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Very low-energy nucleon-16O coupled-channel scattering: Results with a phenomenological
vibrational model
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We employ a collective vibration coupled-channel model to describe the nucleon-16O cluster systems, obtaining
low-excitation spectra for 17O and 17F. Bound and resonance states of the compound systems have been deduced,
showing good agreement with experimental spectra. Low-energy scattering cross sections of neutrons and protons
from 16O also have been calculated and the results compare well with available experimental data.
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I. INTRODUCTION

We apply the multichannel algebraic scattering method
(MCAS) to study the bound and resonance properties of
the 17O and 17F nuclei below and above the nucleon-core
threshold. With the same method, we investigate nucleon
elastic scattering on 16O at very low energies. We introduce
as essential physics ingredients the coupling of the incident,
or valence, nucleon with the low-lying collective vibrational
states of the 16O core. In the past, we considered many
applications of the MCAS method describing couplings of
valence nucleons with rotational states of the core. This is the
first exploratory study where we consider collective vibrations
in the MCAS method.

The approach we propose herein has some similarities
and to a certain extent is complementary to the microscopic
particle-vibration coupling (PVC) method developed recently
to calculate scattering cross sections in light-medium nuclei.
In the PVC method the collective core excitations are treated
microscopically with the random-phase approximation (RPA)
method, and one can find significant developments and appli-
cations along these lines in Refs. [1–5]. These microscopic
type calculations are quite promising in the description of
nucleon-nucleus collisions in the moderately low-energy range
between 10 and 40 MeV, particularly in describing the particle-
hole states as a doorway-state mechanism through which
the flux evolves into more complex configurations such as
overlapping states of the compound nucleus [1,5]. All these
approaches, while successful at moderate energies, do not
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describe adequately the cross section in the very low-energy
regimes (typically, lower than 5 MeV).

To consider nucleon scattering on 16O in the very low-
energy regime, we introduce a purely phenomenological
description of excited states in terms of collective vibrations
of the core nucleus. We use a geometrical model for particle-
vibration couplings as has been discussed in textbooks [6]. We
do not attempt to define the connection with the microscopic
origin of the ingredients we use, but simply employ the
basic Hamiltonian coupled-channel parameters in a fitting
procedure. In addition, we consider couplings generated
only by quadrupole and octupole phonons, which dominate
the low-energy regime. These limitations, however, are not
inherent to the MCAS approach. In the future it is feasible
to apply the method to particle-vibration couplings generated
microscopically, or to include additional multipolarities (for
example, direct dipole or monopole excitation modes, etc.)
that presently are not taken into account.

Previously, the MCAS method was developed and first
applied [7] to the well-studied n + 12C system. That first
MCAS investigation focused on obtaining excellent agreement
with the experimental total elastic n + 12C cross section to
∼4 MeV, by varying free parameters of the potential used.
With these same parameters, the spectrum of 13C to ∼8 MeV
also was well described for both bound states and resonances
in the compound nucleus, 13C. A number of MCAS studies
on other nucleon-plus-nucleus systems have been carried out
and published since then; see, e.g., Refs. [8–11]. In all of these
studies, a rotational model was used to specify the matrix of
coupled-channel interaction potentials for the nucleon with
each target nucleus.

12C is a partially-closed-shell nucleus in which the 0s 1
2

state is expected to be fully occupied and the 0p 3
2

and 0p 1
2

states partially occupied. Conversely, the structures of 17O
and 17F have been assumed to be that of a nucleon coupled
to the 16O core, with the latter defined as a closed 0p shell
nucleus. That model yields the single-nucleon energies in the
0d1s shell model, which are obtained for the positive-parity
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states of both 17O and 17F. Yet that model is too simplistic: the
prevalence of low-lying negative-parity states in both mass-
17 nuclei is a consequence of the 16O core being far more
complex: Brown and Green [12] had first realized that, at
the minimum, a 4h̄ω shell model is needed to describe the
spectrum of 16O. Haxton and Johnston [13] had performed
such a large-scale calculation, which was able to reproduce
the positive-parity states of 16O, especially the first-excited
state, which is the 0+

2 state at 6.06 MeV. Negative-parity states
were calculated in Ref. [14] by using the same interaction
and single-particle model space in a restricted (1 + 3 + 5)h̄ω
model space calculation. This idea is expanded in Appendix A,
where a comparison is made of the spectrum obtained from
the shell model and from MCAS.

In treating the coupling of a nucleon to the 16O core, one
must encompass the complicated multi-h̄ω description of the
core by a coupled-channel description, for which a vibrational
model description of the states in 16O is appropriate. Therefore,
in Appendix B, we discuss in detail the particle-vibration
coupling interactions to be used in the coupled-channel model.

As has been demonstrated in Ref. [8], solutions of the
coupled-channel problem could have some spuriosity due
to violation of the Pauli principle by single-nucleon orbit
occupancies, in attaching the valence nucleon to states of the
core that are already filled. However, it is possible to ensure
that the Pauli principle is obeyed in coupled-channel problems
by using orthogonalizing pseudopotentials (OPPs) [8,10].
Detailed clarification of this procedure is given in Refs. [8,15].
In the first calculations [7] of the nuclear system studied with
MCAS, (n + 12C), Pauli blocking was required for the 0s 1

2

and 0p 3
2

neutron orbits. That study allowed all other orbits in
the target states used to be accessible in the cluster solutions.
More specifics are given in Ref. [7] and articles published
subsequently [8,10,15].

To construct the couplings of a valence nucleon (or projec-
tile) with a nucleus by using a geometric collective model, the
coupling interactions are classified by coupling parameters,
βL. These parameters are required in a coupled-channel
Hamiltonian for the coupling of the valence nucleon with the
low-excitation states of the core nucleus. These βL therefore,
are not necessarily given from electromagnetic (EM) transition
data of the core (because they involve also the interaction
effects with the extra nucleon), but could be comparable to
such. MCAS vibrational model results for the nucleon-16O
clusters are given in Secs. II and III where, in the former,
coupling strengths βL are allowed to be free parameters, and
in the latter they are associated with deformations known
from other data analyses. In Sec. IV we summarize the EM
properties for 16O to be expected with the described collective
model.

Section V contains the conclusions.

II. MULTICHANNEL ALGEBRAIC SCATTERING
THEORY RESULTS FOR n + 16O AND p + 16O SYSTEMS

We use as the primary nuclear interaction Hamiltonian
(between the odd nucleon and the core) the following potential

form:

V (r) = [V0 + Vll{l · l} + Vss{I · s}]w(r)

+ 2λ2
πVls

1

r

∂w(r)

∂r
l · s. (1)

A Woods–Saxon shape, w(r) = [1 + exp( r−R0
a

)]−1,has been
used. The vector operators l,s,I denote orbital, nucleon spin,
and target spin, respectively.

The interaction contains operator components with zero,
first, and second order irreducible terms due to the expansion
of the vibration (or deformation) operator. For each term in the
interaction, the coupled-channel expressions in the channel-
coupling scheme can be given as

Vcc′ (r) = {V (0)(r)}cc′ +
{

V (1)(r)
∑

λ

Q(1)
λ · Yλ(θφ)

}
cc′

+
{

V (2)(r)
∑

λ

[∑
l1l2

Q(2)
λ (l1,l2)

]
· Yλ(θφ)

}
cc′

.

