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Dynamical scheme for hadronization with first-order phase transition
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We present a dynamical scheme for hadronization with first-order confinement phase transition. The
thermodynamical conditions of phase equilibrium, the fluid velocity profile, and the dissipative effect determine
the macroscopic changes of the parton volume and the corresponding hadron volume during the phase transition.
The macroscopic volume changes are the basis for building up a dynamical scheme by considering microscopic
transition processes from partons to hadrons and backwards. The established scheme is proved by comparing
the numerical results with the analytical solutions in the case of a one-dimensional expansion of a dissipative
fluid with Bjorken boost invariance. The comparisons show almost perfect agreements, which demonstrate the
applicability of the introduced scheme.
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I. INTRODUCTION

The relativistic heavy-ion collisions provide an oppor-
tunity in the laboratory to investigate QCD matter under
extreme conditions of high temperature, high density, and
strong electromagnetic field. Data taken in experiments at the
Relativistic Heavy Ion Collider (RHIC) [1–4] and at the Large
Hadron Collider (LHC) [5–7] indicate the transient existence
of a quark-gluon plasma (QGP), which then undergoes
phase transitions and gradually merges into a large number
of hadrons. We are interested in the dynamical process of the
phase transition, which is essentially needed, in order to have
a complete physical picture of relativistic heavy-ion collisions
and to understand phenomena found at RHIC and LHC. In
particular, the dynamical description of the phase transition
could determine the contribution of gluons in the buildup of
the collective flow of hadrons, which has not been intensively
studied so far. In quark coalescence models [8], which have
been employed to explain the quark number scaling behavior
in the hadronic elliptic flows found at RHIC [9], gluons are
not explicitly considered.

Another motivation concerns the viscous effect during the
phase transition. In viscous hydrodynamical calculations [10–
14] the shear viscosity to the entropy density ratio (η/s) of the
parton-hadron mixture during the phase transition is set to be
constant. However, this treatment is only an assumption, since
there is no evidence for the equal η/s of partons and hadrons
at the phase transition. The dynamical description of the phase
transition would determine the real viscous corrections to the
thermal distribution functions of each hadron species [15]
and would examine the applicability of the Cooper-Frye
prescription [16] used in viscous hydrodynamical calculations.

Since the dynamical description for the phase transition
from first principle is at present an unsolved problem, we have
to content ourselves with modeling, which allows exploring
related phenomena in an articulated way. In this article we
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will introduce a dynamical scheme for the confinement phase
transition of first order.

The purpose of this article is conceptional. We consider,
for simplicity, the transition from gluons to pions. The gluons
that we concern are soft particles, which build up the bulk of
the medium. We do not discuss the hadronization of gluon
jets. Also, we do not discuss the transition from gluons to
glueballs [17], which is a sharp first-order phase transition [18].
We assume that the hadronization from gluons to pions is a
first-order phase transition. Although this contradicts the fact
that the QCD transition at zero baryon chemical potential is
a crossover [19,20], the condition of phase equilibrium that
keeps the temperature and chemical potential of gluonic and
pionic phase equal and constant during the first-order phase
transition will prove numerical implementations. Simulating
the crossover phase transition needs the correct implemen-
tation of the equation of state (EoS) from the lattice QCD
calculations and is a future project. The present work can
be seen as an attempt to describe a first-order phase transition
between two phases with different degrees of freedom. It is the
first step towards a full scheme describing the first-order phase
transition from quarks and gluons to mesons and baryons at
a finite baryonic chemical potential. Adding quarks and more
hadron species into the scheme is more complicated, but in
line with the present implementation, and will be shown in a
forthcoming paper.

The numerical implementation of hadronization that we
introduce is a further extension of the existing parton cas-
cade BAMPS (Boltzmann approach of multiparton scatter-
ings) [21], which describes the pre-equilibrium stage, the
thermalization, and the hydrodynamical evolution of quarks
and gluons produced in ultrarelativistic heavy-ion collisions.
The dynamical hadronization scheme will serve as an interface
between BAMPS and hadronic transport model, which will be
developed next. BAMPS is a numerical solver of the kinetic
Boltzmann equations for on-shell quarks and gluons by using
test particles to represent phase space distribution functions
of quarks and gluons. Interactions of quarks and gluons are
simulated by the stochastic interpretation of the transition
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rates of scattering processes. The numerical implementation
of transitions from gluons to pions, which will be presented
in this article, has the same means as used in BAMPS
for interactions of quarks and gluons. We will show that
the effective probabilities of the microscopic processes for
transitions from gluons to pions are entirely determined by
the thermodynamical feature of the phase transition, the
viscosity of the QCD matter, and the velocity profile of the
hydrodynamical expansion. Our numerical implementation is
different from the hadronization procedures used in transport
models such as AMPT (A multiphase transport model) [22],
PHSD (Parton-Hadron-String Dynamics) [23], etc.

