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Neutrino-nucleon scattering in supernova matter from the virial expansion
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We extend our virial approach to study the neutral-current neutrino response of nuclear matter at low densities.
In the long-wavelength limit, the virial expansion makes model-independent predictions for neutrino-nucleon
scattering rates and the density SV and spin SA responses. We find that SA is significantly reduced from one even
at low densities. We provide a simple fit S

f
A(n,T ,Yp) of the axial response as a function of density n, temperature

T , and proton fraction Yp , which can be incorporated into supernova simulations in a straightforward manner.
This fit reproduces our virial results at low densities and the Burrows and Sawyer random-phase approximation
(RPA) model calculations at high densities. Preliminary one-dimensional supernova simulations suggest that the
virial reduction in the axial response may enhance neutrino heating rates in the gain region during the accretion
phase of a core-collapse supernovae.
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I. INTRODUCTION

Neutrinos radiate 99% of the energy and play a crucial
role in core-collapse supernovae [1–3]. The scattering of
neutrinos and their transport of energy to the shock region
are sensitive to the physics of low-density nucleonic matter,
which is a complex problem due to bound nuclei and the
strong correlations induced by nuclear forces. A recent three-
dimensional supernova simulation was sensitive to modest
changes in neutral-current neutrino-nucleon interactions and
exploded when strange-quark contributions were included [4].
However, these strange-quark contributions were probably
taken to be unrealistically large [5]. In this paper, we explore
if similar reductions in neutral-current interactions can arise,
not from strange-quark contributions, but from correlations in
low-density nucleonic matter. The physics of neutrino-matter
interactions is a broad and active field, where many interesting
studies of neutrino-matter interactions have been performed
recently [6–20].

For low densities and high temperatures, the virial ex-
pansion provides a model-independent approach. In previous
works, we have presented the virial equation of state of low-
density nuclear matter [21] and of pure neutron matter [22]. In
particular, the virial expansion can be used to describe matter in
thermal equilibrium around the neutrinosphere in supernovae.
The temperature of the neutrinosphere is roughly T ∼ 4 MeV
from about 20 neutrinos detected in SN1987a [23,24] and the
mass density is ρ ∼ 1011–1012 g/cm3. For pure neutron matter,
the virial expansion in terms of the fugacity z = eμ/T is valid
for

ρ = 2m

λ3
z + O(z2) � 4 × 1011 (T/MeV)3/2g/cm3, (1)

*horowit@indiana.edu

where m is the nucleon mass and λ = (2π/mT )1/2 denotes
the thermal wavelength. A conservative validity range of the
virial equation of state is given by z < 1/2, which gives the
limiting density in Eq. (1). Therefore, the virial approach is
applicable for the conditions of the neutrinosphere. Following
our virial equation of state, we have generalized the approach to
study spin-polarized neutron matter and the consistent neutrino
response of neutron matter at low densities [25].

In this paper, we use the virial expansion to describe how
neutrinos interact with low-density nuclear matter composed
of protons and neutrons. We neglect alpha particles and other
light nuclei [26,27]. These will be included in later work.
In Sec. II, we present our formalism. Our results for the
axial response and preliminary one-dimensional supernova
simulations are presented in Sec. III. Finally, we conclude
in Sec. IV.

II. NEUTRINO RESPONSE

In this section, we use the virial expansion to describe how
neutrinos interact with low-density nuclear matter. We focus on
neutral-current neutrino interactions. We expect similar results
for charged-current reactions; however, we leave these to later
work. We calculate the neutrino cross section per unit volume.
The virial expansion provides model-independent results in
the limit of low momentum transfer q → 0.

The free cross section for neutrino-nucleon neutral-current
scattering is

dσ0

d� νN
= G2

F E2
ν

4π2

[
C2

a,N (3 − cos θ ) + C2
v,N (1 + cos θ )

]
, (2)

where GF is the Fermi constant, Eν is the neutrino energy, and
θ is the scattering angle. The axial coupling up to strange-quark
corrections is |Ca,N | = |ga|/2 = 0.63 where ga is the axial
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charge of the nucleon. The weak vector charge is Cv,n = −1/2
for scattering from a neutron n and Cv,p = 1/2 − 2 sin2 θW ≈
0 for scattering from a proton p. Here θW is the weak mixing
angle. The cross section in Eq. (2) neglects corrections of order
Eν/m from weak magnetism and other effects; for details, see
Ref. [28].

The free cross section per unit volume for scattering from
a mixture of neutrons and protons is then given by

1

V

dσ0

d�
= nn

dσ0

d�νn
+ np

dσ0

d�νp
, (3)

= G2
F E2

ν

16π2

[
g2

a(3 − cos θ )(nn + np) + (1 + cos θ )nn

]
.