(2)

The approach is explained in full detail in Appendix B. The
importance of including second-order terms in the deformation
expansion of the interaction has been discussed in Ref. [16].

In coordinate space, if those potentials are designated by
local forms Vcc′ (r)δ(r − r ′), the application of OPP method
requires considering the solutions of the Schrödinger equation
with the generalized nonlocal potential

Vcc′ (r,r ′) = Vcc′ (r)δ(r − r ′) + λcAc(r)Ac(r ′)δcc′ , (3)

where A(r) is the radial part of the single-particle bound-state
wave function in channel c spanning the phase space excluded
by the Pauli principle. The OPP method takes into account the
Pauli forbidden states in the limit λc → ∞, and for practical
use λc = 106 MeV suffices. But we take into account also more
general configurations with smaller values for λc as extensively
discussed in Refs. [10,15].

The full set of parameters that defines the interaction
potential is given in Table I.

MCAS calculations were carried out for n + 16O, using
five target states in 16O; namely, the 0+ ground state (E =
0 MeV), the second 0+ state (E = 6.049 MeV), the first 3−
state (E = 6.1299 MeV), the first 2+ state (E = 6.9171 MeV),
and the first 1− state (E = 7.1169 MeV). These states, along
with the corresponding Pauli blocking or hindrance strengths
are listed in the lower section of Table I. The use of blocking
strengths with dimensions of energy is typical of approaches
that use the OPP method; a method that is not restricted only to
nuclear physics applications. It was applied also in studies of
the electronic structure of atoms to eliminate unwanted states
in bound [18] and scattering [19] problems. In the table, the
blocking strengths are given in MeV.

The 2+
1 and 3−

1 states are considered to be single-phonon
states. In the present model, we include also the couplings
of the excited 0+

2 and 1−
1 states to the 0+

1 ground state, but
only as a second-order effect in the coupling parameters
(see Appendix B). We did not include couplings with direct
excitation modes described by monopole or dipole operators.
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TABLE I. Parameter values for n + 16O and p + 16O MCAS
cluster structure. The potential parameters, V0, V

, V
s , Vss , have
different values: if they act on negative or positive orbital parity
states, P = − or P = +, respectively. The lower part of the table
describes the λc parameters of the OPP term.

Vx (MeV) P = − P = + Geometry Value Coulomb [17]

V0 −47.15 −50.6 R0 3.15 fm Rc = 2.608 fm
V

 2.55 0.0 a 0.65 fm ac = 0.513 fm
V
s 6.9 7.2 β2 0.21 w = −0.051
Vss 2.5 −2.0 β3 0.42

Iπ
n En (MeV) 0s 1

2
0p 3

2
0p 1

2
0d 5

2

0+
1 0.0 106 106 106 0.0

0+
2 6.049 106 106 0.0 0.0

3−
1 6.13 106 106 5.0 0.0

2+
1 6.92 106 106 0.0 0.0

1−
1 7.12 106 106 5.0 1.0

In this sense the model approach used here is more schematic
than the microscopic approach used in Ref. [20]. However, that
microscopic approach was designed to describe excitations of
giant-type resonances which are located at higher energies.

All the other potential and geometric parameters used for
the present nucleon + 16O calculations are given in the upper
part of Table I. We note that the value of β2 in the table is small
compared with values required in assessment of a B(E2) value
in 16O [21] and later, in the next section, we consider the effects
of setting the deformation parameter in MCAS evaluations to
match the electromagnetically determined value.

The MCAS results found with this parameter set of Table I
are compared with the known spectra of 17O (left columns)
and of 17F (right columns) in Fig. 1. There are more evaluated
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FIG. 1. Spectra of 17O (left panel) calculated with MCAS and
experimental and of 17F (right panel) using the parameter set of
Table I. The numbers by the levels are twice the spin of the level,
and the superscript indicates the parity. The zero on the scale is at the
respective n + 16O and p + 16O thresholds.

levels found at higher energies than shown. Good agreement
between theory and data at low energies is now obtained for
both nuclear systems.

A. Bound and resonant states in 17O and 17F

In Table II, we give the spin-parity values, the data, and
MCAS results for 17O and the data and MCAS results for
17F for the lowest 30 levels of each. The oxygen list is sorted
in increasing energy of the experimental values. In Table II,
the column for the measured 17F levels are always associated
with a Jπ value, even though some measured values have
unknown Jπ . In those cases where the association of Jπ is
purely speculative, the energy levels are endowed with an
asterisk. Note that the experimental widths are full widths
at half maximum, and are total widths, while the MCAS
widths �mcas represent only nucleon-emission widths. There
are clear mismatches in the lists, but it is noteworthy that
of the thirty levels listed for 17O and 17F, twenty in 17O
and twenty-four in 17F, have matching experimental and
MCAS-evaluated partners within one MeV in excitation of
each other. Furthermore, the majority of the larger mismatched
pairs lie above 7 MeV in excitation and we expect that coupling
of additional target states to those used would have more
influence with increasing excitation in the clusters.

A measure of the overall agreement is the root-mean-square
value,

μN =
√∑N

n=1[Eexpt(n) − E(n)]2

N
, (4)

where N is the number of bound states and resonance centroid
energies considered and Eexpt(n) and E(n), respectively, are
the experimental and calculated values of the bound and
resonance centroid energies in the set. The root-mean-square
value, Eq. (4), for the calculated levels in 17O, considering the
lowest 30 energy levels is μ30 = 1.2371 MeV, and with just
the lowest 20 levels, μ20 = 1.1240 MeV.

To study the mirror system to n + 16O; namely, p + 16O
leading to the compound system 17F, we use the same
parameter set as in Table I with the addition of the Coulomb
interaction. (A Coulomb potential has been generated from the
charge distribution assumed for 16O.) The charge distribution
of the protons in 16O is described by a three-parameter Fermi
charge distribution geometry given by

ρch(r) = ρ0

1 + w
(

r
Rc

)2

1 + exp
(

r−Rc

ac

) , (5)

where the parameters Rc, ac, and w were obtained from
experiment to have the values [17] given in the top of the last
column of Table I. For 17F, the comparison with experiment
shown in Fig. 1, is even better than for 17O, giving μ30 =
1.0419 and μ20 = 0.9201 for the 30 and 20 lowest states,
respectively. However, since a number of the higher-energy
levels observed in 17F have not been given experimentally
known spin-parities, we have made an arbitrary association
between some measured and calculated levels.

With respect to the small Coulomb residual displacement
energy of 208 keV between the experimentally known value for
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TABLE II. The 30 lowest levels in 17O and 17F, experiment and theory. Energy levels are in MeV, widths in keV.