The article is organized as follows. In Sec. II we derive the
volume change of gluons and pions during the phase transition,
based on the conditions of phase equilibrium at the first-order
phase transition and hydrodynamical equations. With this we
establish a dynamical scheme transferring gluon matter to
pion matter during the first-order phase transition in Sec. III.
In Sec. IV the analytical formulas of the gluonic volume
fraction, number, energy, and entropy density are derived in
the case of a one-dimensional expansion with Bjorken boost
invariance, in order to prove the numerical implementations
by comparing the analytical solutions with numerical results
shown in Sec. VI. Before doing the comparisons, we present
details of numerical implementations and setups in Sec. V.
Finally we summarize and give an outlook in Sec. VII.

II. THE EOS AND THE FIRST-ORDER PHASE
TRANSITION IN A GLUON-PION MIXTURE

For the EoS of gluons we employ the standard MIT bag
model [24]. The pressure and energy density are

Pg = 1
3 (eg − 4B) = ngTg − B , (1)

eg = 3ngTg + B , (2)

where ng denotes the gluon number density and Tg is the
temperature. For the bag constant we use B1/4 = 0.23 GeV.
The pion system is considered as an ideal gas. We neglect
pion’s rest mass for simplicity. The pressure and energy density
of massless pions are then

Pπ = 1
3eπ = nπTπ , (3)

eπ = 3nπTπ , (4)

where nπ denotes the pion number density and Tπ the
temperature. Here we have ignored the quantum Bose en-
hancement [25] of gluons and pions and regarded them as
Boltzmann particles.

For the first-order phase transition, both EoS of gluons
and pions are matched to each other via the Gibbs condition
[26–28],

Pg = Pπ ≡ Pc, Tg = Tπ ≡ Tc, μg = μπ ≡ μc. (5)

μg and μπ are the chemical potential of gluons and pions,
respectively, which are defined by

e
μi
Ti = ni

n
eq
i

, (6)

where i stands for g or π . neq
i is the particle number density in

thermal equilibrium,

n
eq
i = di

π2
T 3

i , (7)

where dg = 16 and dπ = 3 are the degeneracy factor of gluons
and pions, respectively.

Now we consider the confinement phase transition in an
expanding QCD matter. Suppose V is the volume of an
expanding element in its local rest frame at proper time τ .
During the phase transition the volume of pions is increasing,
while the volume of gluons is decreasing. We denote Vg and
Vπ as the volume of gluons and pions. The fraction of the gluon
phase to the mixture is then fg = Vg/V = Vg/(Vg + Vπ ). The
total particle number and energy density are

nm = nc
gfg + nc

π (1 − fg) , (8)

em = ec
gfg + ec

π (1 − fg) , (9)

where nc
g , ec

g (nc
π , ec

π ) are the particle number and energy
density of gluons (pions) at the transition temperature Tc,
respectively. From the above equations for nm and em, and
the EoS of gluons and pions it follows

em + Pc = 4nmTc . (10)

In the following we derive the time dependence of fg in a
local region under the Gibbs condition (5). In our dynamical
scheme gluons hadronize smoothly into pions. We do not
consider spinodal instabilities [29], which lead to fluctuations
in the baryon density [30,31], for instance. It would be possible
to introduce spinodal instabilities when adding quarks and
baryons in our scheme and incorporating the mean field into
Vlasov term of the Boltzmann equation.

During a time step dτ the considered volume element is
expanded to V + dV . The volume of gluons is decreased to
Vg + dVg , while the volume of pions is increased to Vπ + dVπ .
dVg is negative. Thus, dVπ = dV − dVg is larger than −dVg .
The volume changes indicate that −nc

gdVg gluons are confined
into nc

πdVπ pions and an energy of a amount of −ec
gdVg has

to be redistributed to the pionic and gluonic phase in order to
maintain the Gibbs condition Eq. (5).

For a hydrodynamic system, its energy density changes
according to the hydrodynamical equation [32],

De = −(e + P )∇μUμ + πμν∇〈μUν〉 , (11)

where Uμ is the fluid four-velocity and πμν is the shear tensor.
Symbols in the above equation are defined as follows:

D = Uμ∂μ , (12)

∇μ = �μν∂ν , (13)

�μν = gμν − UμUν , (14)

A〈μν〉 = [
1
2

(
�μ

σ �ν
τ + �ν

σ�μ
τ

) − 1
3�μν�στ

]
Aστ . (15)

In Eq. (11) the heat transfer is neglected and the bulk pressure is
zero, since here we consider systems of massless particles. The
right hand side of Eq. (11) can be written as −(e + Peff)∇μUμ
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by introducing an effective pressure Peff = P + π̃ , where

π̃ = −πμν∇〈μUν〉
∇μUμ

. (16)

For a pure one-component system, the kinetic energy in the
rest frame of an expanding volume element decreases by dE =
−PeffdV due to the work done by the effective pressure. Thus,
the temperature decreases too.

In order to hold the Gibbs condition (5) during the phase
transition, there must be energy influxes into the gluonic
and pionic phases, which compensate the energy loss of
dEg = −(Pc + π̃g)fgdV and dEπ = −(Pc + π̃π )(1 − fg)dV
in the gluonic and pionic phase, respectively. All these
energies should come from the transition energy −ec

gdVg .
After subtracting dEg and dEπ from −ec

gdVg , the remaining
energy is the energy of newly produced pions and must be
equal to ec

πdVπ , in order to keep the temperature of pions as
Tc. The energy balance reads

−ec
gdVg−(Pc + π̃g)fgdV −(Pc + π̃π )(1−fg)dV = ec

πdVπ .