(4)

In the medium this cross section is modified by the density
(vector) SV and the spin (axial) SA response. The response of
the system to density fluctuations is described by SV , while SA

describes the response of the system to spin fluctuations. The
response functions are normalized to unity in the low-density
limit SV ,SA → 1 as n → 0. The cross section per unit volume
in the medium is then given by

1

V

dσ

d�
= G2

F E2
ν

16π2

[
g2

a(3 − cos θ )(nn + np)SA

+ (1 + cos θ )nnSV

]
. (5)

Note that dσ/d� reduces to the free cross section dσ0/d� as
SA,SV → 1. In general both SV and SA depend on momentum
transfer q. However, in the limit q → 0 we can derive model-
independent virial results.

A. Virial equation of state

Next, we briefly review the virial equation of state for a
system with neutrons and protons [21]. We use this to calculate
SV and SA. The pressure P is expanded to second order in the
fugacities of neutrons, zn, and protons, zp,

P

T
= ln Q

V
= 2

λ3

[
zn + zp + (

z2
n + z2

p

)
bn + 2zpznbpn

]
. (6)

Here T is the temperature, V is the volume of the system, and
Q is the grand-canonical partition function. The fugacities are
related to the neutron μn and proton μp chemical potentials
by zn = eμn/T and zp = eμp/T . Finally, the second virial
coefficients bn and bpn are calculated from nucleon-nucleon
elastic-scattering phase shifts. These are tabulated in Ref. [21].

The neutron nn and proton np densities follow from
derivatives of ln Q,

ni = zi

∂

∂zi

(
ln Q

V

)∣∣∣∣
V,T

. (7)

This gives

nn = 2

λ3

(
zn + 2z2

nbn + 2zpznbpn

)
, (8)

np = 2

λ3

(
zp + 2z2

pbn + 2zpznbpn

)
. (9)

B. Vector response

The vector response SV is equal to the static structure factor
Sq ; see, for example, Refs. [25,29]. For a single-component
system

SV (q = 0) = T

(∂P/∂n)T
. (10)

By using the virial equation of state this can be rewritten with
dP/dn = n/(T z)(dz/dn) as

SV = 1

n
z

∂

∂z
n. (11)

Following Ref. [7], we generalize this result to a mixture of
neutrons and protons:

SV = Cn
v

2Snn + 2Cn
v C

p
v Snp + C

p
v

2
Spp

Cn
v

2nn + C
p
v

2
np

, (12)

where

Snn = zn

∂

∂zn

nn = nn + 4

λ3
z2
nbn, (13)

Snp = zp

∂

∂zp

nn = 4

λ3
zpznbpn, (14)

Spp = zp

∂

∂zp

np = np + 4

λ3
z2
pbn. (15)

By using Eqs. (13)–(15), we have for SV

SV = 1 + 4

λ3

Cn
v

2z2
nbn + 2Cn

v C
p
v znzpbpn + C

p
v

2
z2
pbn

Cn
v

2nn + C
p
v

2
np

. (16)

In the limit C
p
v ≈ 0 this reduces to the neutron-matter

result [25]

SV = 1 + 4

λ3

z2
nbn

nn

. (17)

Here the impact of protons is to somewhat modify the neutron
fugacity zn because of the bpn term in the neutron density,
Eq. (8). The virial coefficient bn ≈ 0.32 is small and positive.
As a result, the vector response is slightly enhanced (larger
than one) as shown in Fig. 1. Attractive nucleon-nucleon
interactions increase the probability to find nucleons close
together. These density fluctuations increase the (local) weak
charge and produce a vector response SV > 1.

C. Axial response

To calculate the axial response SA we generalize our virial
equation of state to describe spin-polarized nuclear matter. Let
z+
p , z+

n be the fugacities for spin-up p and n, and z−
p , z−

n be the
spin-down fugacities. Generalizing the results of Ref. [25], we
have for the density of spin-up neutrons n+

n ,

n+
n = 1

λ3

[
z+
n + 2b+z+

n

2 + 2z+
n (b−z−

n + b+
pnz

+
p + b−

pnz
−
p )

]
.

(18)
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FIG. 1. Vector response SV versus density n for proton fractions
of Yp = 0 (dashed lines) and 0.3 (solid lines). The curves are for
temperatures of (from left to right with increasing thickness) 2.5, 5,
10, and 15 MeV. The solid circles show where zn = 0.5. The virial
expansion is most valid to the left of these points.

We discuss the spin virial coefficients b+, b−, b+
pn, and b−

pn in
Sec. II D. Likewise the density of spin-down neutrons n−

n is

n−
n = 1

λ3

[
z−
n + 2b+z−

n

2 + 2z−
n (b−z+

n + b+
pnz

−
p + b−

pnz
+
p )

]
.

