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Dynamical α-cluster model of 16O
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We calculate the low-lying spectrum of the 16O nucleus using an α-cluster model which includes the important
tetrahedral and square configurations. Our approach is motivated by the dynamics of α-particle scattering in the
Skyrme model. We are able to replicate the large energy splitting that is observed between states of identical spin
but opposite parities. We also provide a novel interpretation of the first excited state of 16O and make predictions
for the energies of 6− states that have yet to be observed experimentally.
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The energy spectrum of the oxygen-16 nucleus has posed a
challenge to nuclear physicists for decades. Wheeler suggested
in the 1930s that one can model the nucleus as four α particles
with the ground state described as the particles in a tetrahedral
arrangement [1]. This picture of the 0+ ground state has been
verified in many different models such as the shell [2,3],
lattice ab initio [4], and antisymmetrized molecular dynamics
(AMD) [5] models, giving credence to the old cluster idea.

Despite the general agreement about the structure of the
ground state, there is no consensus on the structure of the
excited states of the nucleus. For example, the first excited
state, which has spin-parity 0+, has been described as a
four-particle–four-hole state [6], a breathing mode of the
tetrahedron [7,8], or correlated with a bent rhomb [9,10] or
square [4] arrangement of α particles. The first suggestion
has been put in doubt by more extensive studies [11], while
the other three do not necessarily contradict each other; each
model is simply too narrow in scope. The lattice spacing of
the ab initio calculation [4] is too large to see the effect of
the bent rhomb or breathing mode in detail. The algebraic
model [8] only considers configurations near the tetrahedron
and so does not include the square configuration. To resolve the
disagreement about the 0+ state one must study a model which
includes large-amplitude vibrations around the tetrahedron and
allows rhomb-like and square configurations. In addition, this
will remove a degeneracy of states seen in many models but
not in the experimental spectrum.

The Skyrme model [12] is an effective field theory of
hadrons arising as an approximate low-energy limit of QCD. It
is a nonlinear theory of pions, whose small mass spontaneously
breaks the chiral symmetry of the model. Nuclei are identified
with solitons of the theory: the α particle is described
by a classical soliton with cubic symmetry. This allows a
spherically symmetric quantum ground state with spin-parity
0+, matching conventional models [13]. It also reproduces α
clustering in larger nuclei [14,15] such as 16O. In particular
it contains the tetrahedral and square configurations seen in
conventional cluster models of 16O.
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The reason for using the Skyrme model is that it provides
dynamics for the clusters. We can use this to construct a
configuration space that we call the vibrational manifold.
There is a dynamical mode, shown in Fig. 1, connecting
the tetrahedral and square configurations, via bent rhomb
configurations. Two pairs of α particles approach each other
and form a tetrahedron, which flattens out into a square, before
reopening into the dual tetrahedron and then breaking into two
pairs of α particles again, having picked up a 90◦ twist. There
are three of these modes passing through each tetrahedron,
corresponding to the three pairs of opposing edges. If one
starts at the tetrahedron and excites each of these modes equally
then they will cancel out. Therefore there is degeneracy and
these three modes only generate a two-dimensional space of
configurations which forms our vibrational manifold.

This manifold is an extension of the linear E-vibrational
space of the tetrahedron. It captures the low-energy path
connecting the two tetrahedra via the square configuration as
in Fig. 1. The presence of this path enables a significant energy
difference to be created between quantum states with opposite
parities, which would not be possible by only considering
vibrations around the tetrahedron locally.

The degrees of freedom in this vibrational manifold are the
positions of the α particles, which lie on a surface. To account
for the asymptotics seen in Fig. 1, this surface must stretch out
to infinity in six directions as in Fig. 2. Each configuration has
D2 symmetry and hence if one α particle is at x = (x,y,z),
the others are at (x, − y, − z), (−x,y, − z), and (−x, − y,z).
This means we may focus on one quarter of the surface, which
we denote by M.

