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Two-nucleon transfer reactions as a test of quantum phase transitions in nuclei
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A quantal and a semiclassical analysis of two-nucleon transfer intensities is done within the framework of
the interacting boson model. The expected features of these quantities for the quantum phase transition (QPT)
between spherical, U(5), and axially deformed, SU(3), shapes are discussed. Experimental data for (p,t) and
(t,p) transfer reactions clearly show the occurrence of QPTs in Gd, Sm, and Nd.
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I. INTRODUCTION

Quantum phase transitions (QPT) in nuclei have been, in
recent years, the subject of many investigations [1–4]. QPTs
are phase transitions that occur as a function of a parameter
appearing in the quantum Hamiltonian describing the system.
A class of QPTs found in nuclei is between two different
shapes, hence the name “shape phase transitions” given to
them. The two shapes (phases) have different symmetry. QPTs
in nuclei acquired prominence when it was found that also
at the critical point of the transition, a symmetry occurs,
related to the scale invariance of the Hamiltonian [5,6]. An
important question is to identify signatures of QPTs that can
be tested by experiments. Several of these signatures have
been discussed, including two-nucleon separation energies,
B(EL) values, isomer and isotope shifts, and energy ratios
[1–4]. In this article, we discuss other signatures, related to
two-neutron transfer intensities and show that experimental
data in the rare-earth nuclei (Gd, Sm, and Nd) show evidence
for a QPT connecting spherical and axially deformed shapes
with symmetry U(5) and SU(3), respectively, thus confirming
previous results obtained using other signatures [1–4,7]. The
evolution of two-nucleon transfer intensities as a test of shape
phase transitions within the framework of the interacting
boson model (IBM) was previously given in the seminal work
of [8], where the authors focused on discussing monopole
two-nucleon transfer in (t,p) reactions. Here we enlarge the
work of [8] by considering both monopole and quadrupole
two-nucleon transfer in (t,p) and (p,t) processes, and most
importantly, we do a wide and detailed comparison between
theory and experiment.

The paper is divided in two parts. In the first part, we discuss
the quantum and classical treatment of two-nucleon transfer
reactions within the framework of the IBM [9]. In the second
part, we perform a detailed analysis of available experimental
data and show the evidence for QPT in Gd, Sm, and Nd.

II. TWO-NUCLEON TRANSFER INTENSITIES

In the IBM, two-neutron (ν) transfer operators correspond-
ing to monopole-pair and quadrupole-pair are defined as [9,10]

P
(0)
+,ν,0 = taν

s†A(�ν,Nν), P
(0)
−,ν,0 = taν

A(�ν,Nν)s, (1)

P
(2)
+,ν,μ = tbν

d†
μA(�ν,Nν), P

(2)
−,ν,μ = tbν

A(�ν,Nν)d̃μ (2)

with the factor A(�ν,Nν) given by

A(�ν,Nν) =
(

�ν − Nν − Nν

N
n̂d

) 1
2
(

Nν + 1

N + 1

) 1
2

. (3)

A similar expression holds for two-proton (π ) transfer oper-
ators with the index ν replaced by π . In Eqs. (1) to (3), Nν

and �ν represent the number of valence neutron (ν) pairs and
their degeneracy, respectively, while taν

and tbν
denote scale

factors. Accordingly, the (p,t) and (t,p) transfer intensities
can be calculated as [9]

I a(N + 1,L′ → N,L)

= 1

2L′ + 1
|〈N,L‖P−‖N + 1,L′〉|2 (4)

and

I b(N,L → N + 1,L′)

= 1

2L + 1
|〈N + 1,L′‖P+‖N,L〉|2, (5)

respectively. We consider here those related to the lowest states
with L = 0 and L = 2, specifically

I a
1 = I (N + 1,0+

1 → N,0+
1 ), (6)

I a
2 = I (N + 1,0+

1 → N,0+
2 ), (7)

I a
3 = I (N + 1,0+

1 → N,0+
3 ), (8)

I a
4 = I (N + 1,0+

1 → N,2+
1 ), (9)

I a
5 = I (N + 1,0+

1 → N,2+
2 ), (10)

I a
6 = I (N + 1,0+

1 → N,2+
3 ), (11)

for (p,t) reactions and

I b
1 = I (N,0+

1 → N + 1,0+
1 ), (12)

I b
2 = I (N,0+

1 → N + 1,0+
2 ), (13)

I b
3 = I (N,0+

1 → N + 1,0+
3 ), (14)

I b
4 = I (N,0+

1 → N + 1,2+
1 ), (15)
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I b
5 = I (N,0+

1 → N + 1,2+
2 ), (16)

I b
6 = I (N,0+

1 → N + 1,2+
3 ), (17)

for (t,p) reactions.

