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Exact solution of the nuclear mean-field plus separable pairing model is reexamined. New auxiliary constraints
for solving the Bethe ansatz equations of the model are proposed. By using these auxiliary constraints, the
Bethe ansatz form of eigenvectors of the mean-field plus separable pairing Hamiltonian with nondegenerate
single-particle energies and nondegenerate separable pairing strengths purposed previously is verified. Since the
solutions of the model with one- and two-orbit cases are known, verification of the solutions for these two special
cases is made. To demonstrate structure and features of the solution, the model with three orbits in the ds shell is
taken as a nontrivial example, of which two-pair results and the ground state of the three-pair case are provided
explicitly. Since the number of equations involved increases with the number of orbits and pairs, to solve these
equations for a large number of orbits and pairs seems still difficult.
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I. INTRODUCTION

Pairing has been playing an important role in many branches
of physics. In nuclear physics, pairing interaction is considered
one of the important types of residual interactions in a nuclear
mean field to describe ground-state and low-energy spectro-
scopic properties of nuclei, such as binding energies, odd-even
effects, single-particle occupancies, excitation spectra, and
moments of inertia [1,2]. It has been shown that either spherical
or deformed mean-field plus the standard (orbit-independent)
pairing interaction can be solved exactly by using the Gaudin-
Richardson method [3–5]. The Gaudin-Richardson equations
in this case can be solved more easily by using the extended
Heine-Stieltjes polynomial approach [6–9]. The deformed and
spherical mean-field plus the extended pairing models have
also been proposed, which can be solved more easily than the
standard pairing model, especially when both the number of
valence nucleon pairs and the number of single-particle orbits
are large [10,11].

Exact solution of the separable pairing model with degener-
ate single-particle energy was proposed in Ref. [12], of which
the solution is similar to that of the Gaudin-Richardson type
for the standard pairing model. The separable pairing model
with two nondegenerate orbits was analyzed in Ref. [13]. In
Refs. [14–19], exact solution of a special family of the hy-
perbolic Richardson-Gaudin models was proposed, of which a
special case related to the problem may also be derived based
on the simple procedure shown in Ref. [20]. General nonde-
generate cases were considered previously in Refs. [21,22].
However, the auxiliary constraints used in Refs. [21,22] are
awkward and may be too specific, though they can be used to
provide solutions of the cases presented in Ref. [20].

In this work, the Bethe ansatz form of eigenvectors of the
mean-field plus separable pairing Hamiltonian with nonde-
generate single-particle energies and nondegenerate separable
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pairing strengths purposed in Refs. [21,22] is verified with
the help of a set of new auxiliary constraints for solving
the corresponding Bethe ansatz equations. Since solutions
of the model for one- and two-orbit cases are well known,
verification of the solutions for these two special cases is
made. To demonstrate structure and features of the solution, the
model with three orbits in the ds shell is taken as a nontrivial
example, of which two- and three-pair solutions are provided
explicitly.

II. THE MODEL AND ITS GENERAL SOLUTION

The Hamiltonian of the mean-field plus separable pairing
model is given as [21,22]

Ĥ =
p∑

t=1

εjt
N̂jt

+ ĤP =
p∑

t=1

εjt
N̂jt

− G
∑

1�t,t ′�p

cjt
cjt ′ S

+
jt
S−

jt ′
,

(1)

where p is the total number of orbits considered, {εjt
}

(t = 1,2, . . . ,p) is a set of single-particle energies generated
from any mean-field theory, such as those of the shell model,
N̂jt

= ∑
m a

†
jtm

ajtm and S+
jt

= ∑
m>0(−1)jt−ma

†
jtm

a
†
jt−m, in

which a
†
jtmt

(ajtm) is the creation (annihilation) operator for
a nucleon with angular momentum quantum number jt and
that of its projection m, and G and {cjt

} (t = 1,2, . . . ,p) are
the separable pairing interaction parameters, which are all
assumed to be real. To avoid degeneracy, which will result
in no solution from the procedure, εjt

�= εjt ′ and cjt
�= cjt ′ for

1 � t,t ′ � p are assumed in this work.
The set of operators {S−

jt
,S+

jt
,N̂jt

} (t = 1,2, . . . ,p), where
S−

jt
= (S+

jt
)†, generates p copies of SU(2) algebra satisfying

the commutation relations[
N̂jt

/2,S−
jt ′

] = −δtt ′S
−
jt
,

[
N̂jt

/2,S+
jt ′

] = δtt ′S
+
jt
,[

S+
jt
,S−

jt ′

] = 2δtt ′S
0
jt
, (2)

where S0
jt

= (N̂jt
− �jt

)/2 with �jt
= jt + 1/2.
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Let

S+(xμ) =
p∑

t=1

q∑
i=1

ai(xμ)

c2
jt

− xμ,i

cjt
S+

jt
=

q∑
i=1

ai(xμ)S+(xμ,i), (3)

where S+(xμ) ≡ S+(xμ,1, . . . ,xμ,q), which is frequently
used to simplify the expression, depends on q variables
{xμ,1, . . . ,xμ,q}, and

