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The properties of neutron stars are investigated within the relativistic central variational method by using a
realistic nucleon-nucleon (NN ) interaction. The strong repulsion of realistic NN interactions at short distances is
treated by a Jastrow central correlation function, whose form is completely determined through minimization of
the total energy of the nuclear many-body system. The relativistic Hartree-Fock wave functions are chosen as the
trial wave function. In this framework, the equation of state of the neutron star matter in β equilibrium is obtained
self-consistently. We further determine the properties of neutron stars via the Tolman-Oppenheimer-Volkoff
equation using Bonn A, B, and C potentials. The maximum masses of neutron stars with these realistic potentials
are around 2.18M� and their corresponding radii are around 11 km. These results are in accordance with the
calculations of the relativistic Brueckner-Hartree-Fock theory with the same potentials. Furthermore, we also find
that the splitting of proton-neutron effective masses will be reversed at high density in the neutron star matter,
which are caused by the contribution of short-range correlation on kinetic energy.
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I. INTRODUCTION

The first neutron star was discovered by Bell and Hewish in
1967. Since then, the neutron star has been the topic of research
in numerous studies in astronomy and nuclear physics. A
neutron star can be treated as a huge nucleus composed of
neutrons, protons, and leptons [1,2]. The properties of neutron
stars, such as mass and radii, can be precisely measured
with the gradual development of astronomical observation
technology. This development has promoted theoretical studies
on the nuclear many-body theory [3,4], especially on the
properties of nuclear matter at high densities, where high
density refers to densities above three times the nuclear
saturation density in the core of a neutron star.

In the Tolman-Oppenheimer-Volkoff (TOV) equation [5,6],
which is derived by solving the Einstein equations for a spher-
ically symmetric and time invariant system, the properties of a
neutron star are fixed by the equation of state (EOS) of neutron
star matter, which is a charge neutral system in β equilibrium.
The EOSs of neutron star matter have been widely studied
using various nuclear many-body theories, by the application
of density functional theory (DFT) and ab initio methods in
nuclear physics [7,8].

The effective nucleon-nucleon (NN ) interactions are
adopted in DFT, and are determined by fitting the empirical
saturation properties of nuclear matter and the ground states
of finite nuclei. There are usually two schemes used in DFT,
i.e., relativistic and nonrelativistic approximation. The most
popular nuclear many-body theory in nonrelativistic DFT is the
Skyrme-Hartree-Fock theory [9–11], which was constructed
based on the point-coupling NN interaction. In the relativistic
version, covariant DFT was proposed based on the one-boson-
exchange picture [12–14]. The EOSs of DFT around the satu-

*hujinniu@nankai.edu.cn

ration density region can be constrained very well and are kept
consistent within different effective NN interactions. How-
ever, their behaviors in the high density region, especially in the
cores of neutron stars, show variability, which generate widely
different predictions of the properties of neutron stars. With
the discoveries of massive neutron stars, whose masses are
around 2M�, many DFT interactions are eliminated [15,16].

On the other hand, in the state-of-the-art nuclear many-body
methods, via ab initio calculations, a realistic NN interaction
is used that is obtained by reproducing the NN scattering data.
The most popular realistic NN potentials are constructed
by the meson-exchange picture [17] and chiral effective
field theory [18,19]. The NN potentials, based on chiral
low-momentum expansions, are soft cores at short distances
due to pion exchange, whereas, in a meson-exchange potential,
such as the Bonn potential, the ω and ρ meson exchanges
are essential in the core region of the NN interaction, and
generate a very strong repulsive core. There are also other high-
momentum effects at short distance, such as the strong tensor
force, besides strong repulsion [20] which is related with the
nucleon inner structure [21,22] in the realistic NN interaction.
Since 1950, many microscopic many-body methods have
been proposed to take such high momentum contributions into
account. Akmal et al. used the hypernetted chain-summation
technique in the nonrelativistic variational method [23] and
the AV18 potential [24] to calculate the EOS of neutron rich
matter [25] with a three-body force. Krastev and Sammarruca
adopted the relativistic Brueckner-Hartree-Fock (RBHF) [26]
theory to study the properties of neutron stars with Bonn
potentials [27]. Gandolfi et al. also compared their results with
the calculations made by Akmal using the auxiliary field dif-
fusion Monte Carlo method [28]. Hebeler et al. discussed the
properties of a neutron star with NN interactions from chiral
effective field theory and constrained the neutron star mass-
radius relation in the framework of renormalization group
theory [29,30]. All of these values of EOSs obtained from
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ab initio calculations agree well with each other in the high
density region and generate similar properties of massive
neutron stars.