(19)

Similarly, the density of spin-up protons n+
p is

n+
p = 1

λ3

[
z+
p + 2b+z+

p

2 + 2z+
p (b−z−

p + b+
pnz

+
n + b−

pnz
−
n )

]
,

(20)

while the density of spin-down protons n−
p is

n−
p = 1

λ3

[
z−
p + 2b+z−

p

2 + 2z−
p (b−z+

p + b+
pnz

−
n + b−

pnz
+
n )

]
.

(21)

We define axial or spin fugacities za
n = (z+

n /z−
n )1/2 and za

p =
(z+

p /z−
p )1/2 and following Ref. [7] write the axial response as

SA = SA
pp + SA

nn − 2SA
np

nn + np

, (22)

with

SA
nn = za

n

∂

∂za
n

(n+
n − n−

n )

∣∣∣∣
za
n=1

= nn + 4

λ3
(b+ − b−)z2

n, (23)

SA
np = za

p

∂

∂za
p

(n+
n − n−

n )

∣∣∣∣
za
p=1

= 4

λ3
znzp(b+

pn − b−
pn), (24)

SA
pp = za

p

∂

∂za
p

(n+
p − n−

p )

∣∣∣∣
za
p=1

= np + 4

λ3
(b+ − b−)z2

p. (25)

Note that the minus sign for the SA
np term in Eq. (22) is

because the axial charge of a neutron is opposite to that of

a proton. To clean up the notation, we define the axial virial
coefficients

ba = b+ − b−, (26)

ba
pn = b+

pn − b−
pn. (27)

The final result for SA can then be written as

SA = 1 + 4

λ3

(
z2
p + z2

n

)
ba − 2zpznb

a
pn

nn + np

. (28)

To lowest order in the density one has zp ≈ λ3np/2 and zn ≈
λ3nn/2 so that

SA ≈ 1 + λ3

(
n2

n + n2
p

)
ba − 2nnnpba

pn

np + nn

. (29)

Note that we use the full Eq. (28) for results in the next section.
Because the spin virial coefficient ba ≈ −0.6 (see below), the
axial response is reduced SA < 1. This is because two neutrons
or two protons are likely to be correlated in a 1S0 state because
of the Pauli principle and this spin-zero state reduces the spin
response.

We define the total response Stot as the ratio of the in-
medium transport cross section to the free one,

Stot =
∫

d� dσ
d�

(1 − cos θ )∫
d�dσ0

d�
(1 − cos θ )

. (30)

From Eqs. (4) and (5), we thus have

Stot = 5g2
aSA + (1 − Yp)SV

5g2
a + 1 − Yp

, (31)

where Yp is the proton fraction. The total response depends on
both SV and SA. However, in general SA is the most important
because of the large factor 5g2

a . We present results for SA in
Sec. III. However, first we discuss the spin virial coefficients.

D. Spin virial coefficients

The virial coefficient ba = b+ − b− is discussed in Ref. [25]
and describes spin interactions between two protons or two
neutrons. We now discuss ba

pn = b+
pn − b−

pn that involves in-
teractions between protons and neutrons. The virial coefficient
b+

pn describes interactions between a p and a n with like-spin
projections, while b−

pn describes interactions between nucleons
with unlike spins. We therefore have

ba
pn = 1

21/2
(eEd/T − 1)

+ 21/2

πT

∫ ∞

0
dEe−E/2T

[
δ+
pn(E) − δ−

pn(E)
]
, (32)

with

δ+
pn(E) = 1

2δ3S1 + 1
6δ3P0 + 1

2δ3P1 + 5
6δ3P2

+ 1
2δ3D1 + 5

6δ3D2 + 7
6δ3D3 + · · · . (33)

Here Ed is the deuteron binding energy and the factor in front
of each phase shift is (2J + 1)/[2(2S + 1)] where the factor
of 1/2 is from the average over isospin 1 and 0 states. In
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TABLE I. Spin virial coefficients ba and ba
pn based on nucleon-

nucleon phase shifts.

T (MeV) ba ba
pn

1 −0.638 6.18
2 −0.653 1.74
3 −0.651 1.05
4 −0.648 0.785
5 −0.643 0.640
6 −0.637 0.561
7 −0.631 0.504
8 −0.625 0.463
9 −0.620 0.432
10 −0.615 0.408
12 −0.605 0.374
14 −0.597 0.352
16 −0.589 0.336
18 −0.583 0.324
20 −0.577 0.315

our calculation, we neglected states with L > 2. Similarly, we
have

δ−
pn(E) = 1

4δ1S0 + 1
4δ3S1 + 3

4δ1P1 + 1
12δ3P0 + 1

4δ3P1 + 5
12δ3P2

+ 5
4δ1D2 + 1

4δ3D1 + 5
12δ3D2 + 7

12δ3D3 + · · · . (34)

Now the factor for each phase shift is (2J + 1)/[4(2S + 1)],
where the 1/4 is from an average over both isospin 1 and
0 and spin 1 and 0 states. We calculate the spin virial
coefficients based on the Nijmegen partial-wave analysis of
nucleon-nucleon scattering [30]. Our results for ba and ba

pn are
collected in Table I. The other virial coefficients bn and bpn

needed to calculate the neutrino responses have already been
tabulated in Ref. [21].