A. Quantum treatment

We consider the Hamiltonian [11]

Ĥ (η,χ ) = ε0

[
(1 − η)n̂d − η

4N
Q̂χ · Q̂χ

]
, (18)

where Q̂χ = (d†s + s†d̃)
(2) + χ (d†d̃)

(2)
is the quadrupole

operator, η and χ are the control parameters with η ∈ [0,1]
and χ ∈ [−√

7/2,0], and ε0 is a scale factor. This Hamiltonian
can be used to study QPTs between all three phases of the
IBM, with symmetry U(5) (η = 0), SO(6) (η = 1, χ = 0),
and SU(3) (η = 1, χ = −√

7/2). Here we study the QPT
between U(5) and SU(3). Also, in nuclei, the control parameter
is the nucleon number (or the boson number N ), of which the
value is discrete. To simulate a realistic situation, we use the
parametrization [8]

η = 0.005N2 − 0.125 (19)

with η ranging from 0 to 1 when N creases from 5 to 15. The
resulting difference between the initial and the final state is

�η ≡ η(N + 1) − η(N )

= 0.01N + 0.005. (20)

To study the behavior of the intensities and their classical
limit, we consider in this section the matrix elements of s, dμ

[for the (p,t) reaction] and s†, d†
μ [for the (t,p) reaction].

For the quantum treatment, we calculate reduced matrix
elements of these operators with wave functions obtained by
diagonalizing Ĥ of Eq. (18).

B. Classical treatment

We introduce the boson condensates (coherent states) of
IBM defined in [8,12,13] as

|N ; g〉 = 1√
N !

(B†
g)N |0〉 (21)

with

B†
g = 1√

1 + β2

[
s† + β cos γ d

†
0 + 1√

2
β sin γ (d†

−2 + d
†
+2)

]
(22)

and, similarly

|N + 1; g′〉 = 1√
(N + 1)!

(B†
g′)N+1|0〉 (23)

with

B
†
g′ = 1√

1 + β ′2

[
s† + β ′ cos γ ′d†

0

+ 1√
2
β ′ sin γ ′(d†

−2 + d
†
+2)

]
. (24)

In addition, we can define the β-vibrational state

|N + 1; β ′
v〉 = 1√

(N + 1)
(B†

β ′
v
)Bg′ |N + 1; g′〉 (25)

with

B
†
β ′

v
= 1√

1 + β ′2

[
−β ′s† + cos γ ′d†

0

+ 1√
2

sin γ ′(d†
−2 + d

†
+2)

]
, (26)

and the γ -vibrational state

|N + 1; γ ′
v〉 = 1√

(N + 1)

(
B

†
γ ′

v

)
Bg′ |N + 1; g′〉 (27)

with

B
†
γ ′

v
= 1√

2
cos γ ′(d†

+2 + d
†
−2) − sin γ ′d†

0 . (28)

In the case of axial symmetry (γ = 0◦) the operator in Eq. (28)
should be replaced with B

†
γ ′

v,±2 = d
†
±2 to have a well-defined

angular momentum projection on the symmetry axis [13]. One
can also define double beta, 2β ′

v-vibrational state

|N + 1; 2β ′
v〉 = 1√

2(N + 1)N
(B†

β ′
v
t)2(Bg′)2|N + 1; g′〉.