For neutron rich matter, the tensor effect in a realistic
NN interaction is suppressed largely in the T = 1 isospin
channel [27,31–33]. Therefore, it is enough to explicitly con-
sider only the short-range correlation in neutron rich matter.
Based on this motivation, a relativistic central variational
(RCV) method was proposed by including a central correlation
Jastrow function [34], which was inspired by the series works
by Panda et al. [35–37]. In the RCV method, the solutions of
the relativistic Hartree-Fock (RHF) method [38] were chosen
as the trial wave function of the total system. The saturation
properties obtained by the RCV method are 20% different
from the empirical data, likely because of the lack of tensor
correlation in symmetric nuclear matter. However, the EOS of
pure neutron matter within the Bonn potentials can reproduce
the results from RBHF theory very well. The solutions of
the RHF method in nuclear matter are constructed by spinors
with plane wave functions, the summation of spin and isospin
for which can be easily and systematically evaluated via
the Feynman trace technology. Therefore, the calculation in
the RCV method for neutron-rich matter is essential and
economical, when compared with other time-consuming ab
initio methods such as nonrelativistic variational methods and
the RBHF theory in asymmetric nuclear matter.

Furthermore, the calculation procedures of the ab initio
aforementioned methods, when they were applied to neutron
star matter in β equilibrium, are complicated; therefore, the
equations of β equilibrium are usually solved with various
approximations instead of self-consistence treatments [25,27].
Hence, the intention of this work is to apply the RVC method to
calculate the EOSs of neutron star matter in β equilibrium self-
consistently, and use these EOSs to study the properties of neu-
tron stars with realistic NN interaction Bonn potentials. In ad-
dition, we compare our results with the calculations of other ab
initio methods and discuss the role of central correlation in neu-
tron stars. In Sec. II, we give a basic theoretical formulation of
the RCV method. In Sec. III, numerical results are presented on
the properties of neutron stars and are compared with other cal-
culations. In Sec. IV, we give a summary of the present work.

II. RELATIVISTIC CENTRAL VARIATIONAL METHOD

We firstly show the Hamiltonian of the Bonn potential [17],
which is constructed based on the one-boson-exchange poten-
tial. It is defined as a sum of one-particle amplitudes of six
bosons, consisting of π and η pseudovectors, σ and δ scalars,
and ρ and ω vector mesons:

H =
A∑
i

Ti + 1

2

A∑
i,j

Vi,j

=
∫

d3xψ(x)(−iγ · ∇ + MN )ψ(x)

+ 1

2

∑
i=σ,δ,
η,π,ω,ρ

∫
d3x′d3xψ(x′)ψ(x)


i(1,2)

m2
i + q2

ψ(x)ψ(x′),

(1)

where ψ corresponds the nucleon field. q is the transfer mo-
mentum between two nucleons and MN,mi are the masses of
nucleons and mesons, respectively. The 
i matrices represent
the vertex between nucleons and mesons, which are depicted
below:


σ (1,2) = −g2
σ , 
δ(1,2) = −g2

δτ 1 · τ 2,


η(1,2) = −
(

fη

mη

)2

(/qγ5)1(/qγ5)2,


π (1,2) = −
(

fπ

mπ

)2

(/qγ5)1(/qγ5)2τ 1 · τ 2,


ω(1,2) = g2
ωγμ(1)γ μ(2),


V
ρ (1,2) = g2

ργμ(1)γ μ(2)τ 1 · τ 2, (2)


T
ρ (1,2) =

(
fρ

2MN

)2

qνσ
μν(1)qλσμλ(2)τ 1 · τ 2,


V T
ρ (1,2) = i

(
gρfρ

MN

)
γμ(2)σμνqν(1)τ 1 · τ 2,

where σμν = i
2 [γμ,γν] is an antisymmetric tensor 
 matrix,

and the tensor coupling part between ω meson and nucleon
has been neglected because the value of fω/gω is negligible.
Meanwhile, a monopole form factor should be considered,

Fi(q
2) = �2

i − m2
i

�2
i + q2

, (3)

for each meson-nucleon vertex denoted by i. All coupling
constants and cutoff momenta �i were determined by fitting
the NN scattering data.