In contrast to ba , ba
pn is positive because a proton and a

neutron can be correlated into the spin-one 3S1 state (deuteron
like), enhancing the spin response. However the axial charge
of a proton is opposite to that of a neutron. This leads to a
minus sign in Eq. (28) for the ba

pn term. As a result, both ba

and ba
pn reduce the total axial response and lead to SA < 1.

E. Combining correlations, strange-quark, weak magnetism,
and recoil corrections

We end this formalism section by describing the combi-
nation of correlation, strange-quark, weak magnetism, and
recoil corrections. To a good approximation all of these effects
can be combined in a straightforward way that avoids double
counting. We write for the neutrino cross section per unit
volume [see Eq. (5)],

1

V

dσ

d�
≈ G2

F E2
ν

16π2

{[(
ga + gs

a

)2
nn + (

ga − gs
a

)2
np

]
×(3 − cos θ )SA + (1 + cos θ )nnSV

}
R(Eν/m).

(35)

Effects from nucleon-nucleon correlations in the medium are
described by the vector SV and axial SA response functions;

see Eqs. (17) and (28), respectively. The vector response is
slightly greater than one and the axial response is significantly
less than one. As a result, correlations reduce the cross section
for both neutrino-proton and neutrino-neutron scattering.

Strange-quark contributions to the nucleon spin are de-
scribed by the parameter gs

a (note ga = 1.26). Melson et al. [4]
consider gs

a = −0.2 and this value reduces neutrino-neutron
and increases neutrino-proton scattering cross sections. For
neutron-rich conditions this leads to a net reduction in the
neutrino-scattering opacity. Therefore, both correlation effects
and strange quarks, if present (with gs

a < 0), reduce the opacity,
and the two effects add. Note that, in Ref. [4], strange-
quark contributions were probably taken to be unrealistically
large [5]. On the one side, strange-quark contributions to the
vector current have been measured by several parity-violating
electron-scattering experiments to be small [31], but direct
experimental limits on strange-quark contributions to the
nucleon spin are relatively poor and are based on an old
Brookhaven neutrino-scattering experiment [32]. Therefore,
it would be very useful to have a better laboratory limit on gs

a

from a modern neutrino-nucleon scattering experiment.
Finally, recoil and weak magnetism corrections can be

approximately described by a factor R(Eν/m). This is dis-
cussed in Ref. [28] and reduces antineutrino-nucleon scattering
cross sections, while having only a modest effect on neutrino-
nucleon cross sections.

III. RESULTS FOR AXIAL RESPONSE

In this section, we focus on results for the axial response
SA, and not on the vector response SV , for two reasons. First,
the axial response is more important for neutrino-transport
cross sections because of a large 5g2

a factor; see, Eq. (35).
Second, we have not included alpha particles or other light
nuclei. Preliminary calculations suggest that spin-zero alpha
particles can significantly enhance SV , but do not strongly
impact SA. Therefore we postpone a full discussion of SV to
later work, where we will explicitly include alpha particles and
other light nuclei. For the present, a reasonable approximation
is to simply set SV = 1 in Eq. (31).

In Fig. 2 we show SA for temperatures of T = 2.5 to
15 MeV. Our virial results (red dashed lines) are valid at
low densities. To evaluate SA for higher densities, where
zn > 0.5, one presently needs to employ a model-dependent
calculation. We consider the random-phase approximation
(RPA) calculations of Burrows and Sawyer [7], because they
are simple, well known, and have been employed in supernova
simulations. We caution that these calculations may have
a number of limitations. First, they predict that the vector
response is less than one SV < 1 while Fig. 1 shows SV > 1.
Second, the calculations use a Landau parameter for the
effective interaction that is appropriate for symmetric nuclear
matter. A Landau parameter appropriate for pure neutron
matter could lead to a smaller SA. See also the discussion
in Ref. [25]. In future work we will revisit the behavior of
SA at high densities, but for now we consider the Burrows
and Sawyer results. The green dotted lines in Fig. 2 show the
Burrows and Sawyer RPA calculation [7]. Note that the RPA

025801-4



NEUTRINO-NUCLEON SCATTERING IN SUPERNOVA . . . PHYSICAL REVIEW C 95, 025801 (2017)

FIG. 2. Axial response SA versus density n for temperatures of (a) T = 2.5 MeV, (b) 5 MeV, (c) 10 MeV, (d) and 15 MeV. The red
dashed lines are our virial expansion results, Eq. (28), for the indicated proton fractions. The solid red dots indicate where zn = 0.5. The virial
expansion is most valid to the left of these points. The green dotted lines show the original Burrows and Sawyer RPA results [7]. Finally, the
solid black lines show the interpolating fit S

f
A , Eq. (36).

depends very weakly on the momentum transfer q and we use
q = 3T .