(17)

Inserting the EoS of gluons, Eqs. (1) and (2), into the left-hand
side of the energy balance (17) gives

−(
3nc

gTc + B
)
dVg − (

nc
gTc − B + π̃g

)
fgdV

− (Pc + π̃π )(1 − fg)dV

= −3nc
gTcdVg + B(−dVg + fgdV ) − (

nc
gTc + π̃g

)
fgdV

− (Pc + π̃π )(1 − fg)dV. (18)

The second term on the right-hand side of the above equation,
which is proportional to the bag constant, is the latent heat,
dElat, provided by the bag pressure in volume V during
time dτ . Then the terms in the energy balance Eq. (17) are
rearranged to

−3nc
gTcdVg + dElat = ec

πdVπ + (
nc

gTc + π̃g

)
fgdV

+ (Pc + π̃π )(1 − fg)dV. (19)

We see that the kinetic energy of hadronizing gluons together
with the absorbed latent heat cover the energy of produced
pions with Tc and the loss of kinetic energies of gluons and
pions due to the work done by the effective pressure.

Putting dVπ = dV − dVg in the energy balance Eq. (17)
we obtain

dVg = −ec
π + Pc + π̃m

ec
g − ec

π

dV (20)

with π̃m = π̃gfg + π̃π (1 − fg). dV can be determined accord-
ing to the identity

1

V

dV

dτ
= ∇μUμ. (21)

From the definition of fg and Eqs. (20) and (21), we have

dfg

dτ
= 1

V

dVg

dτ
− fg

1

V

dV

dτ

=
[
−ec

π + Pc + π̃m

ec
g − ec

π

− fg

]
∇μUμ , (22)

which can be solved to obtain the time dependence of fg .
Once we know Uμ and πμν from transport or hydrodynamic
calculations, we can determine dVg and fg . In addition, the
latent heat can be expressed as

dElat = B(−dVg + fgdV ) = em + Pc + π̃m

ec
g − ec

π

BdV. (23)

We notice that Eq. (20) can be derived in a pure
mathematical way. For that we first differentiate the energy
density in Eq. (9) with respect to τ and equate this with the
hydrodynamical equation (11) to get dfg/dτ . We then use
the first identity of Eq. (22) to obtain dVg , which is found
to be identical to Eq. (20). This consistence confirms the
correct dynamical picture of the first-order phase transition
near equilibrium.

Equation (20) is indeed an important result, which shows
quantitatively how the transition between gluons and pions
proceeds and is a basic equation for establishing a microscopic
transport scheme for the first-order phase transition. Although
Eq. (20) has been derived for a transition from gluons to
pions in an expanding volume element, it is also valid for
a transition from pions to gluons in a contracting volume
element, where dV and ∇μUμ are negative. In this case the
volume element gains energy from the surrounding medium.
The energy balance in Eq. (19) can be reinterpreted that
the sum of the energy from the transition −ec

πdVπ and
that from the surrounding medium −(nc

gTc + π̃g)fgdV and
−(Pc + π̃π )(1 − fg)dV is equal to the sum of the kinetic
energy of newly produced gluons 3nc

gTcdVg and the released
latent heat −dElat.

From Eq. (20) we see the viscous effect on the phase
transition. For a perfect fluid, where π̃m = 0, |dVg/dV | is
a constant, whereas for a viscous fluid |dVg/dV | is time
dependent and is smaller (larger) than that for π̃m = 0 in
a transition from gluons to pions (from pions to gluons),
since π̃m is negative (positive) in an expanding (a contracting)
system [see Eq. (16)]. The different behavior of |dVg/dV |
in transitions from gluons to pions and backwards is due to
the fact that the process of the phase transition with nonzero
viscosity is irreversible.

Moreover, in an expanding system ec
π + Pc + π̃m could be

negative for large |π̃m|, so that dVg would become positive,
which cannot describe the phase transition from gluons to
pions, where dVg should be negative. This indicates that for
large dissipation the first-order phase transition cannot occur.
Quantitative statements about an upper limit of the shear
viscosity will be made elsewhere. We mention that it seems
that there is no such upper limit of the shear viscosity for the
phase transition from pions to gluons in a contracting system,
since π̃m is positive.

Finally, a nonzero shear viscosity will increase the total
entropy during the phase transition. This important feature
will be realized in the to be introduced dynamical scheme of
hadronization. Before we proceed, the entropy density is given
by

si = ei + Pi − μini

Ti

=
(

4 − μi

Ti

)
ni , (24)
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where i stands for g or π . During the phase transition the total
entropy density is

sm = sc
gfg + sc

π (1 − fg) =
(

4 − μc

Tc

)
nm , (25)

where sc
g and sc

π are the entropy density of gluons and pions at
the transition temperature Tc.