J π 17O: Eexpt �expt
17O: Emcas �mcas

17F: Eexpt �expt
17F: Emcas �mcas

5
2

+ −4.1436 −4.1432 −0.6005 −0.8079
1
2

+ −3.27287 −3.4426 −0.10517 −0.3927
1
2

− −1.08824 −0.7781 2.5035 19 2.8874 5.58 × 10−5

5
2

− −0.30084 −0.4792 3.2565 1.5 2.5644 9.80 × 10−6

3
2

−
0.4102 40 0.4226 1.2768 4.0395 225 3.2104 0.00552

3
2

+
0.9412 96 0.9534 129 4.3995 1530 3.9557 0.906

9
2

−
1.0722 <0.1 2.1528 1.08 × 10−7 4.6195 5.3930 1.26 × 10−9

3
2

−
1.2356 28 2.7332 0.2923 4.8875 68 5.8526 6.78 × 10−5

7
2

−
1.55366 3.4 1.2185 0.1615 5.0715 40 4.3679 1.954 × 10−3

( 5
2

−
) 1.5892 <1 3.1504 0.1982 5.0815∗ <0.6 6.3027 6.8 × 10−4

3
2

+
1.7255 6.6 4.0680 40.226 5.2195 180 7.3661 0.0484

1
2

−
1.7954 32 3.5670 26.51 5.4365 30 6.6181 0.0302

1
2

+
2.2124 124 3.0612 0.3541 5.9595 200 6.0004 0.212

( 5
2

+
) 2.7184 <1 2.6958 8.3616 × 10−2 5.9790∗ <1.6 5.6928 1.25 × 10−4

( 7
2

−
) 2.8284 <1 2.4923 0.8880 6.9455∗ 30 5.6906 0.0039

5
2

−
3.0221 1.38 3.7962 1.0455 6.4265 3.8 6.5382 1.216 × 10−3

3
2

+
3.0584 280 4.9729 53.98 6.7555 10 7.6222 0.0790

5
2

+
3.2356 0.64 3.2894 4.8518 7.3495∗ 10 6.3457 0.00808

5
2

−
3.2386 0.96 4.9148 0.1685 7.7825∗ 11 8.0635 0.00666

3
2

−
3.4154 500 4.0794 0.4399 6.1735∗ 4.5 7.7045 1.46 × 10−3

( 7
2

+
) 3.4324 <0.1 3.2902 2.58 × 10−3 6.8705 5 6.6024 1.304 × 10−5

7
2

−
3.5446 14.4 4.5986 1.2018 7.4095 50 7.7624 0.01786

11
2

−
3.6134 1.4902 7.5970 × 10−6 6.8475∗ <5 4.7564 5.44 × 10−7

1
2

+
3.8124 90 3.7228 228 7.1495 179 7.0725 267

1
2

−
3.8469 270 4.8343 21.55 7.4745 7.4661 0.0454

‘ 3
2

+
3.9264 85 5.3846 0.8878 6.8785 795 8.8502 24.7

3
2

−
4.0564 60 5.4326 13.8864 7.5995∗ 700 7.7045 8.4175

1
2

+
4.1988 11.4 6.8393 99.201 7.8155 45 10.1828 366

5
2

+
4.2587 6.17 3.9770 25.782 7.4695∗ 100 7.2445 26.53

9
2

+
4.3224 2.13 2.5973 0.0711 6.8535 7 5.9439 0.3759

the ground state of 17F and that calculated by MCAS, changing
to smaller values of Rc and ac does make the gap smaller. But
unless quite unrealistic values are used, it is not enough to
explain observation. Possibly a residual gap reflects effects
of charge symmetry breaking in the underlying two-nucleon
interactions [22,23]. This gap is comparable with those found
in other mirror systems studied in Ref. [23].

B. Nucleon-scattering cross sections from 16O

The total n + 16O scattering cross section has been cal-
culated by using MCAS as a function of neutron energy to
8.0 MeV by using the parameter set in Table I. In Fig. 2 the
results are compared with data on a logarithmic energy scale.

This emphasizes the very low-energy values and reveals that
the calculated cross sections agree with observation very well
at energies �1 MeV. The first large resonance, labeled 3

2
−

is in
the correct position in the MCAS result, but its width is much
smaller than the experimental one. This resonance decays both
by γ and neutron emission but the radiative width is only
1.8 ± 0.35 eV [28]. The neutron width has been assessed [29]
to be ∼40 keV by analysis of the elastic neutron-scattering
cross sections from 16O. The higher-energy regime is best
shown on a linear scale, as done in Fig. 3. It shows considerable
structure in the MCAS results, and resonances are predicted to
exist where experiment reveals some, but the precise matching
of resonances in the 3–4 MeV region is not as good as one
would like, while the background cross section is matched
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FIG. 2. Total neutron scattering from 16O calculated with MCAS
(solid line) using the parameter set in Table I compared with four data
sets. The circles are data from Ohkubo [24], the triangles are data from
Cierjacks et al. [25], the squares are from Fowler et al. [26], and the
diamonds are from Larson et al. [27]. The energy scale is logarithmic,
in units of keV.

fairly well. As the higher-energy region occurs at ∼8 MeV
excitation in the compound nucleus, to improve on these
cross-section results, more target states in 16O are probably
needed in MCAS calculations.

Next we consider the scattering cross section for p + 16O.
In Fig. 4, differential cross sections at three different scattering
angles are shown as a function of energy from 0 to 2.0 MeV
with data from Braun and Fried [30]. The next two figures 5
and 6 show some p + 16O scattering results from Ramos [31],
at two angles, together with MCAS results at the angles used in
the Ramos work. For comparison, some calculated with MCAS
at other angles are shown. There is reasonable agreement
between the MCAS results and the data, and the calculated
results show a measurable variation with energy and angle as
well as possible resonance attributes. Reasonable agreement
between MCAS results and data is seen.

III. EFFECT OF VARIATIONS OF βL PARAMETERS

In Table I we presented the set of parameters that were used
for the MCAS calculations of neutron and proton scattering
from 16O to obtain the results of Figs. 1–6, and Table II. Not
all the parameters in Table I were treated equally. Those fitted
are, essentially, the interaction strengths (V0, V

, V
s , Vss) and
the β2 and β3 coupling parameters. In contrast, the radius and
diffuseness, R0 and a, have been held fixed. According to the
analysis discussed in Ref. [32], R0 denotes the Hamiltonian
nucleon-nucleus interaction radius, which is different from the
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Ohkubo
Larson
Fowler
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FIG. 3. Same as in Fig. 2 but with a linear scale.

charge radius Rc of 16O taken from Ref. [17]. In the calculation
shown in Table II and Figs. 1–6, the β2 and β3 parameters
were adjusted to the values given in Table I to get optimal
results in the coupled-channel calculations. However, as an
alternative to this approach, β2 and β3 could also be linked
to the experimental B(E2) and B(E3) values, which lead to
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dσ
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Ω
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FIG. 4. Differential scattering cross sections of protons from 16O
calculated with MCAS, compared with data sets from Braun and
Fried [30] at three scattering angles. The solid, dashed, and dot-dashed
lines are the MCAS results at the angles shown. The circles, squares,
and diamonds are data points at the corresponding angles shown.
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FIG. 5. Differential scattering cross sections of protons from
16O calculated with MCAS, compared with a data set from Ramos
et al. [31] at a scattering angle of 140◦.