Having constructed the vibrational manifold we can now
quantize the system using an extension of the scheme laid out
in [17], but for the first time we include a two-dimensional
manifold of configurations. The total configuration space is
M × SO(3), which allows rotations of each configuration too.
The quantum Hamiltonian is

Ĥ = −h̄2

2
� + V (x), (1)

where V (x) is the static energy of the configuration onMwith
an α particle at x, and the kinetic operator is proportional to
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FIG. 1. Scattering mode of four α particles in the Skyrme model. Each time step shows a surface of constant energy density which is
colored according to the field value as in [16].

the Laplace-Beltrami operator

� = det(g)−
1
2 ∂i(det(g)

1
2 gij ∂j ), (2)

where g is the metric on M × SO(3). The metric is block
diagonal, because of the D2 symmetry of the configurations,
and hence the problem splits into vibrational and rotational
parts. The total wave function is separable and can be written
as

|�〉 =
∑
L3

φL3 (x)|JL3〉, (3)

where φ is the vibrational wave function and |JL3〉 are the
rigid-body angular momentum states with spin J and body-
fixed angular momentum projection L3. In addition, the linear
combination of states occurring in |�〉 must be D2 invariant.

Vibrational problem. The rescaled Schrödinger equation for
the vibrational wave function is

−�vib φ + V (x)φ = (E − EJ )φ, (4)

where E is the total energy of |�〉 and EJ is its rotational
energy. EJ involves the moments of inertia of the configura-
tions, which depend on the vibrational coordinates x. However,
for now, we consider them to be constant to simplify the
calculation of the vibrational energy. We shall reinsert this
dependence later in the paper.

To solve Eq. (4) we must first model the metric on our
space M. To do this we approximate M as one quarter of the
six-punctured sphere with constant negative curvature. This
captures several important physical features of the system:

FIG. 2. α particles are restricted to lie on a surface with six
punctures. Regions with the same coloring are related by D2

symmetry. The scattering mode in Fig. 1 is represented by the thick
black line.

that the particles can separate into pairs asymptotically and
that the surface in Fig. 2 does indeed have negative curvature.
The metric of this manifold is simple once we map M onto
a subdomain F of the complex upper half plane. For details,
see [18]. The appropriate subdomain for this problem is shown
in Fig. 3. Defining ζ = η + iε as the complex coordinate
on the upper half plane, the metric is then proportional to
ε−2(dη2 + dε2). This gives rise to the kinetic operator

−�vib = −ε2

(
∂2

∂η2
+ ∂2

∂ε2

)
. (5)

The six-punctured sphere has cubic symmetry O and hence
M has O/D2

∼= S3 symmetry, where S3 is the permutation
group of the x, y, and z axes. S3 can act onM orF , permuting
the colored regions seen in Fig. 3. In addition, parity acts on
M as

x = (x,y,z) → (−x, − y, − z) ≡ (x, − y,z), (6)

where we have used the D2 symmetry in the equivalence. This
corresponds to η → −η on F . Hence the vibrational wave
functions fall into representations of S3 and parity.

Our choice of potential V is motivated by cluster models
which find that the tetrahedral configuration has the lowest
energy [10]. Going toward the square or asymptotic configura-
tions leads to a rise in potential energy. In addition, we would
like a potential for which Eq. (4) is soluble. A convenient
candidate is

V (η,ε) = ε2

[
ω2

(
η − 1

2

)2

+ μ2

]
, (7)

∼=

FIG. 3. Relation between M (left) and F (right). Tetrahedral
configurations are at the points where three colored regions meet,
while the square configurations are at points where four colored
regions meet. The scattering mode in Fig. 1 is represented by the
thick black lines.
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FIG. 4. Vibrational wave functions which lie in the trivial
representation. From left to right: ground state, first excited state,
and lowest-lying state with negative parity.

where ω and μ are constant parameters and the ε2 factor means
that solutions of Eq. (4) are separable in η and ε.

This potential ansatz is a good approximation for the
low-energy configurations but it diverges asymptotically for
the separated pairs (ε → ∞). Bound states are concentrated
around the tetrahedral and square configurations and so this
divergence has a negligible effect on them. To study scattering
states, a different potential that flattens out asymptotically
would be required. Formula (7) only applies in the top
right region of F and the potential elsewhere can be found
by defining V to take the same value at points related by
S3.