Finally, we fit the virial results for SA at low densities and
the RPA results at high densities with an interpolating function
S

f
A(n,T ,Yp) that is a simple function of density n, temperature

T , and proton fraction Yp:

S
f
A(n,T ,Yp) = 1

1 + A(1 + Be−C)
, (36)

where the functions A, B, and C are given by

A(n,T ,Yp) = A0
n
(
1 − Yp + Y 2

p

)
T 1.22

, (37)

B(T ) = B0

T 0.75
, (38)

C(n,T ,Yp) = C0
nYp(1 − Yp)

T 0.5
+ D0

n4

T 6
. (39)

The fit parameters A0, B0, C0, and D0 are collected in
Table II for n in fm−3 and T in MeV. This fit is most
accurate for 5 < T < 10 MeV, Yp � 0.3, and n < 0.05 fm−3,
but yields reasonable values outside this range. We make
an implementation of this fitting function available online
in NuLib [33,34]. Note that if one sets B0 = 0 in Eq. (38),
Eq. (36) will approximately reproduce the original Burrows

and Sawyer RPA results at low density. We see that SA is
significantly reduced from 1 even at relatively low densities.
This is especially the case at low Yp.

We briefly explore the effect of the reduced axial response
arising from the virial expansion on the heating rate obtained
in simulations of the accretion phase of a core-collapse
supernovae. To compare with Ref. [4], we use the Lattimer
and Swesty [35] equation of state (with K0 = 220 MeV)
and the 20 M� progenitor star from Ref. [36]. We use the
one-dimensional code GR1D [33], available online [37]. For the
sake of comparison with Ref. [4], we perform simulations with
and without strange-quark contributions. We show the heating
rate realized in the gain region in Fig. 3. The solid lines denote

TABLE II. Fit parameters for S
f
A fitting func-

tion; see Eqs. (36)–(39). These assume n in fm−3

and T in MeV.

Fit parameter Value

A0 920
B0 3.05
C0 6140
D0 1.5 × 1013
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FIG. 3. Heating rate in the gain region for one-dimensional
simulations of the accretion phase of core-collapse supernovae for
various assumptions on the neutral-current neutrino-nucleon scatter-
ing cross section. The solid lines represent simulations that ignore
the contribution to the rates from strange quarks, whereas dashed
lines denote simulations that include strange-quark contributions,
assuming gs

a = −0.2 for comparison with Ref. [4]. The black lines
show the heating rate for simulations that assume SA = 1, while
orange lines show the larger heating rates with S

f
A from Eq. (36).

simulations using no strange-quark corrections, while the
dashed lines denote simulations using gs

a = −0.2. The black
lines are for simulations that use free particle rates, while the
orange lines denote simulations using the virial corrected rates.
Similar to Ref. [4], the assumed strange-quark contribution
raises the heating rate by ∼20% around 100 ms after bounce.
We find that the virial rates increase the heating by ∼5% around
100 ms after bounce and higher at later times. We expect the re-
duction in SA to play an even larger role at later times when the
neutrinos decouple from regions with higher matter densities.

Our preliminary two-dimensional supernova simulations,
with a reduced axial response S

f
A , Eq. (36), explode

100–150 ms earlier than simulations with SA = 1, for 15, 20,
and 25M� stars. For a 12M� star, S

f
A leads to an explosion

at late times while a simulation with SA = 1 fails to explode.
Further details of these simulations will be provided in a later
publication. Very recent results by Burrows et al. [38], based
on an earlier version of this paper, find similar but perhaps
somewhat larger effects of the reduced axial response S

f
A .

IV. SUMMARY AND CONCLUSIONS

Supernova simulations may be sensitive to the neutral-
current interactions of mu and tau neutrinos at low densities
near the neutrinosphere. In this paper, we calculated the axial
or spin response SA of nuclear matter in a virial expansion that
is model-independent at low densities and high temperatures.
We find SA to be significantly reduced. Our results can
be incorporated into supernova simulations by multiplying
both the neutrino-proton and neutrino-neutron neutral current
scattering rates by Stot given by Eq. (31) with SV = 1
and SA given by our fit function S

f
A from Eqs. (36)–(39).