(29)

By making use of [14]

[bi,f (b)] = ∂

∂b
†
i

f (b), (30)

[f (b),b†i ] = ∂

∂bi

f (b), (31)

where bi (b†i ) represents the annihilation (creation) operator
for s or d boson, and f (b) denotes a polynomial of bi and b

†
i ,

one can derive explicit formulas for matrix elements of s† (s)
and d†

μ (dμ). They can be obtained one from the other using

〈φ′|b†|φ〉 = 〈φ|b|φ′〉. (32)

(A) φg(N ) ↔ φ′
g(N + 1)

For (t,p) or (p,t) transfer reactions between ground (g)
bands, one can derive

〈N ; g|s|N + 1; g′〉
= 〈N + 1; g′|s†|N ; g〉

=
√

N + 1√
1 + β ′2

[
1 + ββ ′ cos(γ − γ ′)√

(1 + β ′2)(1 + β2)

]N

, (33)

〈N ; g|dμ|N + 1; g′〉
= 〈N + 1; g′|d†

μ|N ; g〉

=
√

N + 1√
1 + β ′2

[
1 + ββ ′ cos(γ − γ ′)√

(1 + β ′2)(1 + β2)

]N

×
[
β ′ cos γ ′δμ,0 + 1√

2
β ′ sin γ ′(δμ,2 + δμ,−2)

]
. (34)

(B) φg(N ) → φ′
e(N + 1)
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For the (t,p) transfer reaction between ground bands and excited (e) bands, one can find

〈N + 1; β ′
v|s†|N ; g〉 = [Nβ cos(γ − γ ′) − (N + 1)β ′ − ββ ′2 cos(γ − γ ′)]

[1 + ββ ′ cos(γ − γ ′)]N−1

(
√

1 + β2)N

(
1√

1 + β ′2

)N+1

, (35)

〈N + 1; β ′
v|d†

μ|N ; g〉 = [1 + ββ ′ cos(γ − γ ′)]N−1

(
√

1 + β2)N

(
1√

1 + β ′2

)N+1{
[Nββ ′ cos γ cos γ ′ − Nβ ′2 + 1 + ββ ′ cos(γ − γ ′)]

×
[

cos γ ′δμ,0 + 1√
2

sin γ ′(δμ,2 + δμ,−2)

]
+ Nββ ′ sin γ sin γ ′ cos γ ′

}
, (36)

〈N + 1; γ ′
v|s†|N ; g〉 = Nβ sin(γ − γ ′)

[1 + ββ ′ cos(γ − γ ′)]N−1

[
√

(1 + β2)(1 + β ′2)]N
, (37)

〈N + 1; γ ′
v|d†

μ|N ; g〉 =
[

1 + ββ ′ cos(γ − γ ′)√
(1 + β2)(1 + β ′2)

]N[
cos γ ′
√

2
(δμ,2 + δμ,−2)

− sin γ ′δμ,0 + Nβ sin(γ − γ ′)
β ′ cos γ ′δμ,0 + 1√

2
β ′ sin γ ′(δμ,−2 + δμ,2)

1 + ββ ′ cos(γ − γ ′)

]
, (38)

〈N + 1; 2β ′
v|s†|N ; g〉 =

√
N

2
[β cos(γ − γ ′) − β ′]

[1 + ββ ′ cos(γ − γ ′)]N−2√
(1 + β2)N (1 + β ′2)N+1

×{(N − 1)[β cos(γ − γ ′) − β ′] − 2β ′[1 + ββ ′ cos(γ − γ ′)]} , (39)

〈N + 1; 2β ′
v|d†

μ|N ; g〉 =
√

N

2
[β cos(γ − γ ′) − β ′]

[1 + ββ ′ cos(γ − γ ′)]N−2√
(1 + β2)N (1 + β ′2)N+1

[
cos γ ′δμ,0 + 1√

2
sin γ ′(δμ,2 + δμ,−2)

]

×{2[1 + ββ ′ cos(γ − γ ′)] + (N − 1)β ′[β cos(γ − γ ′) − β ′]} . (40)

(C) φ′
g(N + 1) → φe(N )

For the (p,t) transfer reaction between ground bands and excited bands, one can find

〈N ; βv|s|N + 1; g′〉 = [1 + ββ ′ cos(γ − γ ′)]N−1

(
√

1 + β2)N

(
1√

1 + β ′2

)N+1√
N (N + 1)[β ′ cos(γ − γ ′) − β] , (41)