β2 = 0.362 ± 0.018 [21,33,34] and similarly to a value of 0.6
for the octupole coupling β3 [35]. Therefore, with the aim to
consider this alternative option, we made a new calculation
fixing β2 = 0.36 and β3 = 0.6 and refitting the remaining
adjustable parameters. The varied list of parameters values
is reported in Table III.

A distinctive feature of the model couplings discussed
in Appendix B is that the 16O 0+ and 1− excited states

0 1 2 3 4
E
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-3
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-2

10
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10
0

10
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d
/d

 (
b/
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)

Ramos 178
0

MCAS 110
0

MCAS 178
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FIG. 6. As in Fig. 5, compared with a data set from Ramos
et al. [31] at a scattering angle of 178◦.

TABLE III. New parameter values for n + 16O MCAS cluster
structure.

Vx (MeV) P = − P = + Geometry Value

V0 −45.0 −45.0 R0 3.15 fm
Vll 0.55 −0.216 a 0.65 fm
Vls 8.71 8.71 β2 0.36
Vss 2.0 1.9 β3 0.6

Iπ
n En (MeV) 0s 1

2
0p 3

2
0p 1

2
0d 5

2

0+
1 0.0 106 106 106 0.0

0+
2 6.049 106 106 0.0 0.0

3−
1 6.13 106 106 5.0 1.0

2+
1 6.92 106 106 0.5 0.0

1−
1 7.12 106 106 5.0 1.0

are coupled through second-order couplings of quadrupole-
octupole vibrations. This choice is very specific for the
schematic model considered herein. Other possible excitation-
de-excitation modes (e.g., monopole or dipole couplings) are
not contemplated in the model given in Appendix B. To
estimate the effect of those two states and their couplings,
we compare the full (five-state) calculation with a calculation
where the couplings to the 0+ and 1− excitations have been
removed. This alternative calculation is denoted as a three-state
calculation (0+gs, 3−, 2+) in Figs. 7 and 8.

In Fig. 7 we illustrate the bound and resonant spectra of 17O
when the β couplings have been set at the adopted values. The
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FIG. 7. Spectra of 17O, left and right are calculated with MCAS
including and excluding the two states 0+ and 1−. The middle column
represents the experimental spectrum. The calculations have been
performed with β2 = 0.36 and β3 = 0.6, according to Table III.
The numbers by the levels are twice the spin of the level, and the
superscript indicates the parity. The zero on the scale is at the n + 16O
threshold.
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FIG. 8. Total neutron scattering from 16O calculated with MCAS
(solid line), utilizing the parameter set in Table III (using β2 = 0.36
and β3 = 0.6). Left panel refers to a five-state calculation while
right panel refers to a three-state calculation (0+gs, 3−, 2+). The
experimental data are the same as for Fig. 2.

results on the left column refer to the five-state calculation,
while the results in the right column refer to the corresponding
three-state calculation. The middle column contains the known
experimental data. Note that the two calculated results are
quite similar except that, with the three-state calculation, we
completely miss the second excited state ( 1

2 )−. In Fig. 8,
we show the neutron-oxygen total scattering cross section
obtained from the same variation of the β2 as used for Fig. 7 for
the two model (three-state and five-state) calculations. There
are small but significant differences between the results shown
in Fig. 2 and in Fig. 8; the former showing a near-perfect
agreement between data and MCAS (with β2 = 0.21 and
β3 = 0.42). It is not clearly understood if one should use
for these βL values those deduced from (electromagnetic)
experiments with 16O, as in Fig. 8, or if the nucleon interaction
leads to some modification of these deformation values in the
coupled-channel dynamics. After all, the interaction radius
itself is affected by the presence of the incoming nucleon, as
discussed in Ref. [32], and leads us to use a value which is
different from the charge radius of the 16O target. The same
could happen for the β parameters.

IV. SUMMARY OF ELECTROMAGNETIC TRANSITIONS

Finally, we present here a summary of the EM transitions in
16O that can be obtained with the collective model we employ.
In particular, the E0, E2, and E3 transition properties between
some of these states have been assessed; data on those of prime
interest are as listed in Table IV.

The E2 : 0+
1 → 2+

1 values given in Ref. [21] span a wide
range and all have been extracted from experimental data.
However, the value 40.6 e2 fm4 has been adopted. With that
value, and assuming for 16O a uniform spherical charge density
in its ground state (radius R = 1.2A1/3 fm), the base vibration

TABLE IV. Electromagnetic transition properties in 16O.

Type Transition Model result Expt. value Reference

ρ2(E0) 0+
2 → 0+

1 0.026 0.153 [36]

B(E2) 0+
1 → 2+

1 40.6 (e2 fm4) 23–51 (e2 fm4) [21]

B(E3) 0+
1 → 3−

1 900 (e2 fm6) 400–1550 (e2 fm6) [35]

model gives the deformation parameter as [21]

β2 = 4π

3ZR2
0

√
B(E2 : 0+

1 → 2+
1 ) = 0.36 for 16O . (6)

With the same model geometry, for 16O, and using the
link [37] between ρ(E0 : 0+

2 → 0+
1 ) and the B(E2 : 2+

1 →
0+

1 ),

ρ(E0 : 0+
2 → 0+

1 ) =
√

10
4π

3

1

Ze2R4
0

B(E2 : 2+
1 → 0+

1 ),

(7)

and so the square is

ρ2(E0 : 0+
2 → 0+

1 ) = 320π2

9Z2e4R8
0

[B(E2 : 2+
1 → 0+

1 )]2

= 0.026, (8)

a factor of ∼6 smaller than observed. Of course the structure
model considered is simplistic, with phenomena such as shape
coexistence and noncollective attributes known to influence
monopole strengths. For the same reason, our simple vibration
model gives zero for the direct isoscalar E1 matrix element.

Likewise the E3 : 0+
1 → 3−

1 values given in Ref. [35] span
a wide range and all have been extracted from experimental
data. We use an average value of 900 e2 fm6 with which the
basic vibration model for 16O gives the deformation parameter
β3 = 0.6.

With reference to 16O, it is well known that a E1 transition
from a 1− to the 0+ ground state (gs) has been observed with
an extremely small transition probability (see Refs. [38–40]
and references therein). However, this is not accounted for in
this study, or in most other investigations to date (see Ref. [41]
for an investigation into the underlying causes).

V. CONCLUSIONS

The MCAS method for nucleon-nucleus scattering studies
was developed and first used for neutron scattering from
the well-known nucleus 12C [7]. The structure of that target
nucleus was described by a rotational model with a deformed
Fermi function, with the deformation specified by a βL value.
The parameters of the system were chosen to obtain a very
good description of the neutron-12C elastic-scattering cross
section. This study also yielded a good description of the
energy levels in 13C, both bound states and resonances. Since
that first result, a number of other nucleon + nucleus systems
have been evaluated and studied by the MCAS method, all
using the rotational model.
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In this work the MCAS method has been applied for the first
time with a vibrational model for the target nucleus to study
nucleon scattering on the 16O nucleus. The spectra of 17O and
of 17F have been evaluated by using the MCAS approach,
treating these nuclei as n + 16O and p + 16O compounds,
respectively.