Rovibrational states. The vibrational wave functions must
be combined with spin states in order to form rovibrational
states. The combinations that are permitted depend on the
representation that the vibrational wave function falls into.
There are two one-dimensional irreducible representations of
S3, known as the trivial and sign representations.

The two lowest-energy vibrational wave functions in the
trivial representation are displayed in Fig. 4 (left and middle).
When combined with the |0,0〉 spin state, we identify these
solutions with the two lowest 0+ states in the experimental
spectrum of 16O. The ground state is loosely concentrated
around the two tetrahedral configurations in agreement with
other models. The excited state has approximately equal
concentrations at the three square and the two tetrahedral
configurations. Hence we deduce that a global analysis, includ-
ing both tetrahedral and square configurations, is essential to
explain the structure of the excited 0+ state. These vibrational
wave functions may also be combined with certain states of
higher spin: those that have tetrahedral symmetry and positive
parity. Overall, these wave functions give rise to a rotational
band with spins 0+,4+,6+, . . ..

If a configuration has a reflection symmetry and the wave
function is nonzero there, one may calculate the intrinsic
parity for a given spin state. For example, the tetrahedron
has positive intrinsic parity for spins 0 and 4 but negative
intrinsic parity for spin 3. This leads to constraints on the
vibrational wave functions, one of which is that the spin 0
wave functions must take the same value at the tetrahedron and
its dual. This is automatic for positive-parity states as we can
see in Fig. 4, noting that the parity operator for the vibrational
wave functions corresponds to η → −η. Negative-parity wave
functions are also permitted if they vanish at all configurations
with a reflection symmetry. This is true of the rightmost wave

FIG. 5. Vibrational wave functions which lie in the sign repre-
sentation. From left to right: lowest-energy state, first excited state,
and lowest-lying state with positive parity.

function of Fig. 4 and hence one may combine it with a |0,0〉
spin state to give an overall 0− state.

Vibrational wave functions in the sign representation of S3

with negative (positive) parity are not too different from those
in the trivial representation with positive (negative) parity. The
sign representation wave functions are displayed in Fig. 5 and
the similarities with those in Fig. 4 are manifest. The two
wave functions on the left give rise to 3−,6−, . . . states while
the rightmost wave function gives rise to 3+,6+, . . . states of
rather high energy.

The third and final irreducible representation of S3 is the
two-dimensional standard representation. Here the vibrational
wave functions for a given eigenvalue have degeneracy two and
we denote the orthogonal pair as φ1 and φ2. The lowest-energy
positive- and negative-parity vibrational wave functions of
this type are displayed in Fig. 6. The positive-parity states
are concentrated around the square configurations and hence
give rise to approximate rotational bands of the square. The
negative-parity states have higher energy than the positive-
parity states since they are more constrained, having to vanish
at the square configurations. As with the other representations,
there are further vibrationally excited states which we have
calculated though not displayed. These vibrational wave
functions are then combined with a two-dimensional basis
of spin states.

FIG. 6. Lowest-energy vibrational wave functions which lie in
the standard representation. Clockwise from top left: φ1 with positive
parity, φ2 with positive parity, φ2 with negative parity, and φ1 with
negative parity.
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FIG. 7. Energy spectrum of our model up to 12.7 MeV compared with all the low-lying experimentally observed states [19]. States are
colored according to the type of vibrational wave function from which they arise. The partially dotted lines represent the trivial irrep (black),
sign irrep (green), and standard irrep (blue) of S3. Full vertical lines represent states identified with the F vibration (red) and A vibration
(yellow). The 1− state at 9.6 MeV is unexplained in our model.

For spin 2 the total wave function is

|�〉 = φ1√
2

(|2,2〉 + |2, − 2〉) + φ2|2,0〉. (8)

The vibrational wave functions φ1 and φ2 transform in the
same way as the spin states they are paired with. Hence the
total wave function is invariant under S3 transformations and
parity. We can construct similar states for spin-parity JP =
4±,5±,6±, . . ..