〈N ; βv|dμ|N + 1; g′〉 =
√

N (N + 1)
(1 + ββ ′ cos(γ − γ ′))N−1

(
√

1 + β2)N

(
1√

1 + β ′2

)N+1

[β ′ cos(γ − γ ′) − β]

×
[
β ′ cos γ ′δμ,0 + β ′ sin γ ′

√
2

(δμ,2 + δμ,−2)

]
, (42)

〈N ; γv|s|N + 1; g′〉 =
√

N (N + 1)(β ′ + β2β ′) sin(γ ′ − γ )
[1 + ββ ′ cos(γ − γ ′)]N−1

[
√

(1 + β2)(1 + β ′2)]N+1
, (43)

〈N ; γv|dμ|N + 1; g′〉 =
√

(N + 1)N (1 + β2)β ′ sin(γ ′ − γ )

[
β ′ cos γ ′δμ,0 + 1√

2
β ′ sin γ ′(δμ,2 + δμ,−2)

]

× [1 + ββ ′ cos(γ − γ ′)]N−1

(
√

1 + β2)N
1

(
√

1 + β ′2)N+1
, (44)

〈N ; 2βv|s|N + 1; g′〉 =
√

(N + 1)N (N − 1)

2
[β ′ cos(γ − γ ′) − β]2 [1 + ββ ′ cos(γ − γ ′)]N−2√

(1 + β2)N (1 + β ′2)N+1
, (45)

〈N ; 2βv|dμ|N + 1; g′〉 =
√

(N + 1)N (N − 1)

2
[β ′ cos(γ − γ ′) − β]2

[
β ′ cos γ ′δμ,0 + 1√

2
β ′ sin γ ′(δμ,2 + δμ,−2)

]

× [1 + ββ ′ cos(γ − γ ′)]N−2√
(1 + β2)N (1 + β ′2)N+1

. (46)
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The classical matrix elements of the s-boson operator for the (t,p) reactions shown in Eqs. (33), (35), and (39) had already been
derived in [8]. Here we have given also those of the d boson and included the γ dependence for both (p,t) and (t,p) transfer
reactions. We note that while for ground to ground transitions (A) there is no difference in the matrix elements for (p,t) and (t,p)
reactions, for transitions between ground and excited bands there is a difference, already noted in ([9], p. 82), and for this reason
we have given explicitly both in (B) and (C).

To connect the intensities of transfer reaction to QPTs, we return to the quantum Hamiltonian Ĥ of Eq. (18), and write down
the potential energy surface corresponding to it

V (β,γ ) ≡ 〈N ; g|Ĥ (η,χ )|N ; g〉

= ε0Nβ2

1 + β2

[
(1 − η) − (χ2 + 1)

η

4N

]
− 5ε0η

4(1 + β2)
− ε0η(N − 1)

4(1 + β2)2

[
4β2 − 4

√
2

7
χβ3cos3γ + 2

7
χ2β4

]
. (47)

This potential function can be used to study QPTs between
all three phase of the IBM. To this end, one minimizes the
potential function, Eq. (47), with respect to the quadrupole
deformation parameters β and γ , obtaining the equilibrium
classical order parameters, βe and γe. The ground-state energy
for a given value of η,χ is Eg ≡ V (η,χ,βe,γe). It has been
found that for the potential (47) either γe = 0◦ (χ < 0) or
γ independent (χ = 0). We henceforth set γ = 0◦ and study
only its β dependence.

In Fig. 1, we show the behavior of the order parameter βe as
a function of η for fixed N (or N + 1). This behavior is typical
of a first-order transition, U(5)–SU(3), with a discontinuity in
βe, at the critical value ηc. The critical value is given by ηc =
8/17 for N → ∞. Using the formulas (41) to (46) for γ =
γ ′ = 0◦ we can calculate the evolution of the matrix elements
of s, d (or s†, d†

μ) as a function of η. All of them appear to
have discontinuities at η = ηc. In Figs. 2(a) to 2(d), we show
the behavior of

F1 ≡ |〈N ; g|s|N + 1; g′〉|2 = |〈N + 1; g′|s†|N ; g〉|2, (48)