III. THE DYNAMICAL SCHEME FOR HADRONIZATION

In the rest of the article we consider only the phase transition
from gluons to pions in expanding systems.

Using Eq. (20) we find that the difference between the
number of gained pions and the number of lost gluons in the
volume element V during dτ is

nc
πdVπ − (−nc

gdVg

) = − π̃m

4Tc

dV, (26)

which is non-negative, since π̃m � 0 from Eq. (16). This
indicates that for an ideal fluid the number of gained pions
is the same as that of lost gluons, while for a viscous fluid the
number of gained pions is larger than that of lost gluons, which
increases the total entropy. Therefore, we in principle need
number-changing processes, such as two gluons go to three
pions, g + g → π + π + π , to implement hadronization in a
viscous fluid. We will see later that a part of the latent heat
provides an additional energy to the three pions, so that the
temperature and chemical potential of pions keep constant.

For the phase transition from gluons to pions we consider
the following processes: g + g → π + π + π , g + g → π +
π , and back reactions π + π + π → g + g and π + π →
g + g. Here we hide the charge of pions, which could be
noted explicitly as g + g ↔ π+ + π− + π0, g + g ↔ π0 +
π0 + π0, g + g ↔ π+ + π−, and g + g ↔ π0 + π0. The
probabilities of the occurrence of these processes could be
tuned to obtain the same yield of all kind of pions. We have
to note that the consideration of these microscopic processes
is not from the first principle but is necessary to realize
the macroscopic volume change according to Eq. (20) and
to maintain the Gibbs condition (5). Therefore, in principle
one could consider other processes. The processes we have
considered are the simplest one can think of.

When gluons hadronize into pions in the process g + g →
π + π + π and g + g → π + π , besides the total kinetic
energy of gluons, an amount of energy from the bag pressure
(latent heat) will be involved in the total energy of pions.
Therefore, the average energy of each produced pion is larger
than that of the lost gluons, which is 3Tc. We denote the ratio
of the total energy of the final pions over the total kinetic
energy of the initial gluons by x, which is larger than 1.
We will show later that the determination of the ratio x [see
Eq. (36)] corresponds to the latent heat [see Eq. (23)]. It is
obvious that the total kinetic energy is not conserved in the
processes g + g → π + π + π and g + g → π + π . Since
transitions with momentum and kinetic energy conservation
have been numerically implemented in a standard routine, we
amplify the momentum (also the kinetic energy) of each gluon
by x before performing the transitions to pions by using the

standard routine. One can easily prove that the factor x is
Lorentz invariant.

Since the latent heat has been involved in g + g →
π + π + π and g + g → π + π according to Eq. (23), in
back reactions π + π + π → g + g and π + π → g + g the
total momentum as well as the total kinetic energy are
conserved. We allow only those back reactions to occur if
pions are newly produced from g + g → π + π + π and
g + g → π + π . Thus, on average, each gluon coming from
back reactions has a larger energy than 3Tc. This mimics the
energy transfer from the pionic phase to the gluonic phase, in
order to compensate for the energy loss of gluons due to the
hydrodynamical expansion. We involve back reactions in pro-
cesses g + g → π + π + π → g∗ + g∗, g + g → π + π +
π → g∗ + g∗ + π , and g + g → π + π → g∗ + g∗, where
three pions or two pions are regarded as intermediate states
and g∗ denotes outgoing gluons with a higher averaged
energy than that of initial gluons. Numerically we implement
g + g → g∗ + g∗ and g + g → g∗ + g∗ + π directly and do
not specify intermediate states explicitly.

Now we derive the probability that a process g + g →
π + π + π , g + g → π + π , g + g → g∗ + g∗ + π , or g +
g → g∗ + g∗ occurs, denoted by P23, P22, P23b, and P22b,
respectively. For simplicity, these probabilities are assumed to
be independent on the momenta of particles involved in the
processes. Therefore, the number of lost gluons and gained
pions in volume V during dτ relate to the probabilities P23,
P22, and P23b as follows:

1
2Ng(Ng − 1)(2P23 + 2P22) = −nc

gdVg , (27)

1
2Ng(Ng − 1)(3P23 + 2P22 + P23b) = nc

πdVπ , (28)

where Ng = nc
gfgV is the gluon number in volume V . Suppose

the number of g∗ from the back reactions is dNg∗ ; then we have

1
2Ng(Ng − 1)(2P23b + 2P22b) = dNg∗ . (29)

The total kinetic energy of initial gluons in each transition
process is 6Tc (3Tc for each) on average. As introduced before,
we enhance the kinetic energy of initial gluons by a x factor,
in order to include the latent heat. The total energy involved in
each transition process is then 6Tcx on average, while the latent
heat per process is 6Tc(x − 1). The total involved latent heat
in volume V during dτ relates to the sum of the probabilities
of all the transition processes as well as the factor x,

1

2
Ng(Ng − 1)(P23 + P22 + P23b + P22b)6Tc(x − 1)

= dElat = em + Pc + π̃m

ec
g − ec

π

BdV. (30)

The second identity is due to Eq. (23).
In the process g + g → π + π the energy of each pion is