Energy spectrum. In constructing the extended E-
vibrational wave functions in Eq. (4) we neglected dependence
of the moments of inertia on the vibrational coordinates.
To calculate the rotational energy of our states we use an
approximate inertia tensor that interpolates between the known
values for the tetrahedral, square, and asymptotic Skyrme
model configurations shown in Fig. 1. This gives rise to a
kinetic operator whose expectation value we then find. This
is equivalent to using first-order perturbation theory, which is
justified because the energy gaps between vibrational states in
the same representation are large.

While most of our analysis has focused on extending the E
vibration of the tetrahedron, two other types of vibration also
need to be considered. The breathing A vibration describes the
four α particles moving radially while preserving tetrahedral
symmetry. It gives rise to excited 0+,3−,4+, . . . states. The F
vibration contains the mode where one α particle travels away
from the other three, preserving C3 symmetry. This allows for
excited states of spin 1−,2+,3±,4±, . . ..

The 16O ground state is fixed at 0 MeV, with the excited
0+ and lowest 4+ state being used to scale the vibrational
and rotational energy units, respectively. The two remaining
parameters (ω and μ) are chosen to give a good fit for the rest
of the states. The first 15 states of the experimental spectrum
are shown in Fig. 7 and after extracting those states coming
from the A and F vibrations, we provide a good fit for most
of the remaining states.

In particular, the lowest-lying 2+ and 2− states have the cor-
rect ordering, with a predicted energy gap of 1.8 MeV which is
close to the experimentally observed gap of 1.96 MeV. This gap
is caused by the vibrational wave functions having significantly

different energies, due to their opposite parities. Our global
analysis, including the tetrahedral and square configurations,
is essential to describe this gap. The lowest 0+, 3−, and 4+
states still form a rotational band, despite the fact that the 3−
state has a different vibrational wave function [compare Fig. 5
with Fig. 4 (left)]. For our choice of parameters in the potential,
these vibrational wave functions have similar energies.

The calculated energy of the 0− state in Fig. 4 is 16.35 MeV
which is significantly larger than the lowest experimentally ob-
served 0− state which has energy 11.0 MeV. In our calculation
we have used the potential (7) which diverges asymptotically;
however, the configuration energy should flatten out as we
approach the two separated pairs of α particles (ε → ∞).
Taking this into account would reduce the vibrational energy
of all states but have a larger effect on highly excited states
such as the 0−.

We find a 6+ state in the trivial S3 representation at
21.7 MeV which agrees with an experimentally observed state
at 21.6 MeV. In addition, we predict two 6− states: one at
22.2 MeV from the sign representation and one at 27.1 MeV
from the standard representation. Negative-parity spin-6 states
of 16O have not yet been observed.

We do not provide an extended model of the F vibration
as we have done with the E vibration, since previous studies
have shown that a local, harmonic analysis describes the data
well [7,8]. Hence, we simply highlight the states arising from
this vibration in Fig. 7 without calculating their energies. The
A vibration splits the nucleus into four individual α particles
and hence its frequency must be large. We identify the state at
12.0 MeV as its first excitation.

Conclusion. We have considered an α-cluster model for
16O with novel dynamics motivated by the Skyrme model.
Our work allows for α-particle configurations with tetrahedral
and square symmetry within a two-parameter family of con-
figurations, going beyond the rigid-body analysis considered
previously [10], and also the harmonic analysis of the E
vibration in [8]. The quantum Hamiltonian has a 0+ ground
state focused around the tetrahedral configuration in agreement
with other models, but we provide a novel explanation for the
excited 0+ state as a superposition of the tetrahedral and square

031303-4



RAPID COMMUNICATIONS

DYNAMICAL α-CLUSTER MODEL OF 16O PHYSICAL REVIEW C 95, 031303(R) (2017)

configurations. Our model allows a 0− state which vanishes
at the tetrahedral and square configurations, although these
constraints give it a rather high energy. We also explain the
energy gap between the low-lying 2+ and 2− states as being

mainly due to their considerably different vibrational wave
functions.
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