Preliminary one-dimensional supernova simulations suggest
that the reduction in the axial response may enhance the
neutrino heating rates in the gain region during the accretion
phase of a core-collapse supernova. In future work, we will
extend the calculation to the vector response SV in a virial
expansion and study the impact of light nuclei.

ACKNOWLEDGMENTS

We thank Adam Burrows and Thomas Janka for helpful
discussions. This work was supported in part by DOE
Grants No. DE-FG02-87ER40365 (Indiana University) and
No. DE-SC0008808(NUCLEI SciDAC Collaboration), by the
Natural Sciences and Engineering Research Council of Canada
(NSERC), and the Deutsche Forschungsgemeinschaft Grant
No. SFB 1245. Support for this work was provided also by
NASA through Hubble Fellowship Grant No. 51344.001-A
awarded by the Space Telescope Science Institute, which is
operated by the Association of Universities for Research in
Astronomy, Inc., for NASA, under Contract No. NAS 5-26555.

[1] H.-Th. Janka, Annu. Rev. Nucl. Part. Sci. 62, 407 (2012).
[2] A. Burrows, Rev. Mod. Phys. 85, 245 (2013).
[3] A. Mezzacappa, Annu. Rev. Nucl. Part. Sci. 55, 467 (2005).
[4] T. Melson, H.-Th. Janka, R. Bollig, F. Hanke, A. Marek, and

B. Müller, Astrophys. J. Lett. 808, L42 (2015).
[5] T. J. Hobbs, M. Alberg, and G. A. Miller, Phys. Rev. C 93,

052801 (2016).
[6] C. J. Horowitz and K. Wehrberger, Phys. Rev. Lett. 66, 272

(1991).
[7] A. Burrows and R. F. Sawyer, Phys. Rev. C 58, 554 (1998).
[8] S. Reddy, M. Prakash, J. M. Lattimer, and J. A. Pons, Phys. Rev.

C 59, 2888 (1999).
[9] C. J. Horowitz and G. Li, Phys. Rev. D 61, 063002 (2000).

[10] C. J. Horowitz, M. A. Perez-Garcia, J. Carriere, D. K.
Berry, and J. Piekarewicz, Phys. Rev. C 70, 065806
(2004).

[11] A. Burrows, S. Reddy, and T. A. Thompson, Nucl. Phys. A 777,
356 (2006).

[12] C. J. Horowitz, G. Shen, E. O’Connor, and C. D. Ott, Phys. Rev.
C 86, 065806 (2012).

[13] S. Bacca, K. Hally, M. Liebendörfer, A. Perego, C. J. Pethick,
and A. Schwenk, Astrophys. J. 758, 34 (2012).

[14] T. Fischer, K. Langanke, and G. Martı́nez-Pinedo, Phys. Rev. C
88, 065804 (2013).

[15] A. Bartl, C. J. Pethick, and A. Schwenk, Phys. Rev. Lett. 113,
081101 (2014).

[16] E. Rrapaj, J. W. Holt, A. Bartl, S. Reddy, and A. Schwenk,
Phys. Rev. C 91, 035806 (2015).

[17] K. G. Balasia, K. Langanke, and G. Martı́nez-Pinedoc,
Prog. Part. Nucl. Phys. 85, 33 (2015).

[18] R. Sharma, S. Bacca, and A. Schwenk, Phys. Rev. C 91,
042801(R) (2015).