S+(xμ,i) =
p∑

t=1

1

c2
jt

− xμ,i

cjt
S+

jt
, (4)

and {xμ,i} and {ai(xμ) ≡ ai(xμ,1, . . . ,xμ,q)} (i = 1,2, . . . ,q)
are two sets of parameters to be determined for a given μ, in
which ai(xμ) also depends on the variables {xμ,1, . . . ,xμ,q}.
According to the commutation relations given in Eqs. (2), we
have [∑

t

εjt
N̂jt

,S+(xμ)

]
=

∑
i,t

2εjt
ai(xμ)

c2
jt

− xμ,i

cjt
S+

jt
, (5)

which, now, is imposed with the following constraints:∑
i,t

2εjt
ai(xμ)

c2
jt

− xμ,i

cjt
S+

jt
=

∑
t

cjt
S+

jt
+ β(xμ)S+(xμ), (6)

where β(xμ) ≡ β(xμ,1, . . . ,xμ,q ) may depend on {xμ,1,
. . . ,xμ,q}. Equation (6) can be expressed alternatively as

q∑
i=1

[
2εjt

− β(xμ)
]
ai(xμ)

c2
jt

− xμ,i

= 1 for t = 1,2, . . . ,p. (7)

It is clearly shown that the pairing operator given in Eq. (3)
is the same as that used in the separable pairing model [20–22]
when the constraint (7) is used. Namely,

S+(xμ) =
p∑

t=1

q∑
i=1

ai(xμ)

c2
jt

− xμ,i

cjt
S+

jt
=

p∑
t=1

cjt

2εjt
− β(xμ)

S+
jt
,

(8)

where β(xμ) ≡ β(xμ,1, . . . ,xμ,q) is related to eigenenergy of
the model.

Practically, we can use Eq. (7) to get expressions of ai(xμ)
with i = 1, . . . ,q and other p − q � 0 relations among β(xμ)
and {xμ,1, . . . ,xμ,q} for a given μ. Moreover,

[ĤP,S
+(xμ)] = G

p∑
t ′=1

cjt ′ S
+
jt ′

q∑
i=1

p∑
t=1

2S0
jt
ai(xμ)

(
cjt

)2

c2
jt

− xμ,i

= G

p∑
t ′=1

cjt ′ S
+
jt ′

�0(xμ), (9)

where

�0(xμ) =
q∑

i=1

p∑
t=1

2S0
jt

(
cjt

)2
ai(xμ)

c2
jt

− xμ,i

=
p∑

t=1

2S0
jt

(
cjt

)2

2εjt
− β(xμ)

, (10)

and

S+(xμ,xν) ≡ S+(xμ,1,xμ,2, . . . ,xμ,q,xν,1,xν,2, . . . ,xν,q)

= [[ĤP,S
+(xμ)],S+(xν)]

= 2G
∑

t ′
cjt ′ S

+
jt ′

∑
ii ′

ai(xμ)ai ′ (xν)

×
∑

t

(
cjt

)2(
c2
jt

− xμ,i

)(
c2
jt

− xν,i ′
)cjt

S+
jt

= 2G
∑

t ′
cjt ′ S

+
jt ′

∑
ii ′

ai(xμ)ai ′ (xν)

xμ,i − xν,i ′

× (xμ,iS
+(xμ,i) − xν,i ′S

+(xν,i ′ )). (11)

For the two-pair (k = 2) case, let

F (x1,x2) ≡ F (x1,1,x1,2, . . . ,x1,q ,x2,1,x2,2, . . . ,x2,q )

=
q∑

i ′=1

ai ′ (x2)x1,i

x1,i − x2,i ′
for i = 1, . . . ,q. (12)

Once Eq. (12) is solved, Eq. (11) can be rewritten as

S+(x1,x2) = 2G
∑

t ′
cjt ′ S

+
jt ′

(F (x1,x2)S+(x1)

+F (x2,x1)S+(x2)). (13)

As shown in Eqs. (11)–(13), F (x2,x1) can be obtained from
F (x1,x2) by permuting x1,i with x2,i for i = 1, . . . ,q. However,
when k � 3, Eq. (12) is no longer valid, which is dealt with
shortly.

As can be seen from Eqs. (10) and (11), xμ,i �= c2
jt

for any
μ, i, and t , xμ,i �= xν,i ′ for given μ �= ν and any i and i ′,
and β(xμ) �= 2εjt

for any t and μ should always be assumed
to avoid divergence. In addition to the eigenequation of the
model, which provides one constraint to the variable {xμ,i} for
a fixed μ, Eq. (7) and equations related to Eq. (12) for the
two-pair case provide p + q equations for a fixed μ, while the
total number of unknowns, {xμ,i,ai(xμ)}, β(xμ) for fixed μ,
and F (x1,x2) for the two-pair case, is 2q + 2. Thus, in order
to get a unique solution to the problem, we need q = p − 1,
which is used in the following. Moreover, for a fixed μ, by
removing the last equation with t = p in Eq. (7), which may
be used to express one of {xμ,i} (i = 1,2, . . . ,q) in terms of the
remaining q − 1 variables, the remaining q equations provided
by Eq. (7) may be expressed in matrix form with

B a = I, (14)

where the vector a = (a1(xμ),a2(xμ), . . . ,aq(xμ))T, in which
T denotes the matrix transposition, and I = (1,1, . . . ,1)T with
q components, and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2εj1 −β(xμ)

c2
j1

−xμ,1

2εj1 −β(xμ)

c2
j1

−xμ,2
· · · 2εj1 −β(xμ)

c2
j1

−xμ,q

2εj2 −β(xμ)

c2
j2

−xμ,1

2εj2 −β(xμ)

c2
j2

−xμ,2
· · · 2εj2 −β(xμ)

c2
j2

−xμ,q

...
... · · · ...

