and
a’s and B’s are pair structure coefficients. The nucleon pair
creation operator of total angular momentum J and projection
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W on its z axis is defined as

T _ T AT\
AV = ———(C.C), 31
1+a,.,.,( ch) 31

where C; [ is the SM single-nucleon creation operator. We do a
mapping between fermion states in SD space and boson states
(Marumori mapping [12]),

|SM DN ag)g > |sMdVald)g, (32)

where a accounts for all the quantum numbers necessary
to identify uniquely the states. The strategy is to equate the
matrix elements of any fermion operator O between fermion
states to matrix elements of the boson image of the fermion
operator, O, between the corresponding boson states. In the
OAI method, the expressions for the coefficients from A; to
Djj: are given exactly in Ref. [6] using states with generalized
seniority ¥ < 2. Fj; and E;;; can only be found by matrix
elements where states of ¥ > 2 are involved. In this mapping
we obtain

(SV1D; It sY)
(sNV=1ds 11 15)@al 10Is)

which becomes null since CJT. connects states where AD = 1.
Meanwhile, the expression for E;;; is more involved since
we must orthonormalize states of D > 2 [13] and it is omitted
in this study. Also the sum on /; and /; in Eq. (2) is restricted
to the values zero and 2 without including /; = [, = 0, which
corresponds to the terms with G; and can be absorbed in
the terms with A; and E ;o using the relation [sT5]® = N —
V5[dd]1©, where N is the number operator of bosons. The
values of the coefficients are shown below:

Ay = PNLL (34a)
2N.0,0
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J TM2N.22M2N,1, )
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where the form of the n’s in Egs. (34a)-(34d) can be
found in Refs. [6,14,15] and they depend on the pair
structure coefficients o«; and B;; in Egs. (30). They can
be obtained using different methods [8,16,17]. Also it is
interesting to see that Eqs. (34a)—(34d) fulfill the relation
Olijj/Djjf +Olijijjf =0.

We want to stress two points: First, all values of the coef-
ficients and matrix elements listed above are obtained exactly
without using the NOA [5]. Second, the procedure to obtain the
coefficients in this way requires the calculations of the structure
coefficients of the S and D collective pairs. This mapping is
known to be very useful in spherical and vibrational regions,
since it considers states with lower generalized seniority, where
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it is an approximate good quantum number [18]. Therefore,
one expects to obtain good results in these cases.

B. GHP

The GHP scheme (sometimes also called Beliaev-
Zelevinsky expansion) is a mapping of operators where
the operator commutation relations are preserved; i.e., the
operators algebra for all fermion operators is conserved.
Strictly speaking, a systematic perturbation expansion is
done on a small parameter, and the commutation rules must
be fulfilled in each order of the expansion. The lowest order is
the most important because of its physical interpretation, while
the higher orders give rise to anharmonicities [19]. In this
mapping the following relations are fulfilled:

(omp = €omp. (39

To preserve the annihilation-creation fermion operators alge-
bra, the transfer operator has the form

(e =D _a] (VT (BTBY )y + 3 Bjiai (36)

(C C; )GHP = (Clcj )GHP»

where B is the matrix of operators B;;, the boson annihilation
operators, which takes the place of the fermion pair C;C;, and
T indicates matrix transposition. The square-root operator in
Eq. (36) is the hallmark of GHP expansions. This square root
must be expanded in a Taylor series to be used and Ref. [20]
provides a procedure to speed up its convergence. When the
corresponding boson operators are written as collective boson
operators, the coefficients of Eq. (1) may be obtained and are
given by Arias et al. [11]:

g
"j
L
B =X, =, (37b)
J
Z‘,l’: P L
llL___ JHi" yl I J J
Q:A. = Z( 1) X /rX // j {l/ l j”}’
(37¢)

where X ’] ;+ are structure coefficients of the collective boson
operators and their explicit expressions can be found in
Ref. [21], and vf(u?) is the occupation (vacancy) probability
of the single-particle state j (v2 + u? = 1).

This mapping is suitable for deformed nuclei [21,22]. Since
GS is not a good quantum number and breaks down in these
cases [10], in principle the GHP method is assumed to work
better than the OAI method. Nevertheless, it is interesting
to point out that relations between both mappings may be
obtained [23].