F2 ≡ |〈N ; g|d0|N + 1; g′〉|2 = |〈N + 1; g′|d†
0|N ; g〉|2, (49)

F3 ≡ |〈N ; βv|s|N + 1; g′〉|2, (50)

F4 ≡ |〈N + 1; β ′
v|s†|N ; g〉|2 (51)

FIG. 1. Evolution of the classical order parameter βe in the
U(5)–SU(3) transition for N = 10 with the inset showing the critical
behavior of βe.

as a function of η. These matrix elements are proportional
to intensities of transfer (p,t) and (t,p) reactions 0+

1 → 0+
1 ,

0+
1 → 2+

1 , and 0+
1 → 0+

2 . Particularly important is the behavior
of F2 which is proportional to the square of the order
parameter, β2

e .

C. Quantal-classical correspondence

Since both the quantal and classical matrix elements can
be calculated, it is of interest to study the quantal-classical
correspondence. To this end, the quantal reduced matrix
elements can be calculated as described in Sec. II A, while the
classical matrix elements as described in Sec. II B. However,
these last are calculated in the intrinsic frame and must be
converted to the laboratory frame before making comparison.
For a general tensor operator of rank λ, the conversion is
given by

〈I ′M ′K ′|T λ
μ |IMK〉

=
√

2I + 1

2I ′ + 1

√
1

(1 + δK,0)(1 + δK ′,0)
〈IMλμ|I ′M ′〉

×
∑

v

[〈IKλv|I ′K ′〉〈φK ′ |T λ
v |φK〉

+ (−)I+K〈I − Kλv|I ′K ′〉〈φK ′ |T λ
v |φK〉], (52)

which yields, using the Wigner-Eckart theorem,

〈I ′K ′||T λ||IK〉

=
√

2I + 1

(1 + δK,0)(1 + δK ′,0)

∑
v

[〈IKλv|I ′K ′〉〈φK ′ |T λ
v |φK〉

+ (−)I+K〈I − Kλv|I ′K ′〉〈φK ′ |T λ
v |φK〉]. (53)

The quantal-classical correspondence is shown in Figs. 3
and 4.

From these figures one can see that the quantal and
classical matrix elements of the operators s and s† are in
close correspondence to each other. The matrix elements of
the operator d and d† in the ground band are also in close
correspondence to each other, but those in the excited bands are
in close correspondence in the deformed phase, N = 11 − 14,
but not in the spherical phase, N = 5 − 10 as shown in
Figs. 4(e) and 4(f). This is due to the fact that the intrinsic
states, Eqs. (25) and (27), describing β and γ vibrations are
appropriate only in the deformed phase. Moreover, in Fig. 4(d),
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FIG. 2. (a) Evolution of the classical element F1 in the U(5)–SU(3) transition for N = 10 with the inset showing the behavior in the vicinity
of the critical point. (b) The same as in (a) but for F2. (c) The same as in (a) but for F3. (d) The same as in (a) but for F4.

FIG. 3. Quantal-classical correspondence for the matrix elements of s, dμ appropriate to (p,t) reaction intensities. The inset in panel (a)
shows the critical behavior of βe.
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FIG. 4. Quantal-classical correspondence for the matrix elements of s†, d†
μ appropriate to (t,p) reaction intensities.

TABLE I. Parameters adopted in calculations for the Gd isotopes. Deduced parameters are separated by a line.

Neutron number 84 86 88 90 92 94 96 98
(η,χ ) (0.27, −1.32) (0.3, −1.32) (0.41, −1.32) (0.59, −1.1) (0.72, −0.86) (0.75, −0.8) (0.84, −0.53) (0.98, −0.3)
ε0(in MeV) 1.272 1.127 0.92 1.204 1.469 1.499 1.612 1.794

εd (in MeV) 0.928 0.789 0.543 0.494 0.411 0.375 0.258 0.036
κ(in MeV) 0.0107 0.0094 0.0094 0.0161 0.0220 0.0216 0.02418 0.0293

TABLE II. Same as Table I but for the Sm isotopes.