2εjq −β(xμ)

c2
jq

−xμ,1

2εjq −β(xμ)

c2
jq

−xμ,2
· · · 2εjq −β(xμ)

c2
jq

−xμ,q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

It is obvious that Eq. (14) has a unique solution of a when
and only when the matrix B is nonsingular with Det(B) �= 0,
which requires xμ,i �= xμ,i ′ for any μ and i �= i ′.

In the following, since the formalism for even-odd systems
is similar, we focus on the seniority zero cases for simplicity.

034308-2



EXACT SOLUTION OF THE MEAN-FIELD PLUS . . . PHYSICAL REVIEW C 95, 034308 (2017)

Let |0〉 be the pairing vacuum state satisfying S−
jt
|0〉 = 0 ∀t . A

k-pair eigenstate of Eq. (1) may be expressed as

|ζ,k〉 = S+(
x

(ζ )
1

)
S+(

x
(ζ )
2

) · · · S+(
x

(ζ )
k

)|0〉, (16)

where ζ is an additional quantum number introduced to label
the ζ th excitation state, and the explicit operator form of
S+(x(ζ )

μ ) is still given by Eq. (8), which was also used in
Refs. [20–22]. Using Eqs. (6), (9), and (11), we can directly
check that

∑
t

εjt
N̂jt

|ζ,k〉 =
(∑

t

cjt
S+

jt
+ β

(
x

(ζ )
1

)
S+(

x
(ζ )
1

))
S+(

x
(ζ )
2

) · · · S+(
x

(ζ )
k

)|0〉 + · · ·

+ S+(
x

(ζ )
1

) · · · S+(
x

(ζ )
k−1

)(∑
t

cjt
S+

jt
+ β

(
x

(ζ )
k

)
S+(

x
(ζ )
k

))|0〉 (17)

and

ĤP|ζ,k〉 = G
∑

t ′
cjt ′ S

+
jt ′

(
�̄0

(
x

(ζ )
1

)
S+(

x
(ζ )
2

) · · · S+(
x

(ζ )
k

) + · · · + S+(
x

(ζ )
1

) · · · S+(
x

(ζ )
k−1

)
�̄0

(
x

(ζ )
k

))|0〉

+ (
S+(

x
(ζ )
1 ,x

(ζ )
2

)
S+(

x
(ζ )
3

) · · · S+(
x

(ζ )
k

) + S+(
x

(ζ )
1 ,x

(ζ )
3

)
S+(

x
(ζ )
2

)
S+(

x
(ζ )
4

) · · · S+(
x

(ζ )
k

) + · · ·
+ S+(

x
(ζ )
1 ,x

(ζ )
k

)
S+(

x
(ζ )
2

) · · · S+(
x

(ζ )
k−1

) + · · · + S+(
x

(ζ )
k ,x

(ζ )
1

)
S+(

x
(ζ )
2

) · · · S+(
x

(ζ )
k−1

)
+ S+(

x
(ζ )
k ,x

(ζ )
2

)
S+(

x
(ζ )
3

) · · · S+(
x

(ζ )
k−1

) + · · · + S+(
x

(ζ )
k ,x

(ζ )
k−1

)
S+(

x
(ζ )
2

) · · · S+(
x

(ζ )
k−2

))|0〉, (18)

where

�̄0(x(ζ )
μ ) = −

q∑
i=1

p∑
t=1

�jt

(
cjt

)2
ai(x(ζ )

μ )

c2
jt

− x
(ζ )
μ,i

= −
p∑

t=1

�jt

(
cjt

)2

2εjt
− β

(
x

(ζ )
μ

) . (19)

Using Eqs. (17) and (18), one can prove that the eigenequation Ĥ |ζ,k〉 = E
(ζ )
k |ζ,k〉 is fulfilled if and only if

q∑
i=1

p∑
t=1

�jt

(
cjt

)2
ai

(
x(ζ )

μ

)
c2
jt

− x
(ζ )
μ,i

− 2W
(
x(ζ )

μ ; x(ζ )
1 , . . . ,x

(ζ )
μ−1,x

(ζ )
μ+1, . . . ,x

(ζ )
k

) = 1

G
for μ = 1,2, . . . ,k, (20)

or
p∑

t=1

�jt

(
cjt

)2

2εjt
− β

(
x

(ζ )
μ

) − 2W
(
x(ζ )