In the RCV method, one introduces a central correlation
function of the wave function of the RHF theory as the trial
wave function of the nuclear matter system [34], to treat the
strong short-range repulsion,

|�〉 = F |�〉, (4)

where |�〉 is the RHF wave function, and the correlation factor
F is chosen to be a product of two-body correlation functions
f (rij ),

F =
A∏

i<j

f (rij ). (5)

Here, f (rij ) is Jastrow correlation function [20]. The total
energy density with the correlation function is obtained as

Ec = Ec

�
= 1

�
〈�|H̃ |�〉 = 〈T 〉 + 〈Tc〉 + 〈V 〉. (6)

where the explicit form of the correlated Hamiltonian H̃
appears as

H̃ =
A∑
i

Ti + 1

2

A∑
i,j

Ṽij

=
A∑
i

Ti + 1

2

A∑
i,j

{f †(rij )[Ti + Tj + Vij ]f (rij )

− (Ti + Tj )}. (7)
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Furthermore, the kinetic energy density part is not only related
to the original one-body kinetic operator 〈T 〉,

〈T 〉 = λ

π2

∫ kF

0
p2dp[pP̂ + MNM̂], (8)

but also the two-body operator with the Jastrow correlation
function, 〈Tc〉,

〈Tc〉 = CρB

λ

π2

∫ kF

0
p2dp[pP̂ + MNM̂]

− 2λ

(2π )4

∫ kF

0
p2dp p′2dp′{[pP̂ (p)

+ 2MNM̂(p)]I (p,p′) + p′P̂ (p)J (p′,p)}, (9)

where the first and second terms correspond to the direct
(Hartree) and exchange (Fock) contributions of 〈Tc〉, respec-
tively, and C = ∫

d3r[f 2(r) − 1]. The isospin degeneracy is
λ = 2 for symmetric nuclear matter and λ = 1 for pure neutron
matter. P̂ and M̂ are defined as

P̂ (p) = p∗(p)

E∗(p)
, M̂(p) = M∗

N (p)

E∗(p)
. (10)

The potential energy density 〈V 〉 will be split into the
direct term 〈VD〉 and exchange term 〈VE〉. The pseudo-vector
mesons do not provide their contributions in the Hartree
approximation. We have the result of 〈VD〉 as

〈VD〉 = − F̃σ (0,0)

2

(
ρ

p
S + ρ

p
S

)2 − F̃δ(0,0)

2

(
ρ

p
S − ρn

S

)2

+ F̃ω(0,0)

2

(
ρ

p
B + ρn

B

)2 + F̃ρ(0,0)

2

(
ρ

p
B − ρn

B

)2
, (11)

where ρS and ρB are the scalar and nucleon vector densities,
respectively, given as

ρ
p(n)
S = 1

π2

∫ k
p(n)
F

0
p2dpM̂(p),

ρ
p(n)
B = 1

π2

∫ k
p(n)
F

0
p2dp. (12)

The proton and neutron cases are distinguished by the
superscripts p,n. The exchange contribution of σ meson 〈V σ

E 〉
as an example is given by

〈
V σ

E

〉 = λ

2(2π )4

∫ kF

0
p dp p′dp[Aσ (p,p′)

+ M̂(p)M̂(p′)Bσ (p,p′) + P̂ (p)P̂ (p′)Cσ (p,p′)].