3Tcx on average, while it is 2Tcx in the processes g + g →
π + π + π and g + g → g∗ + g∗ + π . The average energy
of each pion obtained from g + g → π + π , g + g → π +
π + π , and g + g → g∗ + g∗ + π should be larger than 3Tc.
In other words, the total energy of these pions should be
larger than 3Tcn

c
πdVπ = ec

πdVπ , because the energy excess
over ec

πdVπ should cover the energy loss of all pions in
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volume V due to the work done by the effective pressure.
This requirement leads to

1
2Ng(Ng − 1)

(
P23 + P22 + 1

3P23b

)
6Tcx

= ec
πdVπ + (

nc
πTc + π̃π

)
(1 − fg)dV. (31)

Analogously, the total energy of the gained gluons in
the processes g + g → g∗ + g∗ and g + g → g∗ + g∗ + π
should be larger than 3TcdNg∗ , because the excess should
cover the energy loss of all gluons in volume V due to the
work done by the kinetic pressure, which leads to

1
2Ng(Ng − 1)

(
P22b + 2

3P23b

)
6Tcx

= 3TcdNg∗ + (
nc

gTc + π̃g

)
fgdV . (32)

We eliminate dNg∗ by inserting Eq. (29) and obtain

1
2Ng(Ng − 1)

[
P22b(x − 1) + P23b

(
2
3x − 1

)]
6Tc

= (
nc

gTc + π̃g

)
fgdV . (33)

We notice that Eq. (33) plus Eq. (31) minus 3Tc times
Eq. (27) is equal to Eq. (30) by using the energy balance
Eq. (19). This indicates that there are only four independent
equations, Eqs. (27), (28), (31), and (33), available for five
unknowns, namely, four probabilities P23, P22, P23b, P22b, and
the factor x. One of five unknowns is a free parameter. The
determination of this free parameter should ensure that all the
probabilities are non-negative and x is larger than 1. We choose
P23 as the free parameter and set it to be zero. With this choice
all other transition probabilities are positive and the factor x is
larger than 1, as shown later in Fig. 3. P23 = 0 does not mean
that there are no g + g → π + π + π processes, but indicates
that once such a process occurs, either three or two pions will
go back to two gluons, which are denoted by the processes
g + g → π + π + π → g∗ + g∗ or g + g → π + π + π →
g∗ + g∗ + π .

With P23 = 0 we obtain P22 directly from Eq. (27)

P22 = − nc
gdVg

Ng(Ng − 1)

= nc
g

(
ec
π + Pc + π̃m

)
ec
g − ec

π

dV

Ng(Ng − 1)

= nc
g

(
ec
π + Pc + π̃m

)
ec
g − ec

π

∇μUμV dτ

Ng(Ng − 1)
(34)

by using Eqs. (20) and (21). Subtracting Eq. (27) from Eq. (28)
gives

P23b = 2

Ng(Ng − 1)

(
nc

πdVπ + nc
gdVg

)

= − π̃m

2Tc

∇μUμV dτ

Ng(Ng − 1)
. (35)

To get the second identity we have used Eqs. (26) and (21).
Putting P23b and P22 into Eq. (31) we obtain

x = ec
πdVπ + (

nc
πTc + π̃π

)
(1 − fg)dV

Tc

(
2nc

πdVπ − nc
gdVg

) , (36)

where one may insert the ratios dVg/dV and dVπ/dV = 1 −
dVg/dV from Eq. (20). Finally we get P22b from Eq. (33),

P22b =
(
nc

gTc + π̃g

)
fg + (

x − 3
2

)
π̃m

3Tc(x − 1)

∇μUμV dτ

Ng(Ng − 1)
. (37)

With the derived probabilities P22, P23b, P22b, and the factor
x, we can perform the corresponding transition processes
stochastically in the same manner introduced in BAMPS [21].

For the phase transition from pions to gluons in contracting
systems we can analogously consider processes π + π →
g + g, π + π → π∗ + π∗ + g, and π + π → π∗ + π∗. The
factor x is in this case smaller than 1, because a latent heat will
be released. The procedure of deriving the probabilities and x
is same as that shown above.

Since Uμ and πμν can be extracted from the particle
distributions in transport calculations, our dynamical scheme
for hadronization with the first-order phase transition can in
principle be applied for any systems. In this article we will
show a simulation in a particular case, where we consider one-
dimensional expansion with Bjorken boost invariance [33],
which is widely used to describe the space-time evolution
of matter produced in ultrarelativistic heavy-ion collisions.
In this case the time evolution of the phase transition can be
calculated analytically, which we use to examine our numerical
implementations.