μ ; x(ζ )
1 , . . . ,x

(ζ )
μ−1,x

(ζ )
μ+1, . . . ,x

(ζ )
k

) = 1

G
for μ = 1,2, . . . ,k, (21)

where

W
(
x(ζ )

μ ; x(ζ )
1 , . . . ,x

(ζ )
μ−1,x

(ζ )
μ+1, . . . ,x

(ζ )
k

) =
∑
ν �=μ

q∑
i ′=1

ai ′
(
x(ζ )

μ

)
x

(ζ )
ν,i

x
(ζ )
ν,i − x

(ζ )
μ,i ′

for i = 1,2, . . . ,q, (22)

of which each term for fixed ν in the sum is the same
as that shown in Eq. (12). When k = 2, Eq. (22) becomes
Eq. (12). However, every term for fixed ν in the sum of
Eq. (22) depends on {x(ζ )

ν,i } with ν �= μ, which is different
from that in the Gaudin-Richardson solution of the standard
pairing model [3,4], and must be considered together to
be solved as shown in Eq. (22). In addition, it is ob-
vious that W (x(ζ )

μ ; x(ζ )
1 , . . . ,x

(ζ )
μ−1,x

(ζ )
μ+1, . . . ,x

(ζ )
k ) for a fixed

μ is symmetric with respect to any permutation among
{x(ζ )

1 , . . . ,x
(ζ )
μ−1,x

(ζ )
μ+1, . . . ,x

(ζ )
k }, which is similar to that in the

Gaudin-Richardson solution of the standard pairing model.
The corresponding eigenenergy is given by

E
(ζ )
k =

k∑
μ=1

β
(
x(ζ )

μ

)
. (23)

Since {ai(x(ζ )
μ )} (i = 1,2, . . . ,q) and {x(ζ )

μ,q=p−1} are ex-

pressed in terms of {β(x(ζ )
μ )} and {x(ζ )

μ,i} (i = 1,2, . . . ,q −
1) according to Eq. (7), q equations given by Eq. (22)
provide expressions of x

(ζ )
μ,i (i = 1,2, . . . ,q − 1) and the final

expression of W (x(ζ )
μ ; x(ζ )

1 , . . . ,x
(ζ )
μ−1,x

(ζ )
μ+1, . . . ,x

(ζ )
k ) for a fixed

μ. When p � 3, for a fixed μ, we use Eq. (7) to get
solution of {a1(x(ζ )

μ ), . . . ,aq=p−1(x(ζ )
μ )} and x

(ζ )
μ,p−1, and use

Eq. (22) to get that of W (x(ζ )
μ ; x(ζ )

1 , . . . ,x
(ζ )
μ−1,x

(ζ )
μ+1, . . . ,x

(ζ )
k )

for given μ and {x(ζ )
μ,1, . . . ,x

(ζ )
μ,p−2}. Meanwhile, β(x(ζ )

μ ) is
determined by the Bethe ansatz equations (20) and (21).
Although Eqs. (20) and (21) look quite similar to the Bethe
ansatz equations for the standard pairing case, the term
W (x(ζ )

μ ; x(ζ )
1 , . . . ,x

(ζ )
μ−1,x

(ζ )
μ+1, . . . ,x

(ζ )
k ) involved for a fixed μ

should be determined by q equations given in Eq. (22).
Therefore, solutions of Eqs. (20) and (21) cannot be obtained
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as easily as those in the standard pairing case shown in
Refs. [7,8].

III. SOME EXPLICIT EXAMPLES

In the following, we provide solutions of the model for some
special cases and compare them with those known previously
and display the procedure for some nontrivial cases with p =
3, which demonstrates that the procedure indeed works for the
model with nondegenerate single-particle energies {εjt

} and
nondegenerate separable pairing strengths {cjt

}.

A. p = 1 case

For this case, we may set a1(x) = 1 in Eq. (7) because it
only changes the normalization factor of the eigenstates of the
model. Thus, we have

β(x) = 2εj1 − (
cj1

)2 + x. (24)

By using Eq. (12), Eq. (20) can be written as

�j1

(
cj1

)2

c2
j1

− xμ

+
∑
ν �=μ

2xν

xμ − xν

= 1

G
for μ = 1,2, . . . , k, (25)

where the subscript i(=1) is omitted with {xμ,i=1 ≡ xμ}. For
any k, up to permutations among the k components of the
root, there is only one set of solution of Eq. (25). Though
the root of Eq. (25) may be complex when k � 2, without
solving Eq. (25), one can evaluate the eigenenergy according
to Eq. (23) from the following procedures: Summing Eq. (25)
over μ, one has

k∑
μ=1

�j1

(
cj1

)2

c2
j1

− xμ

= k

G
+ k(k − 1), (26)

while multiplying Eq. (25) by xμ and then summing over μ,
one gets

k∑
μ=1

�j1xμ

(
cj1

)2

c2
j1

− xμ

= (
cj1

)2
k∑

μ=1

�j1

(
cj1

)2

c2
j1

− xμ

− �j1

(
cj1

)2
k

= 1

G

k∑
μ=1

xμ. (27)

Combining Eqs. (26) and (27), one obtains

k∑
μ=1

xμ = (
cj1

)2
G

(
k2 − k + k

G
− �j1k

)
. (28)

However, substituting Eq. (24) into Eq. (23), we have

E
(ζ )
k = 2εj1k − (

cj1

)2
k +

k∑
μ=1

xμ. (29)

Finally, substituting Eq. (28) into Eq. (29), we get

E
(ζ )
k = 2εj1k + G

(
cj1

)2(
k2 − k − �j1k

)
, (30)

which is exactly the same as that given by the well-known
Racah quasispin formalism for the standard pairing model
with modified pairing strength G̃ = (cj1 )2

G.