(13)

Here, the moment dependent functions Ai , Bi , Ci , I , J , and Fi

are various angular integrals related with the meson-exchange
potentials, and are listed in the appendix of Ref. [34]. The
contributions of other mesons can be expressed in similar
forms. Finally, the total energy density is written as

Ec = 〈T 〉 + 〈Tc〉 + 〈VD〉 +
∑

i

〈
V i

E

〉
. (14)

Usually, several free parameters, c1,c2, . . . ,ci , will appear in
the Jastrow function f (r). In the present work, the correlation

function is chosen as

f (r) = 1 − (c0 + c1r + c2r
2 + c3r

3)e−c4r , (15)

where the exponential term makes f (r) unity at large distance.
A natural choice from the unitary property of the correlation
function is a normalization constraint on f (rij ),∫

d3rij [f 2(rij ) − 1] = 0, (16)

that should go to zero for small rij because of the repulsive
core of NN interaction, which leads to c0 = 1. Furthermore,
we should also ensure it is a monotonously increasing property
at short distance,

f ′(0) � 0. (17)

We can then calculate the binding energy of nuclear matter af-
ter determining the remaining parameters with the variational
principle. The minimal value of the total energy should appear
at f ′(0) = 0 and f ′′(0) = 0 with the constraint (17) to make
the Jastrow correlation function increase at short distance.
Therefore, we can obtain the relations between c1, c2, and c4,

c1 = c4, c2 = c2
4

2
. (18)

Now, there is only one parameter, c4, in the actual calculation,
because c3 is fixed by the normalization condition of the
Jastrow correlation function, Eq. (16). We would like to
determine c4 by the variational principle with the energy
density

∂Ec

∂c4
= 0. (19)

More detailed formulas of the RCV method can be found in
Ref. [34].

For neutron star matter, there are not only the nucleons but
also the leptons, such as electrons and muons. All of them
exist in the neutron star with the equilibrium conditions of the
chemical potentials for the β decay,

μn = μp + μe, μμ = μe, (20)

where the chemical potentials μn,μp,μμ, and μe are deter-
mined by the relativistic energy-momentum relation at the
Fermi momentum p = kF ,

μi = �i
0(kF ) + E∗

i (kF ), μλ =
√

k2
F,λ + m2

λ, (21)

where, i = n,p and λ = e,μ. �i
0(kF ) is the zero component of

the self-energy of proton or neutron. Furthermore, the nucleon
density conservation and charge neutrality are imposed in
neutron star matter as

ρ = ρn + ρp, ρe + ρμ = ρp. (22)

The pressure of the neutron star system can be obtained with
the thermodynamics relation, as

P (ρ) = ρ2 ∂

∂ρ

ε

ρ
=

∑
i=n,p,e,μ

ρiμi − ε. (23)
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The stable configurations of a neutron star then can be obtained
from the well known hydrostatic equilibrium equations, by
Tolman, Oppenheimer, and Volkoff [5,6] for the pressure P
and the enclosed mass m,

dP (r)

dr
= −Gm(r)ε(r)

r2

[
1 + P (r)

ε(r)

][
1 + 4πr3P (r)

m(r)

]
1 − 2Gm(r)

r

,

dm(r)

dr
= 4πr2ε(r), (24)

where P (r) is the pressure of neutron star at radius r , and
m(r) is the total star mass inside a sphere of radius r . Once
the EOS P (ε) is specified, ε being the total energy density (G
is the gravitational constant), for a chosen central value of the
energy density, the numerical integration of Eq. (24) provides
the mass-radius relation of neutron star.

III. RESULTS AND DISCUSSIONS

A. The equations of state of neutron star matter

After solving the equilibrium conditions of chemical
potentials for various particles in the neutron star matter,
Eq. (20), the binding energies per nucleon as functions of
density are shown in the left panel of Fig. 1 with three Bonn
potentials, Bonn A, Bonn B, and Bonn C, which were fitted by
the scattering data of NN system. The binding energy of the
Bonn A potential is the smallest of the three Bonn potentials,
which is in accordance with the conclusion of RBHF theory
for symmetric nuclear matter [26]. The tensor component of
Bonn A among these three potentials is the weakest, whose D
state probability, PD , is the smallest in deuterons. Furthermore,
the difference of binding energies of these three potentials in
neutron star matter is obviously less than that in the symmetric
nuclear matter. The effect of the tensor force becomes weaker
with increasing neutron fraction and does not play any role in
pure neutron matter. Similarly, the pressure as a function of
energy density for neutron star matter is required as input data,
when we calculate the properties of neutron stars in the TOV
equation. The pressure-energy relations with Bonn potentials
are given in the right panel of Fig. 1. Their behaviors are very
similar to those of the binding energy and are almost identical
with each other. It demonstrates that these EOSs will generate
similar properties of the neutron stars.