IV. THE CASE OF ONE-DIMENSIONAL EXPANSION
WITH BJORKEN BOOST INVARIANCE

In one-dimensional expansion with Bjorken boost invari-
ance, the hydrodynamical velocity is

Uμ = 1

τ
(t,0,0,z) . (38)

In the first-order theory of hydrodynamics, the shear tensor
reads

πμν = 2η∇〈μUν〉, (39)

where η is the shear viscosity. Then Eqs. (21), (16), and (11)
are reduced to

1

V

dV

dτ
= ∇μUμ = 1

τ
, (40)

π̃ = −2η
∇〈μUν〉∇〈μUν〉

∇μUμ
= −4η

3τ
, (41)

de

dτ
= −e + P

τ
+ 4η

3τ 2
. (42)

Using Eqs. (25), (10), and (42) we obtain the differential
equation for the time evolution of the entropy density during
the phase transition

dsm

dτ
=

(
4 − μc

Tc

)
dnm

dτ
=

(
4 − μc

Tc

)
1

4Tc

dem

dτ

= − sm

τ
+

(
1 − μc

4Tc

)
4ηm

3Tcτ 2
(43)

with ηm = ηgfg + ηπ (1 − fg). ηg (ηπ ) is the shear viscosity
of gluons (pions). Assuming that ηm/sm is a constant during
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the phase transition, we solve Eq. (43) and obtain

sm(τ ) = sc
g

τc

τ
e

4a
3Tc

( 1
τc

− 1
τ

) , (44)

where τc is the time when the phase transition begins and
a = (1 − μc/4Tc)ηm/sm. Thus, we get the gluonic fraction in
the mixture according to Eq. (25),

fg(τ ) = sm(τ ) − sc
π

sc
g − sc

π

. (45)

fg decreases from 1 at τc to 0 at τe, which denotes the time
when the phase transition in the considered volume element is
complete. In addition, using Eqs. (25) and (10) we have

nm(τ ) = nc
g

τc

τ
e

4a
3Tc

( 1
τc

− 1
τ

), (46)

em(τ ) = (
ec
g + Pc

)τc

τ
e

4a
3Tc

( 1
τc

− 1
τ

) − Pc. (47)

V. NUMERICAL IMPLEMENTATIONS AND SETUPS

In this section we give details on numerical implementa-
tions and setups for simulating the hadronization in a one-
dimensional Bjorken expansion. Since the main goal of this
work is to present a dynamical scheme of hadronization and
to prove its applicability by comparing the numerical results
with analytical solutions, we consider only elastic scatterings
among gluons or pions and assume constant cross sections
and the isotropic distribution of collision angles. Under these
assumptions we can easily tune the cross sections to have a
constant ηm/sm ratio. which is required to obtain analytical
solutions; see Eqs. (44)–(47).

Elastic collisions among gluons or pions are simulated by
employing the standard BAMPS prescription. The collision
probabilities [21] read

Pi = vrel.
σi

Ntest

�t

fiVr

, (48)

where i stands for either a process g + g → g + g or for π +
π → π + π , and σi is the respective cross section. vrel. denotes
the relative velocity of two incoming particles, and Vr is the
volume of a cell in the computational frame. (Remember that
V is the cell volume in its local rest frame.) fi is the gluon or
pion fraction, which is fg or (1 − fg). �t is the time step in the
computational frame, and Ntest is the number of test particles
per a real particle.

For the isotropic distribution of collision angles the shear
viscosity turns out to be [34–36]

ηi = 6Ti

5σi

. (49)

Then we can solve Eq. (42) and obtain the time evolution of
the energy density of gluons before the phase transition and
that for pions after the phase transition:

eg(τ ) = [eg(τ0) − B]

(
τ0

τ

)rg

+ B, (50)

eπ (τ ) = eπ (τe)

(
τe

τ

)rπ

, (51)

where τ0 is the initial time of the gluonic phase, and rg and rπ

are given by

rg = 4

3
− 8

15ng(τ0)τ0σg

, (52)

rπ = 4

3
− 8

15nπ (τe)τeσπ

. (53)

For completeness we give the solutions of the time evolution
of number density and temperature, which is defined by the
ratio of the kinetic energy density over threefold of the number
density,

ng(τ )=ng(τ0)
τ0

τ
, nπ (τ ) = nπ (τe)

τe

τ
, (54)

Tg(τ )=Tg(τ0)

(
τ0

τ

)rg−1

, Tπ (τ ) = Tπ (τe)

(
τe

τ

)rπ −1

. (55)

From these results we obtain the time evolution of the chemical
potential from Eq. (6). We find that before the phase transition

e
μg
Tg = e

μg (τ0)
Tg (τ0)

[
Tg

Tg(τ0)

] 1
rg−1 −3

, (56)

which indicates that for nonzero shear viscosity, μg will
decrease to be negative during expansion, even if the initial
state is in thermal equilibrium with μg(τ0) = 0. Putting the
above relation (56) into the Gibbs condition (5) when the
phase transition occurs

Pg = nc
gTc − B = e

μc
Tc dg

T 4
c

π2
− B

= Pπ = nc
πTc = e

μc
Tc dπ

T 4
c

π2
, (57)

we get the transition temperature

Tc =
{
e
− μg (τ0)

Tg (τ0) [Tg(τ0)]
1

rg−1 −3 π2B

dg − dπ

}1− 1
rg

. (58)

The chemical potential at the transition temperature, μc, can
be obtained from Eq. (56). The dependence of Tc on the
initial state is due to the assumption of the gluon number
conservation, which is only valid if the elastic scatterings are
dominant processes. On the other hand, if inelastic interactions
such like g + g ↔ g + g + g are as important as the elastic
scatterings, the system will go towards chemical equilibrium,
i.e., μg → 0. The dependence of Tc on the initial state will
be almost washed out. Since it is easier to obtain analytical
solutions when considering elastic collisions only, we do not
include inelastic scatterings in the gluonic (and pionic) phase.