B. p = 2 case

For this case q = 1. It should be assumed that cj1 �= cj2 and
εj1 �= εj2 . Hence, Eq. (7) provides

a1(x) ≡ a =
(
cj1

)2 − (
cj2

)2

2εj1 − 2εj2

,

β(x) = 2εj2

(
cj1

)2 − 2εj1

(
cj2

)2(
cj1

)2 − (
cj2

)2 + x
2εj1 − 2εj2(
cj1

)2 − (
cj2

)2 . (31)

Equation (20) is simply given by

p∑
t=1

�jt

(
cjt

)2

c2
jt

− x
(ζ )
μ

+
∑
ν �=μ

2x(ζ )
ν

x
(ζ )
μ − x

(ζ )
ν

= 1

aG
for μ = 1,2, . . . , k,

(32)

where the subscript i(= 1) is also omitted with {xμ,i=1 ≡ xμ}.
Moreover, as shown in Refs. [18–20], when(

cjt

)2 = g1εjt
+ g2 (33)

for t = 1,2, . . . ,p, where g1 and g2 are two constants, the
Hamiltonian (1) for any p in this case is exactly solvable. For
the p = 2 case, since t can only be taken as 1 or 2, Eq. (33)
provides a unique solution of the two parameters g1 and g2 for
the p = 2 case with

g1 = 2a, g2 =
(
cj2

)2
εj1 − (

cj1

)2
εj2

εj1 − εj2

. (34)

As shown in Ref. [20] for the p = 2 case, the Bethe ansatz
equations are

p∑
t=1

(
cjt

)2
�jt

2εjt
− z

(ζ )
i

+
∑
l �=i

g1z
(ζ )
l + 2g2

z
(ζ )
i − z

(ζ )
l

= 1/G for i = 1,2, . . . , k, (35)

with ζ th eigenenergy given by

E
(ζ )
k =

k∑
i=1

z
(ζ )
i , (36)

of which the corresponding eigenstate is expressed as

|ζ,k〉 = S+(
z

(ζ )
1

) · · · S+(
z

(ζ )
k

)|0〉, (37)

where

S+(z) =
p∑

t=1

1

2εjt
− z

cjt
S+

jt
. (38)

By substituting zl = 2(xl − g2)/g1 for l = 1, . . . ,k into
Eqs. (35)–(37), Eqs. (35)–(37) become Eqs. (20), (23), and
(16), respectively, for which the constraints given in Eq. (33)
should be used. Thus, it is shown that the results for the p = 1
and p = 2 cases obtained from the procedure proposed in this
work are consistent with those obtained previously.
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TABLE I. The single-particle energies εjt (in MeV) for the ds shell deduced from Ref. [23], the parameters {cjt }, and G (in MeV) taken
from Ref. [20], where j1 = 5/2, j2 = 1/2, and j3 = 3/2, and the overlaps ρ(ζ,k) = |〈ζ,k|ζ,k〉FMD| for the k = 2 case and the ground state of
the k = 3 case, where |ζ,k〉 is the ζ th k-pair excitation state given by Eq. (16), and |ζ,k〉FMD is that obtained from the full matrix diagonalization
within the ds-shell subspace shown in Ref. [20].

εj1 = −3.70 εj2 = −2.92 εj3 = 1.90 cj1 = 0.99583 cj2 = −0.06334 cj3 = 0.06562 G = 0.945

ρ(1,2) = 0.99849 ρ(2,2) = 0.99625 ρ(3,2) = 0.99884 ρ(4,2) = 0.99931 ρ(5,2) = 0.999997 ρ(1,3) = 0.978308

C. p = 3 case

For this case q = 2. εj1 �= εj2 �= εj3 and cj1 �= cj2 �= cj3

should also be assumed. To explicitly demonstrate the solu-
tions, we take the ds shell with three orbitals 0d5/2, 1s1/2, and
0d3/2, of which the single-particle energies are provided in
Ref. [23], while the values of the parameters {cj } and the
overall pairing strength G provided in Ref. [20] are used
for this example, which are shown in Table I. As is known,

the one-pair (k = 1) solution of the model for any p can
be obtained easily by using S+(β) given in the rightmost
expression of Eq. (8) directly, of which β is the only variable
in the solution. Thus, the k = 1 trivial case is not discussed.
It should be stated that condition (33), which is sufficient to
be used for the p = 2 case, is not needed for the p � 3 cases
according to this procedure. When p = 3, the nontrivial cases
are those with k � 2.