The central correlation on kinetic energy per nucleon is
presented for the neutron star matter in Fig. 2. The variational

FIG. 1. The energy per nucleon as a function of density (a) and
the pressure as a function of energy density (b) of neutron star matter
with Bonn A, Bonn B, and Bonn C potentials.

FIG. 2. The central correlation on kinetic energy for neutron star
matter with Bonn A, Bonn B, and Bonn C potentials.

method can be achieved based on the competition between
the correlation on kinetic energy and potential. The central
correlation on kinetic energy provides a repulsive effect to
prevent two-nucleon approach at high densities, whereas the
one on potential gives an attractive contribution to remove
the repulsion of realistic NN interactions in the short-range
region. Finally, the correlations on kinetic and potential
energies determine the minimum total energy and explicitly
confirm the variational parameters in the Jastrow function. It
can be found that the correlation on kinetic energy contributes
almost half of the binding energy per nucleon for neutron
star matter and plays a very essential role in the RCV
method.

In the RCV method there is only one independent varia-
tional parameter, c4 [34], which is shown in Fig. 3 as a function
of density with Bonn A, Bonn B, and Bonn C potentials. From
this figure, we can see that the central correlation strength
increases slowly at low density, reaches a maximum value
around the normal nuclear saturation density, and starts to
decrease with increasing density thereafter. It demonstrates
that the central correlation will have to consider more variables
to generate the saturation density and that it becomes weaker
at high density, since the distance between two nucleons is
already sufficiently compressed.

FIG. 3. The variational parameter c4 as a function of density for
neutron star matter with Bonn A, Bonn B, and Bonn C potentials.
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FIG. 4. The mass-radius relations (a) and mass-density relations
(b) of neutron stars with Bonn A, Bonn B, and Bonn C potentials.

B. The properties of neutron stars

With the EOSs from the RCV method, we obtain the
properties of neutron stars by solving the TOV equation with
Bonn potentials. The mass-radius and mass-density relations
of neutron stars within our present framework are illustrated
in Fig. 4. In the left panel, we plot the mass-radius relations
of neutron stars with Bonn A, Bonn B, and Bonn C potentials.
The maximum masses and corresponding radii predicted are
almost the same, around 2.18M� and 11 km, respectively.
These results are in good agreement with the previous ab
initio calculations. The maximum masses of neutron stars
are 2.2M� in nonrelativistic variational method by Akmal
et al. [25]. Similarly, the maximum masses and corresponding
radii of neutron stars were given as 2.24M� and 10.8 km
in the RBHF theory with Bonn potentials [27]. It indicates
that our RCV method can economically describe the neutron
star matter as well as both the nonrelativistic full variational
method and the RBHF theory. The maximum masses and
the mass-radius relations of neutron stars with three Bonn
potentials have obvious distinctions, since the neutron star
matter includes not only neutrons but also protons. The tensor
force should contribute to some effects at the T = 0 channel
here, especially at low density, which is shown clearly in the
mass-radius curves at large R. In the right panel of Fig. 4,
we plot the mass-density relations of neutron stars with Bonn
potentials. The central densities at maximum neutron star mass
are 1.078 fm−3 for all of three Bonn potentials, which are
similar to the calculations of Akmal et al. [25], 1.14 fm−3,
and RBHF theory, 1.003–1.013 fm−3 [27]. In the low density
region, the masses of neutron stars display distinguishable
behaviors. They are almost identical with increasing densities.

In Table I, the properties of neutron stars within the
present framework are listed for Bonn A, Bonn B, and
Bonn C potentials. They are compared with the ones taken

from the RBHF theory [27]. No matter the maximum mass
or the corresponding radii and central density, our results
are only 3% different from the ones calculated via the
RBHF theory. Furthermore, the maximum masses of neutron
stars in our calculation satisfy the requirements of recent
observation on massive neutron stars [15,16], around 2M�.
The corresponding radius is also located within the constraint
region worked out by Hebeler et al. [29,30].