IV. SINGLE j-SHELL CASE

To clarify the contents of the previous section in a rather
simple and tractable fashion, we consider the application of
the OAI and GHP mappings to study the interaction restricted
to a single j shell. It is known that the single j-shell model
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has some deficiencies [8] since there is only one pair for each
pair creation operator. Also the value of j is usually taken to
be large in order to represent a large shell; therefore, there
is a possibility that some uncanny effects appear because of
the great value of j which do not appear in realistic cases.
However, it is a simple method in order to study the boson-
fermion interaction and also the role of each term of it for
the different mappings. For a single j shell, we do not need
to determine the value of the structure coefficients used in
the OAI method since they are equal, a; = B;; = 1. In the
OAI mapping the values of the coefficients of the one nucleon
transfer operator reduce to

A= [N (38)
J Q] ’
1
B = —, (39)
V&
J10 |Q; = N
ij_—,.\ Qj'—17 (40)
J J
1 10
Djj=—= 1)
ARV

These quantities are identical to those obtained by Scholten
[4], since in the single j shell the NOA is exact. Using them,
the boson-fermion interaction reads
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while Scholten’s form of the interaction is
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VScholten =K Q Jj
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In the case of the GHP mapping, the coefficients in the
boson expansion of the transfer operator are

20, -N [Q;-N
Aj= = I (50)
2Q; —2N\

2
J
V10
Cjj = — (52)
J
D= | %5 (53)
W Q —N2j+1°
j J
Q LfjjL
) NG 55)
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j J
Q; 1
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since X JL.J. = «/E and the coefficients in the boson-fermion
interaction become

(2Q; — N)?
e — 57
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/ QIJ JJj?2
Ui =g, ~109ij j2 (58)
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FIG. 2. Energies of a single j calculation for j = 3 (left), 3 (middle), and £ (right) with x = —0.2 MeV (top) and k = —0.5 MeV
(bottom). Red, J = j — 2; magenta, J = j — 1; green, J = j + 1, and blue, J = j + 2. The ground state was taken as zero energy and it is
not shown to visualize the energies more clearly.

occupy the orbit j and coupled to a core with a fixed number
of proton bosons, N, =5, and a number of neutron bosons
N, between zero and j — 1/2, which corresponds to two units
less than the maximum occupancy of the orbit j. We use the

(64)

To study the behavior of the new derived boson-fermion
interaction we chose a system with an odd neutron allowed to
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FIG. 3. Same as Fig. 2, but considering just one of the terms in the boson-fermion interaction. The calculation were done withk = —0.5 MeV
and j = 9/2.

simple Hamiltonian

H= )" ¢hq +x(07 q?), (65)

p=m,v

where x; = —+/7/2 and we have set the energy of the d
bosons to €, = 0.8 MeV and €, = 0.6 MeV for neutrons and
protons, respectively. In this Hamiltonian, bosons are in the
vibrational limit and the fermion couples to unlike bosons.
Although it is not realistic, it is used here for the purpose of
understanding the difference between OAI and GHP methods.
We did two different calculations: one withx = —0.2 MeV and
another with k = —0.5 MeV, and separately for three values
of j =5/2,9/2, and 13/2, to understand its j dependence.
We have diagonalized this Hamiltonian using OAI and GHP
methods in a base with states of generalized seniority ¥ < 5
(up to two d bosons). We also included the results obtained
with Scholten’s interaction, which are indicated with the
label SCH. The excitation energies for different values of
the final angular momentum J are shown in Fig. 2 in
terms of the neutron occupation probability, calculated as
vjz. = (2N, + 1)/(2j + 1). The results of calculations obtained
considering just one of the contributions to the boson-fermion
interaction for the case j = 9/2 with x = —0.5 MeV were
plotted in Fig. 3. In each figure the spectrum is given for final
states with J = j & 1 and j £ 2 only, and relative to the state
J = j, which always is, for the vibrational case considered
here, the lowest state, i.e., the ground state.