As the main result, we have shown that, with this approach,
it is possible to describe the very low-energy cross section
for neutron and proton elastic scattering on 16O with a
coupled-channel model that takes into account the excitation
dynamics of the low-lying collective states of 16O. The
calculation performed and the results obtained show that the
approach has potential interest for any application where
the determination of low-energy cross section is of great
importance. For instance, the low-energy regime is of import
for capture cross sections [42], as well as for nuclear reactor
physics applications [43].

It must be observed that the vibrational coupled-channel
model in its present form is still at a preliminary stage, and
that a variety of improvements can be performed in future
studies. For example, the use of fit parameters typical of a
macroscopic theory can be reduced if not fully removed if
we use insights coming from microscopic theories. This is
especially so if one uses ground-state densities coming from
folding model calculations, and in a similar manner one derives
the transition densities for the coupling interactions. However,
at present there is no microscopic (or microscopically inspired)
theory that works so well in this low-energy scattering regime.
Another improvement could consider couplings to the excited
0+ and 1− states derived directly from first-order transitions
of monopole, dipole structure, while in the present model we
take into account for these states only second-order transitions
of quadrupole plus octupole type. With these caveats, we
have described the neutron or proton +16O coupled-channel
dynamics by using the five lowest excited states in 16O with the
interaction potentials specified by a collective vibration model
for the target states. With those interactions, the Pauli principle
was satisfied by using the orthogonalizing pseudopotential
scheme [9], and then good agreement between theory and data
at low energies was found. While there remain discrepancies,
such as a small residual displacement energy, of thirty levels
listed in Table II for 17O and 17F, twenty in 17O and twenty-
four in 17F have matching MCAS evaluated partners within
one MeV in excitation of each other.

The total elastic-scattering cross section for neutrons on
16O is a near perfect match to data up to 1 MeV of excitation,
except for the widths of the first two peaks around 1 MeV. At
higher energy there are additional resonances in the MCAS
results, which, however, only approximately match available
data. For the scattering of low-energy protons from 16O,
differential cross sections only exist at fixed scattering angles.
Our calculated results agree very well with measured ones.
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APPENDIX A: SHELL-MODEL CONSIDERATIONS
FOR 16,17O AND 17F

If 16O is considered to be a doubly magic nucleus, in its
ground state the 0s 1

2
and both orbits in the 0p shell will

be fully occupied and that state would be predominantly
spherical in shape. The two nuclei, 17O and 17F, often have
been considered as a single nucleon outside an 16O core, and as
mirror nuclei with the first three positive-parity states reflecting
the single-particle energies of the 0d 5

2
, 1s 1

2
, and 0d 3

2
levels in

the (0d1s) shell model. But the model for each nucleus is
not so simple: in a (0 + 2)h̄ω shell-model prescription there
is significant admixing of 2h̄ω components, ∼25%, in the
ground states. This largely stems from 2p-2h components
giving rise to additional nucleons in the (0d1s) shell. With this
in mind, it is instructive to compare the extreme shell-model
picture, with one particle in the (0d1s) shell, or the more
general (0 + 2)h̄ω model, to the collective model description
contained in MCAS theory [7], which describes low-energy
nucleon-nucleus scattering, and the spectrum of the compound
system (both bound states and resonances). However, it is well
known that the description of the spectrum of 16O requires a
4h̄ω shell model at the minimum [12–14]. We discuss aspects
of both the 2h̄ω and 4h̄ω shell-model results for 16O to frame
the discussion of the 2h̄ω results we have been able to obtain,
so far, for the mass-17 systems.

Haxton and Johnson [13] made a (0 + 2 + 4)h̄ω shell-
model calculation of the spectrum of 16O. They used a
two-nucleon interaction that consisted of

1. the Cohen and Kurath (8-16)2BME [44] for the 0p shell;
2. the Brown and Wildenthal interaction [45] for the

(0d,1s) shell;
3. the Millener–Kurath interaction [46] for the (0p,0d,1s)

cross shell elements;
4. the bare Kuo g matrix for the 2h̄ω interaction [47,48].
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FIG. 9. The low-lying spectrum of 16O. The experimental ener-
gies [29] are compared with the shell-model results found by using
the Haxton and Johnson interaction.
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TABLE V. Shell occupancies (proton + neutron) in the ground state of 16O.

Orbital 0s 1
2

0p 3
2

0p 1
2

0d 5
2

0d 3
2

1s 1
2

0f 7
2

0f 5
2

1p 3
2

1p 1
2

(0 + 2)h̄ω 3.999 7.741 3.788 0.283 0.135 0.021 0.0 0.0 0.028 0.005
(0 + 2 + 4)h̄ω 3.996 7.319 3.262 0.831 0.441 0.138 10−3 7 × 10−4 0.003 0.002

Every other matrix element necessary to specify the
interaction in the complete model space was set to zero.
Furthermore, those matrix elements which gave rise to the
violation of the Hartree–Fock condition were also removed.
In that sense, the interaction was not complete for the model
space assumed. Nevertheless, the spectrum they obtained was
reasonable and confirmed the Brown and Green result. An
extension of that shell-model calculation to include negative-
parity states [14] also found reasonable agreement for the
states in the spectrum. While the single-particle basis assumed
was complete for the (0 + 2 + 4)h̄ω space for the calculation
of the positive-parity states, there was one restriction in the
calculation of the negative-parity states, which was done in
the same single-particle basis. That restriction did not allow
for the single-particle excitations to the 0i1g2d3s shell.

Haxton and Johnson sought to determine whether the
Brown and Green model [12], which placed importance on
inclusion of 4h̄ω components in the wave functions for
16O, could be reproduced with a microscopic shell-model
calculation. With this scheme, the states of 16O have been
determined by using the Haxton version of the GLASGOW

shell-model program [14] and the results of that [14] are
shown in Fig. 9. Therein, while the positive-parity states
were evaluated in a complete (0 + 2 + 4)h̄ω space by using
the Haxton and Johnson interaction, the negative-parity states
were evaluated in a (restricted) (1 + 3 + 5)h̄ω space, using the
same interaction. Both calculations used the single-particle
basis from the 0s shell up to and including the (0h1f 2p)
shell. The restriction placed in the (1 + 3 + 5)h̄ω space is
that single-particle excitations from the 0p shell up to the
(0i1g2d3s) shell were excluded. This restriction does not
guarantee complete removal of center of mass spuriosity but, as
the center-of-mass energy for all states obtained in the model
is 19.19 MeV, there is very little spuriosity in the specified
low-lying states.

All positive-parity states displayed in Fig. 9 are well
reproduced by the calculation, but the 3− and 1− are not, lying
about 2 MeV above the experimental values. The predicted
energies of the 2− and 1−

2 states are at 12.67 and 15.97 MeV,
respectively, and so are not shown in the figure.

A complete (0 + 2)h̄ω calculation, using the MK3W inter-
action, was made for the positive-parity states of 16O as well.
That calculation placed all excited states above 20 MeV, indi-
cating the importance of including 4h̄ω components to give a
sensible mixing of 2h̄ω and 4h̄ω components when a 2h̄ω in-
teraction is involved; bringing the energies of states into better
agreement with experiment. The summed shell occupancies
(proton and neutron are identical) of the ground state in 16O
from the two shell-model calculations are listed in Table V.