For the k = 2 case, according to the procedure, we may use Eq. (7) to get a1(β(xμ),xμ,1), a2(β(xμ),xμ,1), and xμ,2, which can
be expressed as

a1(β(xμ),xμ,1) = x3
μ,1 − 0.999995x2

μ,1 + 0.00826599xμ,1 − 0.0000171316

β(xμ)x2
μ,1 + 7.39946x2

μ,1 − 0.0087071β(xμ)xμ,1 − 0.0633624xμ,1 − 0.00003 β(xμ)2 − 0.0000425β(xμ) + 0.000804
, a2(β(xμ),xμ,1)

= 0.00003 β(xμ)3 + β(xμ)2(0.004197 − 0.98694xμ,1) + β(xμ)
(
0.00754 − 1.904xμ,1 − 12.758x2

μ,1

) − 0.09289 + 22.4168xμ,1 − 59.2576x2
μ,1 − 17.6893x3

μ,1

β(xμ)3(−0.0044 + xμ,1) + β(xμ)2
(− 0.038 + 7.55xμ,1 + 433.7x2

μ,1 − 33206.8x3
μ,1

) +β(xμ)
(
0.072 − 34.58xμ,1 + 6365.3x2

μ,1 − 491425x3
μ,1

) + 0.846 − 264.2xμ,1 + 23353.4x2
μ,1 − 1818140x3

μ,1

,

xμ,2 = −0.00003β(xμ)2 − β(xμ)(0.0000425 + 0.0043536xμ,1) − 0.03168xμ,1 + 0.000804

β(xμ)(0.004354 − xμ,1) − 7.39946xμ,1 + 0.03168
. (39)

It should be stated that Eqs. (39) are valid for any μ and k. However, Eqs. (12) and (22) provide two sets of solutions, of which one
set involves xμ,i = xμ,i ′ for any μ and 1 � i �= i ′ � 2 for this case. This solution violates the nonsingular condition Det(B) �= 0
with the matrix B given by Eq. (15), and should be discarded. The other set of solutions for xμ,1, W (x1; x2) = F (x2,x1), and
W (x2; x1) = F (x1,x2) for this case obtained from the constraints shown in Eqs. (12) or (22) are given as

x1,1 = x2,1 x2,2(−x1,2 a1(β(x2),x2,1) + x2,2 a1(β(x2),x2,1) − x1,2 a2(β(x2),x2,1) + x2,1 a2(β(x2),x2,1))

−x1,2x2,1a1(β(x2),x2,1) + x2,1x2,2a1(β(x2),x2,1) − x1,2x2,2a2(β(x2),x2,1) + x2,1x2,2a2(β(x2),x2,1)
,

x2,1 = x1,1 x1,2(x1,2 a1(β(x1),x1,1) − x2,2 a1(β(x1),x1,1) + x1,1 a2(β(x1),x1,1) − x2,2 a2(β(x1),x1,1))

x1,1x1,2a1(β(x1),x1,1) − x1,1x2,2a1(β(x1),x1,1) + x1,1x1,2a2(β(x1),x1,1) − x1,2x2,2a2(β(x1),x1,1)
, (40)

W (x2; x1) = x1,2 (−x2,2a1(β(x2),x2,1) + x1,2a1(β(x2),x2,1) + x1,2a2(β(x2),x2,1) − x2,1a2(β(x2),x2,1))

(x1,2 − x2,1)(x1,2 − x2,2)
,

W (x1; x2) = x2,2(−x1,2 a1(β(x1),x1,1) + x2,2 a1(β(x1),x1,1) − x1,1 a2(β(x1),x1,1) + x2,2 a2(β(x1),x1,1))

(x2,2 − x1,1)(x2,2 − x1,2)
. (41)

It can easily be verified that xμ,1 or W (xμ; xν) can be
obtained from xν,1 or W (xν ; xμ) by permuting xμ,i with xν,i in
the expressions. Equation (21) is simply given by

3∑
t=1

�jt

(
cjt

)2

2εjt
− β

(
x

(ζ )
1

) − 2W
(
x

(ζ )
1 ; x(ζ )

2

) = 1

G
,

3∑
t=1

�jt

(
cjt

)2

2εjt
− β(x(ζ )

2 )
− 2W

(
x

(ζ )
2 ; x(ζ )

1

) = 1

G
. (42)

By substituting Eqs. (39) into Eqs. (40) and (41), and then by
substituting Eq. (41) into Eq. (42), Eqs. (40) and (42) provide
four equations for x

(ζ )
1,1, x(ζ )

2,1, β(x(ζ )
1 ), and β(x(ζ )

2 ), which can be
solved numerically.