Using Tg(τ ) from Eq. (55) and the value of Tc, we obtain
the time τc, when the phase transition begins

τc = τ0

[
Tg(τ0)

Tc

]1/(rg−1)

. (59)

Since the time evolutions of the shear viscosity and the entropy
density [see Eq. (24)] are known for a chosen constant cross
section σg , the shear viscosity to the entropy density ratio at
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τc relates to σg as

ηg(τc)

sg(τc)
= 6(dg − dπ )

5dg

T 2
c

σgB

1

4 − μg(τ0)
Tg (τ0) − 4−3rg

rg−1 ln Tc

Tg (τ0)

. (60)

We have assumed that ηm/sm is constant during the phase
transition. Therefore, ηm/sm = const. = ηg(τc)/sg(τc). We as-
sume further that the shear viscosity to the entropy density
ratio of the gluonic phase is same as that of the pionic phase in
the mixture. We have then ηc

g/s
c
g = ηc

π/sc
π = const. = ηm/sm.

From Eq. (49) the cross section of pionic scatterings relates to
the cross section of gluonic scatterings as

σπ = sc
g

sc
π

σg = dg

dπ

σg . (61)

We note that the present transport implementation of
hadronization with constant ηm/sm would be equivalent to
a hydrodynamic description. The distribution of hadrons after
the dynamic hadronization would be almost the same as that
obtained by using the Cooper-Frye prescription [16], which
switches from viscous hydrodynamic models to hadron trans-
port models [10–14]. However, the assumption of constant
ηm/sm made in this article is only for the comparisons with
analytical solutions. In reality the hadronic shear viscosity to
the entropy density ratio may be different from the partonic
one, which leads to a time-dependent ηm/sm. The present
dynamical scheme of hadronization provides a possibility to
examine the applicability of the Cooper-Frye prescription.

In simulations the initial distribution of gluons at τ0 is
assumed to be thermal and boost invariant,

f (x,p) = e
− pμUμ

Tg

∣∣∣∣
τ0

= e
− p⊥ cosh(η̄−y)

Tg (τ0) , (62)

where p⊥ is the transverse momentum and η̄ and y are space-
time and momentum rapidity, respectively,

η̄ = 1

2
ln

t + z

t − z
, (63)

y = 1

2
ln

E + pz

E − pz

. (64)

We consider gluons between a space-time rapidity window
[−η̄M,η̄M ] with η̄M = 3. Particles are embedded in a three-
dimensional box. The transverse plane is a 3 × 3 fm square.
We use periodical boundary condition to cancel the transverse
expansion. The longitudinal length of the box is set to be long
enough that no particles can exceed the longitudinal bounders
at the final time of observation. The box is equidistantly divided
into cells with the same transverse length �x = �y and the
same distance in the space-time rapidity �η̄. In simulations we
set �x = �y = 0.25 fm and �η̄ = 0.025. To avoid numerical
artifacts we use a large value of test particle number, Ntest =
14 000.

In the following we show how to extract the volume
fraction, particle number, energy density, temperature, and
chemical potential of gluons and pions from the numerical
simulation. The particle four-flow and the momentum-energy

tensor in a transverse slice within �η̄ are calculated by

Nμ =
∫

d3p

(2π )3

pμ

p0
f = 1

Vslice

1

Ntest

∑
i

p
μ
i

p0
i

, (65)

T μν =
∫

d3p

(2π )3

pμpν

p0
f = 1

Vslice

1

Ntest

∑
i

p
μ
i pν

i

p0
i

, (66)

where the sums are either over gluons or over pions. From N
μ
g

for gluons and Nμ
π for pions we calculate the flow velocity Uμ

by using the Eckard’s definition,

Uμ = N
μ
g + Nμ

π√(
Nν

g + Nν
π

)
(Ngν + Nπν)

. (67)

Then we obtain the particle number and kinetic energy
densities in the volume Vslice

n′
i = N

μ
i Uμ , (68)

e′
i = UμT

μν
i Uν , (69)

where i stands for gluons or pions. The actual densities of
gluons and pions are

ng = n′
g/fg , eg = e′

g/fg + B, (70)

nπ = n′
π/(1 − fg) , eπ = e′

π/(1 − fg). (71)

We get the temperature of each phases by

Tg = eg − B

3ng

= e′
g

3n′
g

, Tπ = eπ

3nπ

= e′
π

3n′
π

. (72)

Since from n′
i and e′

i we cannot uniquely determine μg , μπ ,
and fg in the mixture, we assume that μg/Tg = μπ/Tπ . Thus,

n′
g

n′
π

= fgng

(1 − fg)nπ

= fg

1 − fg

n
eq
g

n
eq
π

= fg

1 − fg

dgT
3
g

dπT 3
π

(73)

and

fg(τ ) =
(

1 + dgT
3
g

dπT 3
π

n′
π

n′
g

)−1

. (74)

We then have ng , eg , nπ , and eπ ; see Eqs. (70) and (71).
From these densities we obtain μg and μπ according to their
definitions (6).