In Fig. 2 a behavior common to all the calculations consists
in that the energies of states with different values of J cross
when the occupation of the j shell is close to half filled, with
values for the energies below the values at the beginning
(vf ~ 0) or at the end (v2 ~ 1) of the shell. We can see a
general trend in OAI and GHP methods, in which the energy
differences among states decrease as the value of j increases
and, at the same time, their excitation energies increase. This
trend is more pronounced when the strength of the quadrupole
interaction increases, as it can be seen when we compare the

results for both values of the strength «, since we observe that
the separation between states is larger when « increases, i.e.,
when the weak coupling scheme becomes less important. This
effect is less pronounced using Scholten’s interaction, whose
results remain practically the same when j > 9/2. OAI and
GHP methods produce results rather similar when v? < 0.6
for «k = —0.2 MeV, but they become different for x = —0.5
MeV, especially for the level with J = j — 1. In this case we
can find similar results for OAI and GHP methods only when
vj2. < 0.4 and for the levels with / = j+2and J = j + 1. In
contrast, Scholten’s form of the interaction produces results
similar to those of OAI and GHP methods just when j = 13/2.
There is another effect present only in the GHP calculations.
The energies increase abruptly when v? approaches 1. This
is discussed later in the context of Fig. 3. Finally, unlike
Scholten’s results the so-called / = j — 1 anomaly appears in
OAI and GHP calculations when k = —0.5MeV and j = 5/2
and j = 9/2. This could indicate that quadrupole-quadrupole
interaction favors the presence of this anomaly.

Figure 3 shows the results obtained when considering just
one of the different terms in the boson-fermion interaction
for the case j =9/2 and x = —0.5 MeV. The behavior is
rather different between OAI and GHP methods, except for
VBEFl , where both approaches provide very similar results. In
the case of the quadrupole term VB%‘ a degeneration between
the levels with J = j 4+ 1 happens for GHP method at the
end of the shell, while the levels are independent of vg/z

for VBQFZ. In the OAI case both terms produce quite similar
behaviors. However, we can see that the exchange term VBEF2
in the GHP case is responsible for the observed rise of the
level energies when the occupancy increases. The origin of
this behavior is in the presence of factors of the type ~u;1
in the coefficients of the GHP expansion in the transfer
operator. Actually these factors come from the Taylor series
expansion of the square-root operator about a nonzero value

of the matrix element of (BTB)T, as it is discussed in detail in
Ref. [20]. This expansion is valid only for low values of vJZ..

For higher values and in the limit vf —> 1 the results obtained
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are spurious. Therefore, further investigation is required to
obtain valid expressions in the GHP mapping when vjz — 1.

In the OAI case the dependence is different and VBEF2 remains
constant essentially and with the same values for J = j £ 1
and J = j £ 2. Itis worthy to note that separately the different
contributions to the boson-fermion interaction cannot explain
the J = j — 1 anomaly, in contrast to the results obtained
when they are combined for x = —0.5, which nicely they
reproduce it when j < 13/2.

V. SUMMARY AND CONCLUSIONS

In this article we derived the boson-fermion interaction in
the IBFM from a quadrupole-quadrupole (q-q) force. To this
end the boson-fermion quadrupole operator was obtained from
the one nucleon transfer operator following two alternative
approaches: OAI and GHP. The expressions obtained are
suitable for the coupling between the odd nucleon and the alike
bosons, which is the traditional boson-fermion interaction used
in phenomenological studies in IBFM-1 and IBFM-2. We
found that the interaction contains four terms: two quadrupole
terms and two exchange terms. This splitting allows the
introduction of four different parameters which can be fitted to
study odd- A nuclei. In addition these expressions are valid also

PHYSICAL REVIEW C 95, 034317 (2017)

for quadrupole pairing interactions which were demonstrated
as the shell model sources of the exchange interaction in IBFM
in and near spherical regions of the nuclear chart [24].

We studied a single-j model with three different values of
j and also for two values of the strength of the g-q force.
For all cases, OAI and GHP schemes produce similar results
when the shell is half or less occupied (near shell closure)
for relatively small values of the strength of the quadrupole-
quadrupole interaction, which indicates that for vibrational
nuclei both mappings may work on the same footing. For
higher values of the occupancy, the GHP method provides
increasing values of excitation energies, while results from
the OAI method remain stable. This behavior may change in
realistic cases, where several nondegenerate orbits are present.
Studies in this direction will be addressed and their results will
be published elsewhere.
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