025801-6

https://doi.org/10.1146/annurev-nucl-102711-094901
https://doi.org/10.1146/annurev-nucl-102711-094901
https://doi.org/10.1146/annurev-nucl-102711-094901
https://doi.org/10.1146/annurev-nucl-102711-094901
https://doi.org/10.1103/RevModPhys.85.245
https://doi.org/10.1103/RevModPhys.85.245
https://doi.org/10.1103/RevModPhys.85.245
https://doi.org/10.1103/RevModPhys.85.245
https://doi.org/10.1146/annurev.nucl.55.090704.151608
https://doi.org/10.1146/annurev.nucl.55.090704.151608
https://doi.org/10.1146/annurev.nucl.55.090704.151608
https://doi.org/10.1146/annurev.nucl.55.090704.151608
https://doi.org/10.1088/2041-8205/808/2/L42
https://doi.org/10.1088/2041-8205/808/2/L42
https://doi.org/10.1088/2041-8205/808/2/L42
https://doi.org/10.1088/2041-8205/808/2/L42
https://doi.org/10.1103/PhysRevC.93.052801
https://doi.org/10.1103/PhysRevC.93.052801
https://doi.org/10.1103/PhysRevC.93.052801
https://doi.org/10.1103/PhysRevC.93.052801
https://doi.org/10.1103/PhysRevLett.66.272
https://doi.org/10.1103/PhysRevLett.66.272
https://doi.org/10.1103/PhysRevLett.66.272
https://doi.org/10.1103/PhysRevLett.66.272
https://doi.org/10.1103/PhysRevC.58.554
https://doi.org/10.1103/PhysRevC.58.554
https://doi.org/10.1103/PhysRevC.58.554
https://doi.org/10.1103/PhysRevC.58.554
https://doi.org/10.1103/PhysRevC.59.2888
https://doi.org/10.1103/PhysRevC.59.2888
https://doi.org/10.1103/PhysRevC.59.2888
https://doi.org/10.1103/PhysRevC.59.2888
https://doi.org/10.1103/PhysRevD.61.063002
https://doi.org/10.1103/PhysRevD.61.063002
https://doi.org/10.1103/PhysRevD.61.063002
https://doi.org/10.1103/PhysRevD.61.063002
https://doi.org/10.1103/PhysRevC.70.065806
https://doi.org/10.1103/PhysRevC.70.065806
https://doi.org/10.1103/PhysRevC.70.065806
https://doi.org/10.1103/PhysRevC.70.065806
https://doi.org/10.1016/j.nuclphysa.2004.06.012
https://doi.org/10.1016/j.nuclphysa.2004.06.012
https://doi.org/10.1016/j.nuclphysa.2004.06.012
https://doi.org/10.1016/j.nuclphysa.2004.06.012
https://doi.org/10.1103/PhysRevC.86.065806
https://doi.org/10.1103/PhysRevC.86.065806
https://doi.org/10.1103/PhysRevC.86.065806
https://doi.org/10.1103/PhysRevC.86.065806
https://doi.org/10.1088/0004-637X/758/1/34
https://doi.org/10.1088/0004-637X/758/1/34
https://doi.org/10.1088/0004-637X/758/1/34
https://doi.org/10.1088/0004-637X/758/1/34
https://doi.org/10.1103/PhysRevC.88.065804
https://doi.org/10.1103/PhysRevC.88.065804
https://doi.org/10.1103/PhysRevC.88.065804
https://doi.org/10.1103/PhysRevC.88.065804
https://doi.org/10.1103/PhysRevLett.113.081101
https://doi.org/10.1103/PhysRevLett.113.081101
https://doi.org/10.1103/PhysRevLett.113.081101
https://doi.org/10.1103/PhysRevLett.113.081101
https://doi.org/10.1103/PhysRevC.91.035806
https://doi.org/10.1103/PhysRevC.91.035806
https://doi.org/10.1103/PhysRevC.91.035806
https://doi.org/10.1103/PhysRevC.91.035806
https://doi.org/10.1016/j.ppnp.2015.08.001
https://doi.org/10.1016/j.ppnp.2015.08.001
https://doi.org/10.1016/j.ppnp.2015.08.001
https://doi.org/10.1016/j.ppnp.2015.08.001
https://doi.org/10.1103/PhysRevC.91.042801
https://doi.org/10.1103/PhysRevC.91.042801
https://doi.org/10.1103/PhysRevC.91.042801
https://doi.org/10.1103/PhysRevC.91.042801


NEUTRINO-NUCLEON SCATTERING IN SUPERNOVA . . . PHYSICAL REVIEW C 95, 025801 (2017)

[19] T. Fischer, Astron. Astrophys. 593, A103 (2016).
[20] A. Bartl, R. Bollig, H.-Th. Janka, and A. Schwenk, Phys. Rev.

D 94, 083009 (2016).
[21] C. J. Horowitz and A. Schwenk, Nucl. Phys. A 776, 55 (2006).
[22] C. J. Horowitz and A. Schwenk, Phys. Lett. B 638, 153 (2006).
[23] M. L. Costantini, A. Ianni, and F. Visanni, Phys. Rev. D 70,

043006 (2004).
[24] C. Lunardini and A. Y. Smirnov, Astropart. Phys. 21, 703

(2004).
[25] C. J. Horowitz and A. Schwenk, Phys. Lett. B 642, 326 (2006).
[26] E. O’Connor, D. Gazit, C. J. Horowitz, A. Schwenk, and

N. Barnea, Phys. Rev. C 75, 055803 (2007).
[27] A. Arcones, G. Martı́nez-Pinedo, E. O’Connor, A. Schwenk,

H.-Th. Janka, C. J. Horowitz, and K. Langanke, Phys. Rev. C
78, 015806 (2008).

[28] C. J. Horowitz, Phys. Rev. D 65, 043001 (2002).
[29] L. D. Landau and E. M. Lifschitz, Statistical Physics, 2nd ed.