Higher orbits in the (0 + 2 + 4)h̄ω space have occupancies
less than 10−5 nucleons. From these numbers it is clear that

the significant populations in the (0d1s) shell and the lack of
population in the higher shells indicates that the ground state
is essentially of (0 + 2)h̄ω character, although the distribution
in the lower shells is affected by the 4h̄ω contributions.

As the ground state of 16O is so dominantly of (0 + 2)h̄ω
character, we have calculated the spectra of 17O and 17F
in that model space, for the positive-parity states, and in a
restricted (1 + 3)h̄ω space for the negative-parity states. In
both sets of calculations all shells from the 0s to the (0f 1p)
are used, with all particles active. In these cases the spectra
were found again using the OXBASH program but with the
WBP interaction of Warburton and Brown [49]. The resultant
shell-model spectrum, together with the known spectra for 17O
and 17F [29], is shown in Fig. 10. It is clear that the spectrum
obtained from the shell model compares reasonably well with
both spectra. Discrepancies between the model and the known
spectra may be due to limitations in the model space and/or the
underlying limitation on the ground state of 16O. Nevertheless,
this result serves to illustrate that the extreme single-particle
picture of the mass-17 system is too simplistic. It points to the
need for a coupled-channel description of the nuclei, with a
possibly extended set of (16O) target states to be included in
the coupling scheme.

Figure 10 compares the low-energy shell-model spectrum
of 17F with that of MCAS, using parameters as per Table I,
except with V −

0 = −47.89 MeV and V +
0 = −50.062 MeV.

This small change is made to account for the slight overbinding
observed upon use of mirror symmetry.
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FIG. 10. Spectra for 17O and 17F [29], with zero energy corre-
sponding to the ground states of each. The state labels denote 2J π .
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APPENDIX B: THE VIBRATION MODEL FOR
COUPLED-CHANNEL POTENTIALS

The surface of a liquid drop of incompressible fluid that can
be slightly deformed is represented as

R(θφ) = R0

⎡
⎣1 +

∑
λ>1,μ

α�
λμYλμ(θφ)

⎤
⎦ = R0[1 + ε]. (B1)

With this specification of the nuclear surface, expansion to
second order in the coupling of a function gives

f (r) = f0(r) + ε

(
∂f (r)

∂ε

)
0

+ 1

2
ε2

(
∂2f (r)

∂ε2

)
0

. (B2)

Then, with ε as identified by Eq. (B1), and treating R(θ,φ) as
the variable in f (r) = f (r − R(θ,φ)),

f (r) = f0(r) − R0

∑
λμ

α�
λμYλμ(θ,φ)

(
∂f (r)

∂r

)
0

+ 1

2
R2

0

∑
l1m1l2m2

α�
l1m1

α�
l2m2

Yl1m1 (θ,φ)

×Yl2m2 (θ,φ)

(
∂2f (r)

∂r2

)
0

. (B3)

Similar forms exist for g(r) = 1
r

∂f (r)
∂r

, which is the usual
function taken for spin-orbit terms. Therein, and in all that
follows, it is presumed that summation of the expansion
labels of the generalized coordinates, and subsequently of the
angular-momentum quantum numbers of the phonon creation
and annihilation operators derived from them, exclude dipole
forms to ensure that there is no spurious center-of-mass motion
associated with a scalar interaction.

The product of two generalized coordinates that satisfy the
spherical harmonic condition can then be written as

α�
l1m1

α�
l2m2

=
∑
ν1ν2

δm1ν1δm2ν2α
�
l1ν1

α�
l2ν2

=
∑
λμ

〈l1l2m1m2|λμ〉[α�
l1

⊗ α�
l2

]
λμ

,

[
α�

l1
⊗ α�

l2

]
λμ

=
∑
ν1ν2

〈l1l2ν1ν2|λμ〉α�
l1ν1

α�
l2ν2

. (B4)

This form is convenient since [α�
l1

⊗ α�
l2

]λμ is a component of
an irreducible tensor. Then, by using∑

m1m2

〈l1l2m1m2|λμ〉Yl1m1 (θ,φ)Yl2m2 (θ,φ)

=
√

(2l1 + 1)(2l2 + 1)

4π (2λ + 1)
〈l1l200|λ0〉Yλμ(θ,φ), (B5)

the second-order term in Eq. (B3) can be written as

T2 = 1

2
R2

0
∂2f0(r)

∂r2

∑
l1m1l2m2λμK

〈l1l2m1m2|λμ〉[α�
l1

⊗ α�
l2

]
λμ

×
√

(2l1 + 1)(2l2 + 1)

4π (2K + 1)
〈l1l200|K0〉〈l1l2m1m2|KMK〉

×YKMK
(θ,φ). (B6)

The orthogonality of Clebsch–Gordan coefficients reduces this
to

T2 = 1

2
R2

0
∂2f0(r)

∂r2

∑
λ

√
(2l1 + 1)(2l2 + 1)

4π (2λ + 1)
〈l1l200|λ0〉

× [
α�

l1
⊗ α�

l2

]
λ
·Yλ(θ,φ), (B7)

since the generalized coefficients must satisfy the spherical
harmonic condition.

Then the function form can be recast as

f (r) = f0(r) − R0

(
∂f (r)

∂r

)
0

∑
λ

Q(1)
λ · Yλ(θ,φ)

+ 1

2
R2

0

(
∂2f (r)

∂r2

)
0

∑
λ

[∑
l1l2

Q(2)
λ (l1l2)

]
· Yλ(θ,φ),

(B8)

where Q(i)
λ are the first- and (partial) second-order Tamura

operators [50],

Q(1)
λμ = α�

λμ,

Q(2)
λμ(l1l2) =

√
(2l1 + 1)(2l2 + 1)

4π (2λ + 1)
〈l1l200|λ0〉[α�

l1
⊗ α�

l2

]
λμ

.

(B9)

1. The nucleus as a quantized liquid drop

With the surface of a liquid drop of incompressible fluid
that can be slightly deformed represented as in Eq. (B1), and
with λ � 2, quantization proceeds by mapping the generalized
coordinates (αλμ) and their canonical generalized momenta by
using boson creation and annihilation operators b

†
λμ and bλμ by

αλμ ⇒
√

h̄

2Bλωλ

[bλμ + (−)μb
†
λ−μ]. (B10)

With a similar form for the generalized momentum, the
Hamiltonian for a vibrating liquid (quantal) drop is

H =
∑
λμ

[
b
†
λμbλμ + 1

2

]
h̄ωλ, where [bλμ,b

†
λ′μ′] = δλλ′δμμ′ .