Neutron number 84 86 88 90 92 94 96 98
(η,χ ) (0.45, −0.3) (0.48, −1.0) (0.49, −1.2) (0.6, −1.22) (0.69, −1.24) (0.71,−1.32) (0.73,−1.32) (0.75,−1.32)
ε0(in MeV) 1.736 1.735 1.308 1.284 1.410 1.463 1.559 1.667

εd (in MeV) 0.955 0.902 0.667 0.513 0.437 0.452 0.421 0.416
κ(in MeV) 0.0279 0.026 0.0178 0.0192 0.0221 0.0231 0.0219 0.0223

TABLE III. Same as Table I but for the Nd isotopes.

Neutron number 84 86 88 90 92 94 96
(η,χ ) (0.45, −0.3) (0.46, −1.32) (0.568, −1.0) (0.632, −1.0) (0.75, −1.32) (0.77, −1.32) (0.79, −1.32)
ε0(in MeV) 1.540 1.416 1.570 1.163 1.203 1.319 1.385

εd (in MeV) 0.847 0.765 0.68 0.428 0.301 0.303 0.291
κ(in MeV) 0.029 0.023 0.028 0.020 0.0226 0.0231 0.0228
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FIG. 5. Comparison between the experimental (symbols) energies of the low-lying levels in the Gd, Sm, and Nd nuclei [15–24] and the
calculated (lines) energies with the Hamiltonian (18). The calculated βe values as a function of neutron number are given in panel (d).

TABLE IV. Available experimental data for (p,t) cross sections in the even Gd isotopes (units μb/sr) [29]. As indicated in [29], the relative
errors within each nucleus are about 7% for the strong transitions (>10 μb/sr) and 25% for the weak transitions (<10 μb/sr).

A + 1 → A 152 → 150 154 → 152 156 → 154 158 → 156 160 → 158 θ◦
Lab

01 → 01 540 308 570 624 586 30
01 → 02 60 274 90 64 �1 30
01 → 03 8 100 – 12 – 30
01 → 21 26 169 290 295 259 5
01 → 22 <1 64 40 30 – 5
01 → 23 – 67 70 65 – 5

TABLE V. Available experimental data for (t,p) cross sections in the even Gd isotopes (units μb/sr) [30–32]. Although not explicitly
indicated, an uncertainty of 7% have been given to the strong transitions (>10 μb/sr) and 25% to the weak transitions (<10 μb/sr) as in the
(p,t) reactions shown above.

A → A + 1 152 → 154 154 → 156 156 → 158 158 → 160 160 → 162 θ◦
Lab

01 → 01 267 290 255 233 188 30
01 → 02 162 3 20 – 39 30
01 → 03 138 50 5 22 18 30
01 → 21 17 11 24 21 19 30
01 → 22 9 – – 4 3 30
01 → 23 – 3 – – – 60
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FIG. 6. Comparison between calculated and experimental (p,t) transfer intensities for Gd. Here the values of the overall scale parameters
taν and tbν in the transfer operators are obtained by fitting the experimental data and given as taν = tbν = 3.46 (arbitrary units).

the quantal matrix elements of the operator d† have, in the
spherical phase, a nonzero but finite value and appear to be of
the same order of magnitude of the classical matrix elements
in the deformed phase. However, this is a finite N effect,
since in the figure only the classical values up to N = 14

are plotted. The squared classical matrix elements diverge as
N for N → ∞, which indicates that the relative discrepancy
between the classical and exact results shown in Fig. 4(d) could
be ignored in the large-N limit. Also it should be noted that
the matrix elements of s, dμ, s†, d†

μ can be evaluated explicitly

FIG. 7. Comparison between calculated and experimental (t,p) transfer intensities for Gd. Here the values of the overall scale parameters
taν and tbν in the transfer operators are obtained by fitting the experimental data and given as taν = 2.24 and tbν = 0.63 (arbitrary units).
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TABLE VI. Available experimental data for (p,t) cross sections
in the even Sm isotopes, σmax(units μb/sr) [33]. * denotes data
measured at θ◦

Lab = 12 1
2

◦
and † denotes data measured at θ◦

Lab =
30◦. The relative errors for the transition A + 1 → A with A =
146,148,150,152 are assumed to be 3.0%, 13.0%, 6.9%, 3.9% [33].