The fractions of various particles appearing in neutron stars,
which are neutrons, protons, electrons, and muons, are plotted
in Fig. 5 with the three Bonn potentials. At the beginning, the
muon is absent for the β equilibrium conditions. When the
electron chemical potential is larger than the muon mass, the
muon will appear in the neutron star matter at densities less
than 0.2 fm−3, which is smaller than the density of muons in
the RBHF theory. The earliest appearance of the muon is in
the Bonn A potential around the normal saturation density.
At high density, the fraction of muons will approach that
of electrons. The proton fraction in Bonn A has the largest
magnitude compared to the other two Bonn potentials, which
should be due to its smaller tensor component.

We give the proton fractions with Bonn potentials alone
in Fig. 6. From this figure, the difference of proton fractions
obtained from the three Bonn potentials is clearly revealed,
which becomes very obvious in the intermediate density region
and decreases in the high density region. The proton fraction
in our calculation continues to increase with density and is in
contrast to the case in RBHF theory, where it decreases at high
density and the largest fraction is about 0.13 [27]. In RBHF
theory, to simplify the calculation, the leptons were treated
with the nonrelativistic approximation. At high densities, the
relativistic effect becomes more important, where the Fermi
momentum is very high and can be comparable with the
light speed. Therefore, the direct Urca processes related to
the cooling mechanism of a neutron star could not occur
easily with Bonn B and Bonn C potentials in RBHF theory,
which should be satisfied by a proton fraction larger than
approximately 1/9. However, in our work, the direct Urca
processes can be produced in all of the Bonn potentials and
the densities appearing in direct Urca processes are located
between 0.25 and 0.35 fm−3. These densities will lead the
neutron star to cool very rapidly.

C. The effective nucleon masses in neutron stars

We also give the Dirac effective nucleon masses in neutron
star matter in Fig. 7. For proton or neutron Dirac effective
masses reflecting the nucleon media effect, their magnitudes

TABLE I. The properties of neutron stars (maximum mass, corresponding radii, and central density) within the present framework and
compared with the ones calculated by RBHF theory for Bonn A, Bonn B, and Bonn C potentials.

Potentials RCV RBHF

Mmax (M�) R (km) ρc (fm−3) Mmax (M�) R (km) ρc (fm−3)

Bonn A 2.184 10.99 1.078 2.240 10.74 1.013
Bonn B 2.181 11.08 1.078 2.240 10.79 1.008
Bonn C 2.179 11.22 1.078 2.238 10.83 1.003
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FIG. 5. The particle fractions in neutron stars with Bonn A, Bonn
B, and Bonn C potentials.

with different potentials are almost equal, which is very similar
situation to the energy and pressure cases. If we compare the
proton effective mass with the neutron effective mass, it can be
found that the proton effective mass is larger than the neutron
one at low density. When the density is ρ > 0.4 fm−3, the
splitting of proton and neutron effective masses is reversed.
This behavior is quite different from the effective mass in
RHF theory, where the proton effective mass should be larger
than the neutron one in all density regions [39]. For RBHF
theory, the splitting of proton and neutron effective masses
for asymmetric nuclear matter is strongly dependent on the
treatment of the G matrix. Brockmann and Machleidt used
the single-particle potential to extract the effective nucleon
masses, where the neutron effective mass is larger than
the proton one in neutron-rich matter [40]; whereas Dalen
et al. adopted the projection method to distinguish the spin
components in the G matrix and calculated the effective
nucleon mass with these interaction components in the RHF
model [41,42]. In this scheme, the proton effective mass is
larger than the neutron one.

To discuss the splitting of proton-neutron effective masses
in our framework, we show the kinetic and potential contri-
butions of the nucleon effective mass in a neutron star with
Bonn A potential in Fig. 8. Without the central correlation
function, the kinetic energy is a one-body operator, which
does not provide any contribution to the nucleon effective

FIG. 6. The proton fraction in neutron stars with Bonn A, Bonn
B, and Bonn C potentials.