(B11)

Then, normalized one- and two-phonon states are defined by

|1; λμ〉 = b
†
λμ|0〉,

|2; (λ1λ2)JM〉 = 1√
1 + δλ1λ2

[
b
†
λ1

⊗ b
†
λ2

]
JM

|0〉, (B12)

where[
b
†
λ1

⊗ b
†
λ2

]
JM

=
∑
m1m2

〈λ1λ2μ1μ2|JM〉b†λ1μ1
b
†
λ2μ2

. (B13)

This model involves generalized mass and restoring force
parameters (Bλ,Cλ) with which the frequencies of the phonons
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and the coupling parameters are

ωλ =
√

Cλ

Bλ

, βλ =
√

(2λ + 1)(aλ)0 = |〈1‖αλ‖0〉| =
√

(2λ + 1)

√
h̄

2Bλωλ

. (B14)

Here (aλ)0 is the zero-point amplitude of vibration [6,51].

2. The vibration model for coupled-channel interactions

With channels c = {lj ; I ; JM} as used in the MCAS theory of a nucleon interacting with a nucleus [7], matrix elements of
the type

[f (r)]cc′ = [f0(r)]cc′ − R0

[
∂f (r)

∂r

∑
λ

[
α�

λ · Yλ(θφ)
]]

cc′

+ 1

2
R2

0

[(
∂2f (r)

∂r2

)
0

∑
λ

∑
l1l2

√
(2l1 + 1)(2l2 + 1)

4π (2λ + 1)
〈l1l200|λ0〉[α�

l1
⊗ α�

l2

]
λ
· Yλ(θφ)

]
cc′

(B15)

are required. We choose to use as the basic interaction potential form

f0(r) = [V0 + Vll{l · l} + Vss{I · s}]w(r) + 2λ2
πVls

1

r

∂w(r)

∂r
{l · s}. (B16)

A Woods–Saxon form, w(r) = [1 + exp( r−R0
a

)]−1 is used.
Each operator character of the interaction has zero-, first-, and second-order elements due to the expansion in deformation.

Thus for each term in the interaction, form factors in whatever channel coupling can be specified as

Vcc′ (r) = {V (0)(r)}cc′ +
{

V (1)(r)
∑

λ

Q(1)
λ · Yλ(θφ)

}
cc′

+
{

V (2)(r)
∑

λ

[∑
l1l2

Q(2)
λ (l1,l2)

]
· Yλ(θφ)

}
cc′

. (B17)

With Wls = 2λ2
πVls , the zero-order term in Eq. (B17) is

{V (0)(r)}cc′ =
{[

V
(c)

0 + V
(c)
ll l(l + 1)

]
w(r) + W

(c)
ls

1

r

∂w(r)

∂r
{l · s}

}
δcc′ + 1

2

[
V (c)

ss + V (c′)
ss

]
w(r){I · s}cc′, (B18)

and the superscripts on the potential strengths indicate that the values for the appropriate parities of the channel c are to be taken.
Also, a symmetrized form is used for terms that allow coupling between different channels. Such is the case with the other two
components and

{V (1)(r)}cc′ =
{
−R0

∂w(r)

∂r

1

2

[
V

(c)
0 + V

(c′)
0 + V

(c)
ll {l · l}cc + V

(c′)
ll {l · l}c′c′

]

− 1

2
R2

0
1

r

∂2w(r)

∂r2

(
W

(c)
ls {l · s}cc + W

(c′)
ls {l · s}c′c′

)}∑
L

[Q(1)
L · YL

]
cc′

− 1

2
R0

∂w(r)

∂r

∑
L

∑
c′′

{
V (c′)

ss

[Q(1)
L · YL

]
cc′′ [I · s]c′′c′ + V (c)

ss [I · s]cc′′
[Q(1)

L · YL

]
c′′c′

}
. (B19)

The second-order terms are

{V (2)(r)}cc′ =
{

1

4
R2

0
∂2w(r)

∂r2

[
V

(c)
0 + V

(c′)
0 + V

(c)
ll {l · l}cc + V

(c′)
ll {l · l}c′c′

]

+ 1

4
R3

0
1

r

∂3w(r)

∂r3

(
W

(c)
ls {l · s}cc + W

(c′)
ls {l · s}c′c′

)} ∑
λ

[{∑
l1l2

Q(2)
λ (l1,l2)

}
· Yλ

]
cc′

+ 1

4
R2

0
∂2w(r)

∂r2

∑
λ

∑
c′′

⎡
⎣V (c)

ss {I · s}cc′′

[{∑
l1l2

Q(2)
λ (l1,l2)

}
· Yλ

]
c′′c′

+ V
(c′)
ss

[{∑
l1l2

Q(2)
λ (l1,l2)

}
· Yλ

]
cc′′

{I · s}c′′c′

⎤
⎦. (B20)

034305-11



J. P. SVENNE et al. PHYSICAL REVIEW C 95, 034305 (2017)

The matrix elements of the operators {l · l}, {I · s}, and {l · s} have been defined previously [7]. And, as the first- and second-order
terms require development as matrix elements of nuclear operators, we use the Edmond’s form of the Wigner–Eckart theorem,
i.e.,

〈Jf Mf |TLM |JiMi〉 = 1√
(2Jf + 1)

〈JiLMiM|Jf Mf 〉〈Jf ||TL||Ji〉. (B21)

For the case of scalar operators to be used herein (so conserving total angular momentum J = J ′), specifically with the Tamura
operators cast temporarily as a general operator Q, we use T0,0 = [QL · YL]0,0, so that

〈c|[QL · YL]0,0|c′〉 = 1√
(2J + 1)

〈c||[QL · YL]0||c′〉, (B22)

for all M as the Clebsch–Gordan coefficient is a δ function. Then using a Brink and Satchler identity [Eq. (5.13) in Ref. [52]],
suitably adjusted to Edmond’s form for the Wigner–Eckart theorem, i.e.,

〈c||[QL · YL]||c′〉 = 〈(jI )J ||[QL · YL]||(j ′I ′)J 〉 = (−)j
′+I+J

{
j j ′ L
I ′ I J

}
1√

(2J + 1)
〈j ||YL||j ′〉〈I ||QL||I ′〉, (B23)

and as

〈j ||YL||j ′〉 = (−)j+L−j ′
√

(2L + 1)(2j ′ + 1)

4π

〈
j ′L 1

2 0
∣∣j 1

2

〉
, (B24)

〈c||[QL · YL(�)]||c′〉 = (−)j+L+I+J

{
j j ′ L
I ′ I J

}√
(2j ′ + 1)(2L + 1)

4π (2J + 1)

〈
j ′L 1

2 0
∣∣j 1

2

〉〈I ||QL||I ′〉. (B25)

Thus to specify all terms in the form for the interaction matrix of potentials, Eq. (B20), the reduced matrix elements of the various
Tamura operators [50] are required.
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(2010).

[21] S. Raman, C. W. Nestor Jr, and P. Tikkanen, At. Data Nucl. Data
Tables 78, 1 (2001).

[22] Y. Wu, S. Ishikawa, and T. Sasakawa, Phys. Rev. Lett. 64, 1875
(1990).

[23] B. A. Brown, W. A. Richter, and R. Lindsay, Phys. Lett. B 483,
49 (2000).

[24] M. Ohkubo, JAERI-M Reports 86, 193 (1987); the pa-
per is available at http://www.iaea.org and the data at
http://www.nndc.bnl.gov.

[25] S. Cierjacks, F. Hinterberger, G. Schmalz, D. Erbe, P. V. Rossen,
and B. Leugers, Nucl. Instrum. Methods 169, 185 (1980).