A + 1 → A 148 → 146 150 → 148 152 → 150 154 → 152 θ◦
Lab

01 → 01 986 1166 488 739 25
01 → 02 – 217 414 243† 25
01 → 03 – 12 278 – 25
01 → 21 52 82 162 285 10
01 → 22 13 – 68 65 10
01 → 23 23* – 75 54* 10

in the symmetry limits U(5) and SU(3) [9]. For example, the
matrix elements of s for ground to ground transition are given
by

U(5) : |〈N ; g|s|N + 1; g′〉|2 = N + 1 (54)

SU(3) : |〈N ; g|s|N + 1; g′〉|2 = (N + 1)
2N + 3

3(2N + 1)
. (55)

These limiting values are also shown in Figs. 3 and 4.

III. COMPARISON TO EXPERIMENT

To test the features of the phase transitional behavior of
two-nucleon transfer intensities, we analyzed experiments in
Gd, Sm, and Nd [15–24]. To this end, we first diagonalized the
Hamiltonian, Eq. (18), using the program IBAR [25]. The three
parameters ε0, η, χ are obtained for each nucleus by fitting the
low-lying levels. For comparison to previous calculations one

TABLE VII. Available experimental data for (t,p) cross sections
in the even Sm isotopes (units μb/sr) [34]. An uncertainty of 25% is
given to each transition [34].

A → A + 1 148 → 150 150 → 152 152 → 154 154 → 156 θ◦
c.m.

01 → 01 570 190 300 300 27.8

01 → 02 140 140 30 20 27.8

01 → 03 – 130 100 – 27.8

01 → 21 170 40 140 150 5.1

01 → 22 50 50 – 40 5.1

01 → 23 – – – – 5.1

may also consider the deduced parameters in the consistent-Q
parametrization [26]

Ĥ = εd n̂d − κQ̂χ · Q̂χ

εd = ε0(1 − η), κ = ε0η/4N. (56)

With the wave functions so obtained, we calculate the
intensities of two-neutron transfer reactions using the operators
of Sec. II.

The parameters ε0, η, χ are given in Table I for Gd, II for
Sm and III for Nd. In the tables we show also the deduced
parameters εd , κ . Those for Gd were already given in [11]. A
comparison to the experiments is given in Fig. 5. One can see
that the Hamiltonian (18) provides an excellent description
of the energies except for the state 0+

3 . Several suggestions
have been made for the nature of this state, including a mixed
symmetry state [27] and an additional degree of freedom,
s ′ boson [28], related to a pair-vibration. In Fig. 5(d) the

FIG. 8. Comparison between calculated and experimental (p,t) transfer intensities for Sm. Here the values of the overall scale parameters
taν and tbν in the transfer operators are obtained by fitting the experimental data and given as taν = 4.47 and tbν = 3.16 (arbitrary units).
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FIG. 9. Comparison between calculated and experimental (t,p) transfer intensities for Sm. Here the values of the overall scale parameters
in the transfer operators are obtained by fitting the experimental data and given as taν = 2.45 and tbν = 1.73 (arbitrary units).

calculated values of βe are also shown as a function of neutron
number. These values show clearly a transitional behavior.
These values must be multiplied by a scale to convert them to
the Bohr definition (see [9], p. 105).

A. Gd nuclei

Experimental data for (p,t) and (t,p) reactions are given in
Tables IV and V. The angle θ◦

Lab at which the cross section
was measured is also given for clarity. A comparison to
calculations is shown in Figs. 6 and 7. From these figures
one can see that intensities to 0+

1 ,2+
1 ,0+

2 ,2+
2 are well described

by the calculations, especially for (p,t) reactions as shown in
Figs. 6(a), 6(b), 6(d), and 6(e), where the transitional signatures
around the neutron number Nn = 90 clearly appear in both
theory and experiment. In contrast, those corresponding to
0+

3 and 2+
3 in experiments cannot be well reproduced by the

calculations, which is actually consistent with the conclusion
drawn from Fig. 5(a).

TABLE VIII. Available experimental data for (p,t) cross sections
in the even Nd isotopes (units μb/sr) [35]. Errors quoted in [35] are
shown in parentheses.