Table II shows all pairing excitation energies of the model
in the ds shell with k = 2. According to Eqs. (39)–(42), we use
FindRoot provided by Wolfram MATHEMATICA to search for
possible roots x

(ζ )
1,1, x

(ζ )
2,1, β(x(ζ )

1 ), and β(x(ζ )
2 ) of Eqs. (40) and

(42). Then, we use the resultants to verify whether they indeed
satisfy Eqs. (40) and (42) due to the fact that the resultants are
iteratively obtained by MATHEMATICA approximately, of which
the accuracy cannot always be guaranteed. A better algorithm
is needed when one implements the procedure to solve large
p and k cases. We found that FindRoot of MATHEMATICA

frequently provides one of solutions of the Bethe ansatz
equations given in Eq. (21) with one of {xμ,i} being zero
(xμ,i = 0) or at one of the poles of Eq. (20), namely, xμ,i =
c2
j , with the corresponding expansion coefficient ai(xμ) = 0,

which are not solutions for our purpose and should be
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discarded. For the results provided in Table II, Eqs. (40)
and (42) are valid with errors about 1 × 10−3. Though we
cannot prove the completeness of the solutions of Eqs. (40)
and (42) at present, our numerical calculation shows that
there are indeed five solutions given in Table II, which are in
one-to-one correspondence with those obtained by full matrix
diagonalization shown in Ref. [20]. Since eigenvalues of the
Hamiltonian should be real, the constraint with

∑k
μ=1 β(xμ)

being real should be helpful. It should be stated that there
may be many different solutions of {xμ,i} resulting in the
same set of β(xμ). However, one only needs to choose one
set of {xμ,i} to get the spectral parameters {βμ = β(xμ)} if
the final results of {βμ} up to permutations among different
μ are the same because eigenstates and eigenenergies of the
model only depend on {βμ}, which are all the same with
any permutation among different μ. In addition, similar to
that occurring in the original Richardson-Gaudin solution
to the standard pairing model, there is also Sk permutation

symmetry among k components of the roots. Namely, if
{x1,i ,x2,i , . . . ,xk,i} is a solution, any permutation among
{x1,i ,x2,i , . . . ,xk,i} is also a solution, among which we only
need to choose one set of the solutions because they result
in the same eigenstate and the corresponding eigenenergy
of the model. The ground-state solution of the k = 2 case
shown in Table II generated by Wolfram MATHEMATICA

version 9.0 is provided in the Supplemental Material in
Ref. [24].

Finally, we present the solution for the k = 3 ground state of
the model, which shows general features of the procedure for
cases with arbitrary p and k as well. Similar to the k = 2 case,
the expansion coefficients a1(β(xμ),xμ,1), a2(β(xμ),xμ,1), and
xμ,2 for μ = 1,2,3 are still given by Eq. (39). However,
Eq. (22) in this case provides rather complicated expressions
of nondegenerate xμ,1 for μ = 1,2,3, of which only equations
in determining them are given. Specifically, Eq. (22) involves
six equations with

W (x1; x2,x3) = x3,1a1(β(x1),x1)

x3,1 − x1,1
+ x2,1a1(β(x1),x1)

x2,1 − x1,1
+ x3,1a2(β(x1),x1)

x3,1 − x1,2
+ x2,1a2(β(x1),x1)

x2,1 − x1,2
,

W (x2; x1,x3) = x1,1a1(β(x2),x2)

x1,1 − x2,1
+ x3,1a1(β(x2),x2)

x3,1 − x2,1
+ x1,1a2(β(x2),x2)

x1,1 − x2,2
+ x3,1a2(β(x2),x2)

x3,1 − x2,2
,

W (x3; x1,x2) = x1,1a1(β(x3),x3)

x1,1 − x3,1
+ x2,1a1(β(x3),x3)

x2,1 − x3,1
+ x1,1a2(β(x3),x3)

x1,1 − x3,2
+ x2,1a2(β(x3),x3)

x2,1 − x3,2
,

W (x1; x2,x3) = x3,2a1(β(x1),x1)

x3,2 − x1,1
+ x2,2a1(β(x1),x1)

x2,2 − x1,1
+ x3,2a2(β(x1),x1)

x3,2 − x1,2
+ x2,2a2(β(x1),x1)

x2,2 − x1,2
,

W (x2; x1,x3) = x1,2a1(β(x2),x2)

x1,2 − x2,1
+ x3,2a1(β(x2),x2)

x3,2 − x2,1
+ x1,2a2(β(x2),x2)

x1,2 − x2,2
+ x3,2a2(β(x2),x2)

x3,2 − x2,2
,

W (x3; x1,x2) = x1,2a1(β(x3),x3)

x1,2 − x3,1
+ x2,2a1(β(x3),x3)

x2,2 − x3,1
+ x1,2a2(β(x3),x3)

x1,2 − x3,2
+ x2,2a2(β(x3),x3)

x2,2 − x3,2
, (43)

of which the first three of them may be used as the expressions
of W (xμ; xν,xν ′ ) with μ �= ν �= ν ′, while the last three of
Eqs. (43) are used to determine xμ,1 (μ = 1,2,3).