(Pergamon, New York, 1969), Eq. (114.14).
[30] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J.

de Swart, Phys. Rev. C 48, 792 (1993); see also NN-OnLine,
http://nn-online.org

[31] Z. Ahmed et al., Phys. Rev. Lett. 108, 102001 (2012).
[32] L. A. Ahrens et al., Phys. Rev. D 35, 785 (1987).
[33] E. O’Connor, Astrophys. J., Suppl. Ser. 219, 24 (2015).
[34] http://www.nulib.org
[35] J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535, 331 (1991).
[36] S. E. Woosley and A. Heger, Phys. Rep. 442, 269 (2007).
[37] http://www.GR1Dcode.org
[38] A. Burrows, D. Vartanyan, J. C. Dolence, M. A. Skinner, and

D. Radice, arXiv:1611.05859.

025801-7

https://doi.org/10.1051/0004-6361/201628991
https://doi.org/10.1051/0004-6361/201628991
https://doi.org/10.1051/0004-6361/201628991
https://doi.org/10.1051/0004-6361/201628991
https://doi.org/10.1103/PhysRevD.94.083009
https://doi.org/10.1103/PhysRevD.94.083009
https://doi.org/10.1103/PhysRevD.94.083009
https://doi.org/10.1103/PhysRevD.94.083009
https://doi.org/10.1016/j.nuclphysa.2006.05.009
https://doi.org/10.1016/j.nuclphysa.2006.05.009
https://doi.org/10.1016/j.nuclphysa.2006.05.009
https://doi.org/10.1016/j.nuclphysa.2006.05.009
https://doi.org/10.1016/j.physletb.2006.05.055
https://doi.org/10.1016/j.physletb.2006.05.055
https://doi.org/10.1016/j.physletb.2006.05.055
https://doi.org/10.1016/j.physletb.2006.05.055
https://doi.org/10.1103/PhysRevD.70.043006
https://doi.org/10.1103/PhysRevD.70.043006
https://doi.org/10.1103/PhysRevD.70.043006
https://doi.org/10.1103/PhysRevD.70.043006
https://doi.org/10.1016/j.astropartphys.2004.05.005
https://doi.org/10.1016/j.astropartphys.2004.05.005
https://doi.org/10.1016/j.astropartphys.2004.05.005
https://doi.org/10.1016/j.astropartphys.2004.05.005
https://doi.org/10.1016/j.physletb.2006.09.042
https://doi.org/10.1016/j.physletb.2006.09.042
https://doi.org/10.1016/j.physletb.2006.09.042
https://doi.org/10.1016/j.physletb.2006.09.042
https://doi.org/10.1103/PhysRevC.75.055803
https://doi.org/10.1103/PhysRevC.75.055803
https://doi.org/10.1103/PhysRevC.75.055803
https://doi.org/10.1103/PhysRevC.75.055803
https://doi.org/10.1103/PhysRevC.78.015806
https://doi.org/10.1103/PhysRevC.78.015806
https://doi.org/10.1103/PhysRevC.78.015806
https://doi.org/10.1103/PhysRevC.78.015806
https://doi.org/10.1103/PhysRevD.65.043001
https://doi.org/10.1103/PhysRevD.65.043001
https://doi.org/10.1103/PhysRevD.65.043001
https://doi.org/10.1103/PhysRevD.65.043001
https://doi.org/10.1103/PhysRevC.48.792
https://doi.org/10.1103/PhysRevC.48.792
https://doi.org/10.1103/PhysRevC.48.792
https://doi.org/10.1103/PhysRevC.48.792
http://nn-online.org
https://doi.org/10.1103/PhysRevLett.108.102001
https://doi.org/10.1103/PhysRevLett.108.102001
https://doi.org/10.1103/PhysRevLett.108.102001
https://doi.org/10.1103/PhysRevLett.108.102001
https://doi.org/10.1103/PhysRevD.35.785
https://doi.org/10.1103/PhysRevD.35.785
https://doi.org/10.1103/PhysRevD.35.785
https://doi.org/10.1103/PhysRevD.35.785
https://doi.org/10.1088/0067-0049/219/2/24
https://doi.org/10.1088/0067-0049/219/2/24
https://doi.org/10.1088/0067-0049/219/2/24
https://doi.org/10.1088/0067-0049/219/2/24
http://www.nulib.org
https://doi.org/10.1016/0375-9474(91)90452-C
https://doi.org/10.1016/0375-9474(91)90452-C
https://doi.org/10.1016/0375-9474(91)90452-C
https://doi.org/10.1016/0375-9474(91)90452-C
https://doi.org/10.1016/j.physrep.2007.02.009
https://doi.org/10.1016/j.physrep.2007.02.009
https://doi.org/10.1016/j.physrep.2007.02.009
https://doi.org/10.1016/j.physrep.2007.02.009
http://www.GR1Dcode.org
http://arxiv.org/abs/arXiv:1611.05859