FIG. 7. The effective proton and neutron masses in neutron stars
with Bonn A, Bonn B, and Bonn C potentials.

mass. Once the central correlation function is included, the
central correlation on kinetic energy becomes a two-body
operator and contributes to the nucleon effective mass. From
Fig. 8, we can find that the potential generates the negative
contribution to the effective nucleon mass. In neutron-rich
matter, the neutron effective mass will obtain more negative
components compared to the proton one. Therefore, in the
RHF model, the proton effective mass is larger than the neutron
one in neutron-rich matter. Meanwhile, the central correlation
on kinetic energy has positive contributions to the effective
nucleon mass. Furthermore, its effect on neutrons is much
higher than on protons at high densities. With the competition
between the potential and kinetic energy, the proton effective
mass is larger than the neutron one at low density and with
increasing density, the neutron effective mass is larger than the
proton one. Therefore, the central correlation on kinetic energy
plays a very important role in the splitting of proton-neutron
effective masses. Dalen et al. they obtained the effective
nucleon mass from the potential part, whereas Brockmann and
Machleidt considered the splitting of effective masses from
the single-particle potential, which is related to kinetic energy.
This may be the reason why there are opposite conclusions
between the two groups in RBHF theory on effective nucleon
mass.

FIG. 8. The kinetic and potential contributions on the nucleon
effective masses in neutron stars with Bonn A potential.
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IV. CONCLUSION

The RCV method based on the framework of RHF theory
was applied to study the properties of neutron stars with one-
boson-exchange potentials, i.e., Bonn potentials, which were
determined by fitting the nucleon-nucleon (NN ) scattering
data. In neutron-rich matter, the tensor force has a very small
effect of its isospin feature. Therefore, it is essential to take the
central correlation on the strong repulsion of NN interaction at
short distances for the description of neutron-rich matter. The
equation of state (EOS) of pure neutron matter obtained by
a novel ab initio calculation of RBHF theory was completely
reproduced by the present RCV method.

The EOSs of neutron star matter in β equilibrium with nu-
cleons and leptons were self-consistently solved via the RCV
method with Bonn A, Bonn B, and Bonn C potentials. Their
behaviors were almost identical for the weak effect of tensor
force in neutron-rich matter, since the differences among three
Bonn potentials only appeared in their tensor components.
The relativistic central correlation on kinetic energy played
a very important role in the process of minimizing the total
binding energy with the variational principle, and gave half
of the contribution to total binding energy. Furthermore, we
found that the strength of the central correlation function was
the strongest at the saturation density through the variational
parameters, which correspond to the saturation mechanism of
symmetric nuclear matter.

The properties of neutron stars were studied with the EOSs
of neutron star matter by solving the TOV equation. The maxi-
mum neutron star masses and corresponding radii were around
2.18M� and 11 km, respectively, using the RCV method with
Bonn potentials. The central densities of neutron stars were

about 1.078 fm−3. These results are in good agreement with
the calculations from RBHF theory and the nonrelativistic
variational method. It demonstrated that the RCV method
can describe neutron-rich matter reasonably and economically,
compared with the conventional ab initio calculation.

The proton fractions in neutron star matter with the three
Bonn potentials showed some differences. The proton fraction
in the Bonn A potential was the largest and that in Bonn C was
the smallest. The direct Urca processes would be generated in
all of these potentials above the densities 0.25–0.35 fm−3 with
a proton fraction larger than approximately 1/9. Furthermore,
the splitting of proton-neutron effective masses was reversed
with increasing density of neutron star matter. In the low
density region, the proton effective mass was larger than the
neutron one, whereas these behaviors are opposite at high
densities, since the central correlation on kinetic energy played
a more important role at high densities compared with the
correlation on potential. This may explain the conflicting
predictions about the splitting of proton-neutron masses in
the two different treatments in RBHF theory.

Although, we can describe the properties of neutron stars
very well—they are comparable to the results obtained by the
other ab initio methods—it is necessary to take the tensor cor-
relation into account to study symmetric nuclear matter and its
saturation properties to reproduce the empirical data in future.
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