The Bethe ansatz equations (21) can then be expressed as

3∑
t=1

�jt

(
cjt

)2

2εjt
− β

(
x

(ζ )
1

) − 2W (x1; x2,x3) = 1

G
,

3∑
t=1

�jt

(
cjt

)2

2εjt
− β

(
x

(ζ )
2

) − 2W (x2; x1,x3) = 1

G
,

3∑
t=1

�jt

(
cjt

)2

2εjt
− β

(
x

(ζ )
3

) − 2W (x3; x1,x2) = 1

G
. (44)

In solving Eqs. (44), one should keep in mind that

2∑
i=1

ai

(
x(ζ )

μ

)
c2
jt

− x
(ζ )
μ,i

= 1

2εjt
− β

(
x

(ζ )
μ

) (45)

for any t should also be satisfied for μ = 1, 2, and 3 as
required by the constraints shown in Eq. (7), which may
be used to check the final results. Similar to the k = 2 case,

by substituting Eqs. (39) with μ = 1,2,3 into Eqs. (43), and
then by substituting the first three of Eqs. (43) into Eqs. (44),
Eqs. (44) and the last three of Eqs. (43) provide six equations
for x

(ζ )
μ,1 and β(x(ζ )

μ ) for μ = 1,2,3, which may be solved
numerically. For the results provided in Table III, Eqs. (43),
(44), and (45) are valid with errors about 1 × 10−3, 1 × 10−3,
and 1 × 10−14, respectively. The results shown in Table III
generated by Wolfram MATHEMATICA version 9.0 are also
provided in Ref. [24].

In comparison to the exact numerical results obtained
from the progressive diagonalization scheme for this case
provided in Ref. [20], which is equivalent to the full matrix
diagonalization within the ds-shell subspace, it is shown that
the eigenenergies obtained from the procedure proposed in this
work are very close to those shown in Ref. [20] with errors
about 0.002 MeV for the k = 2 case shown in Table II, while
the ground-state energy of the k = 3 case shown in Table III is
exactly the same as that given in Ref. [20]. Since eigenstates
of the model should be sensitive to the results of solution, we
also calculated overlaps ρ(ζ,k) = |〈ζ,k|ζ,k〉FMD|, where |ζ,k〉
is the ζ th k-pair excitation state obtained in this work, and
|ζ,k〉FMD is that obtained from the full matrix diagonalization
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within the ds-shell subspace shown in Ref. [20], which are also
shown in the last row of Table I. It can be seen from Table I that
the overlaps for the k = 2 case are all greater than 99.63%,
while it is 97.83% for the k = 3 ground state. The overlap for
the k = 3 ground state is not perfect mainly due to the fact that
the errors in the roots of Eqs. (44) and the last three of Eqs. (43)
obtained by FindRoot of MATHEMATICA seem still significant,
which are difficult to be reduced with the increasing of p and
k, especially when the roots are complex. Therefore, a better
numerical algorithm for solving Eqs. (7), (20) or (21), and
(22) is needed. Anyway, our analysis indicates that the results
obtained from the procedure shown in this work are indeed
reliable.

IV. CONCLUSIONS

Exact solution of the nuclear mean-field plus separable
pairing model is reexamined. The suitable auxiliary constraints
for solving the Bethe ansatz equations of the model are
proposed. The Bethe ansatz form of eigenvectors of the
mean-field plus separable pairing Hamiltonian purposed in
Refs. [21,22] is verified with these new auxiliary constraints.
Specifically, when p � 3, we need to solve p × k auxiliary
equations given by Eq. (7) and another p × k equations given
by Eqs. (20) or (21) and Eq. (22) to get (p − 1) × k variables
{xμ,1,xμ,2, . . . ,xμ,p−1} and another (p − 1) × k variables
{a1(xμ),a2(xμ), . . . ,ap−1(xμ)}, together with k variables β(xμ)
and another k variables W (xμ; x1, . . . ,xμ−1,xμ+1, . . . ,xk), for
μ = 1,2, . . . ,k. Once the k variables β(xμ) (μ = 1, . . . ,k) are
obtained, they can then be used to get k-pair eigenstates (16)
and the corresponding eigenenergies (23). It clearly shows that
the number of equations involved equals exactly the number
of unknowns, which ensures the uniqueness of the solution. In

addition to the solution of the model for one- and two-orbit
cases, to demonstrate structure and features of the solution,
the model with three orbits (p = 3) in the ds shell is taken
as a nontrivial example, of which two-pair results and the
ground state of the three-pair case are provided explicitly,
which are in one-to-one correspondence to the results obtained
from the full matrix diagonalization in the ds-shell subspace
provided in Ref. [20]. Though only some p = 3 cases are
presented, the formulism shown in Eqs. (7), (20) or (21), and
(22) applies to any p and k as well, which seems valid for
any p and k with nondegenerate single-particle energies and
nondegenerate separable pairing strengths, though we cannot
provide a rigorous proof of the completeness for the general
case at present. Since eigenvalues of the Hamiltonian should
always be real, the constraint with

∑k
μ=1 β(xμ) being real

may be used in finding solutions of the model. Since the
number of equations involved increases with the number of
orbits and pairs, to solve these equations for a large number of
orbits and pairs seems still difficult. As shown in Ref. [20], the
progressive diagonalization method [25] seems more practical
to solve the problem.
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