A → A + 1 146 → 144 148 → 146 θ◦
Lab

01 → 01 639(5) 827(12) 10
01 → 02 28(1) – 10
01 → 03 4(0.4) – 10
01 → 21 9.2(0.6) 98(4) 10
01 → 22 37(1) 3.6(0.8) 10
01 → 23 33(1) 10(1) 10

B. Sm nuclei

The parameters ε0, η, χ in the Hamiltonian for these nuclei
are given in Table II. Experimental data for (p,t) and (t,p)
reactions are given in Tables VI and VII, and compared to
the calculation in Figs. 8 and 9. Similarly, it can be found
from these figures that the phase transitional features in the
Sm isotopes for the lowest 0+,2+ states can be generally
well produced by the theoretical calculations, while for those
corresponding to 0+

3 , the calculated transitional amplitudes
around Nn = 90 are evidently smaller than those present in
experiments as those in the Gd isotopes, which further suggests
that partial 0+

3 and 2+
3 states in these deformed rare-earth nuclei

cannot be accommodated by the present model space.

C. Nd nuclei

The parameter ε0, η, χ for Nd are given in Table III. A
conclusion similar to that in Gd and Sm can be drawn here for
the state 0+

3 . Experimental data for (p,t) and (t,p) reactions

TABLE IX. Available experimental data for (t,p) cross sections
in the even Nd isotopes [36]. The results have been normalized to
that for 01 → 01 in each case. Although not explicitly indicated, an
uncertainty of 25% is given to each (t,p) transition as in Table VII.

A → A + 1 144 → 146 146 → 148 148 → 150 150 → 152 θ◦
c.m.

01 → 01 100 100 100 100 27.8
01 → 02 – 15 128 72 27.8
01 → 03 – – – – –
01 → 21 45 46 55 40 5.1
01 → 22 – 30 53 58 5.1
01 → 23 – – – – –
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FIG. 10. Comparison between calculated and experimental (p,t) transfer intensities for Nd. Here the values of the overall scale parameters
in the transfer operators are obtained by fitting the experimental data and given as taν = tbν = 5.48 (arbitrary units).

are given in Tables VIII and IX. A comparison to the calculated
(p,t) intensities is shown in Fig. 10, where only several data
for spherical Nd nuclei are available in experiments. In Fig. 11,

we show instead a comparison to the calculated (t,p) ratios
of intensities since only intensities relative to the ground state
were reported in experiments. [36].

FIG. 11. Comparison between calculated and experimental (t,p) transfer intensities ratios for Nd. Ratios are independent of scale parameter.
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IV. SUMMARY AND CONCLUSION

In this work, a systematical analysis of the two-neutron
transfer intensities as a possible signature of the U(5)–SU(3)
shape phase transition has been carried in the IBM in both a
classical way and exactly numerical calculation. Specifically,
the classical elements of the two-nucleon transfer operator
related to the low-lying 0+ and 2+ states are derived and the
resulting phase transitional characteristics have been revealed
through the quantal-classical correspondence. Experimental
data of two-neutron transfer intensities in Gd, Sm, and Nd
show clear evidence for the occurrence of a quantum phase
transition between spherical [U(5)) and axially deformed
(SU(3)] shape, in agreement with previous studies of two-
neutron separation energies, S2n, electromagnetic transition
rates, B(E2; 2+

1 → 0+
1 ), and energy ratios E(4+

1 )/E(2+
1 ). The

evidence is particularly clear for the intensity I (N + 1,0+
1 →

N,2+
1 ), which is proportional to the square of the order

parameter β2
e . Transitions to 0+

1 , 2+
1 , 0+

2 , 2+
2 states follow

closely the expected behavior for the phase transition both

in (p,t) and (t,p) reactions. Transitions to 0+
3 and 2+

3 do not
follow the expected behavior indicating that these states are
outside the model space of IBM-1 used in this article.

Two-nucleon transfer reactions appear to be an excellent
tool to test phase transitional behavior, since they are sensitive
to the deformation of the initial and final state and to their
differences. This result was already given in [8] and it is
strengthened by the present calculations. Finally, the study
reported here can be extended to two-proton transfer reactions,
and two-proton and two-neutron transfer reactions.
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