[26] F. L. Fowler, C. H. Johnson, and R. M. Feezel, Phys. Rev. C 8,
545 (1973).

[27] D. C. Larson, J. A. Harvey, and N. W. Hill, in Symposium on
Neutron Cross Sections 10–50 MeV (Brookhaven, 1980), p. 277.

[28] M. Igashira, H. Kitazawa, and K. Takaura, Nucl. Phys. A 536,
285 (1992).

[29] D. R. Tilley, H. R. Weller, and C. M. Cheves, Nucl. Phys. A
A564, 1 (1993).

[30] M. Braun and T. Fried, Z. Phys. A: At. Nucl. (1975) 311, 173
(1983).

034305-12

https://doi.org/10.1103/PhysRevA.86.041603
https://doi.org/10.1103/PhysRevA.86.041603
https://doi.org/10.1103/PhysRevA.86.041603
https://doi.org/10.1103/PhysRevA.86.041603
https://doi.org/10.1103/PhysRevC.91.014612
https://doi.org/10.1103/PhysRevC.91.014612
https://doi.org/10.1103/PhysRevC.91.014612
https://doi.org/10.1103/PhysRevC.91.014612
https://doi.org/10.1103/PhysRevC.92.014605
https://doi.org/10.1103/PhysRevC.92.014605
https://doi.org/10.1103/PhysRevC.92.014605
https://doi.org/10.1103/PhysRevC.92.014605
https://doi.org/10.1103/PhysRevC.86.034318
https://doi.org/10.1103/PhysRevC.86.034318
https://doi.org/10.1103/PhysRevC.86.034318
https://doi.org/10.1103/PhysRevC.86.034318
https://doi.org/10.1103/PhysRevLett.105.202502
https://doi.org/10.1103/PhysRevLett.105.202502
https://doi.org/10.1103/PhysRevLett.105.202502
https://doi.org/10.1103/PhysRevLett.105.202502
https://doi.org/10.1016/j.nuclphysa.2003.08.019
https://doi.org/10.1016/j.nuclphysa.2003.08.019
https://doi.org/10.1016/j.nuclphysa.2003.08.019
https://doi.org/10.1016/j.nuclphysa.2003.08.019
https://doi.org/10.1103/PhysRevLett.94.122503
https://doi.org/10.1103/PhysRevLett.94.122503
https://doi.org/10.1103/PhysRevLett.94.122503
https://doi.org/10.1103/PhysRevLett.94.122503
https://doi.org/10.1103/PhysRevC.74.064605
https://doi.org/10.1103/PhysRevC.74.064605
https://doi.org/10.1103/PhysRevC.74.064605
https://doi.org/10.1103/PhysRevC.74.064605
https://doi.org/10.1103/PhysRevLett.96.072502
https://doi.org/10.1103/PhysRevLett.96.072502
https://doi.org/10.1103/PhysRevLett.96.072502
https://doi.org/10.1103/PhysRevLett.96.072502
https://doi.org/10.1016/j.nuclphysa.2012.01.022
https://doi.org/10.1016/j.nuclphysa.2012.01.022
https://doi.org/10.1016/j.nuclphysa.2012.01.022
https://doi.org/10.1016/j.nuclphysa.2012.01.022
https://doi.org/10.1016/0029-5582(66)90771-1
https://doi.org/10.1016/0029-5582(66)90771-1
https://doi.org/10.1016/0029-5582(66)90771-1
https://doi.org/10.1016/0029-5582(66)90771-1
https://doi.org/10.1103/PhysRevLett.65.1325
https://doi.org/10.1103/PhysRevLett.65.1325
https://doi.org/10.1103/PhysRevLett.65.1325
https://doi.org/10.1103/PhysRevLett.65.1325
https://doi.org/10.1103/PhysRevC.53.838
https://doi.org/10.1103/PhysRevC.53.838
https://doi.org/10.1103/PhysRevC.53.838
https://doi.org/10.1103/PhysRevC.53.838
https://doi.org/10.1016/j.nuclphysa.2013.05.008
https://doi.org/10.1016/j.nuclphysa.2013.05.008
https://doi.org/10.1016/j.nuclphysa.2013.05.008
https://doi.org/10.1016/j.nuclphysa.2013.05.008
https://doi.org/10.1103/PhysRevC.72.064604
https://doi.org/10.1103/PhysRevC.72.064604
https://doi.org/10.1103/PhysRevC.72.064604
https://doi.org/10.1103/PhysRevC.72.064604
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/S0010-4655(99)00445-2
https://doi.org/10.1016/S0010-4655(99)00445-2
https://doi.org/10.1016/S0010-4655(99)00445-2
https://doi.org/10.1016/S0010-4655(99)00445-2
https://doi.org/10.1016/S0010-4655(02)00757-9
https://doi.org/10.1016/S0010-4655(02)00757-9
https://doi.org/10.1016/S0010-4655(02)00757-9
https://doi.org/10.1016/S0010-4655(02)00757-9
https://doi.org/10.1016/j.nuclphysa.2009.12.009
https://doi.org/10.1016/j.nuclphysa.2009.12.009
https://doi.org/10.1016/j.nuclphysa.2009.12.009
https://doi.org/10.1016/j.nuclphysa.2009.12.009
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1103/PhysRevLett.64.1875
https://doi.org/10.1103/PhysRevLett.64.1875
https://doi.org/10.1103/PhysRevLett.64.1875
https://doi.org/10.1103/PhysRevLett.64.1875
https://doi.org/10.1016/S0370-2693(00)00589-X
https://doi.org/10.1016/S0370-2693(00)00589-X
https://doi.org/10.1016/S0370-2693(00)00589-X
https://doi.org/10.1016/S0370-2693(00)00589-X
http://www.iaea.org
http://www.nndc.bnl.gov
https://doi.org/10.1016/0029-554X(80)90119-6
https://doi.org/10.1016/0029-554X(80)90119-6
https://doi.org/10.1016/0029-554X(80)90119-6
https://doi.org/10.1016/0029-554X(80)90119-6
https://doi.org/10.1103/PhysRevC.8.545
https://doi.org/10.1103/PhysRevC.8.545
https://doi.org/10.1103/PhysRevC.8.545
https://doi.org/10.1103/PhysRevC.8.545
https://doi.org/10.1016/0375-9474(92)90382-T
https://doi.org/10.1016/0375-9474(92)90382-T
https://doi.org/10.1016/0375-9474(92)90382-T
https://doi.org/10.1016/0375-9474(92)90382-T
https://doi.org/10.1016/0375-9474(93)90073-7
https://doi.org/10.1016/0375-9474(93)90073-7
https://doi.org/10.1016/0375-9474(93)90073-7
https://doi.org/10.1016/0375-9474(93)90073-7
https://doi.org/10.1007/BF01415102
https://doi.org/10.1007/BF01415102
https://doi.org/10.1007/BF01415102
https://doi.org/10.1007/BF01415102


VERY LOW-ENERGY NUCLEON-16O COUPLED- . . . PHYSICAL REVIEW C 95, 034305 (2017)
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