VI. NUMERICAL RESULTS

In this section we simulate the phase transition from gluons
to pions in a one-dimensional expansion with Bjorken boost
invariance by implementing the microscopic processes into the
parton cascade model BAMPS. We will show the numerical
results and compare them with the analytical solutions derived
in Secs. IV and V.

As an example, we set the temperature of gluons to be
Tg = 0.3 GeV at the initial time τ0 = 0.5fm/c. Since we will
compare the numerical results with the solutions from first-
order viscous hydrodynamics, the total cross section of gluon
elastic scatterings is set to be a large value of σg = 16.5 mb,
which leads to a small shear viscosity to the entropy ratio
at the phase transition. With these setups we obtain Tc =
0.2357 GeV and τc = 1.4979fm/c from Eqs. (58) and (59).
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Further we get μc/Tc = −0.3735 and ηg/sg = 0.1045 at τc

from Eqs. (56) and (60). In the following we concentrate on
the local region at zero space-time rapidity with a small interval
of 0.025 and calculate densities in this region.

In the numerical calculation we determine τc as follows.
According to Eqs. (1), (3), and (5) we have B = (nc

g − nc
π )Tc

at the phase transition. With nπ = ngdπ/dg , which is only
true during the phase transition, we see that before the phase
transition (1 − dπ/dg)ngTg is always larger than B. Therefore,
we get τc, once (

1 − dπ

dg

)
ng(τc)Tg(τc) < B (75)

due to numerical fluctuations at the phase transition. From the
simulation we extract τc = 1.4386fm/c and accordingly Tc =
0.2269 GeV, which slightly differ from the values expected.
Although fluctuations exist in numerical extractions of τc and
Tc, the differences from the expected values have an additional
origin. Figure 1 shows the time evolution of the number and
kinetic energy density and the temperature of gluons from
the initial time τ0 to the time shortly after τc. We have also
depicted the analytical solutions from Eqs. (54), (50), and (55)
by dashed cures. We see a perfect agreement in the number
density ng , as it should be, since we considered only elastic
scatterings of gluons and the time evolution of ng does not
depend on the value of the total cross section. On the contrary,
deviations are visible in the kinetic energy density eg − B
and in the temperature. We shift the analytical curves down
to meet the numerical values of eg and Tg at τc, which
correspond to replacing τ0 by τc in Eqs. (50) and (55). The
shifted curves are depicted by the dotted curves in Fig. 1. We
see agreements between the shifted curves and the numerical
results from about 1.2fm/c to τc. Between τ0 and 1.2fm/c
we see a relaxation from the thermal initial condition to the
Navier-Stokes state, which has to be described by second-order
or higher order viscous hydrodynamics [32,37].

From the simulation we get ηg/sg = 0.1004 at τc, which is
slightly different from the expected value, but agrees with the
value, when we use the shifted curves in Fig. 1; i.e., we change
Tg(τ0) and μg(τ0) in Eq. (60) accordingly.

We set nc
g = ng(τc), ec

g = eg(τc), sc
g = sg(τc), μc = μg(τc),

ηm/sm = ηg(τc)/sg(τc), nc
π = nc

gdπ/dg , ec
π = (ec

g − B)dπ/dg ,
and sc

π = sc
gdπ/dg . With these densities extracted at τc, the

gluon fraction fg extracted at τ , and the gluon number Ng

extracted at τ in each cell we compute all the transition proba-
bilities and the factor x at τ according to Eqs. (34), (35), (37),
and (36). Here we employ Eqs. (40) and (41) to calculate
∇μUμ, π̃g , and π̃π instead of direct extractions from the
particle distributions, in order to avoid numerical uncertainties,
which could be reduced by using larger Ntest. In addition,
since Ng is proportional to Ntest and the transition probability
should be inversely proportional to Ntest similar to the
collision probability in Eq. (48), we multiply all the transition
probabilities by Ntest.

The actual values of ng , eg , nπ , and eπ at τ , calculated by
using Eqs. (74), (70), and (71), possess numerical fluctuations,
which induce fluctuations in Tg , Tπ , μg , μπ , sg , and sπ , as seen
later in Fig. 5. To ensure ηg/sg and ηπ/sπ in the mixture to be

FIG. 1. The time evolution of the number and kinetic energy
density and the temperature of gluons from τ0 = 0.5fm/c to the time
shortly after τc = 1.4386fm/c. The numerical results are depicted by
solid curves (in black), while the analytical solutions are shown by
the dashed curves (in red). The dotted curves (in blue) correspond to
the shift of the analytical curves down to meet the values of eg and
Tg at τc.

equal to ηg/sg at τc, we determine the gluonic (pionic) elastic
cross section by

σi(τ ) = 6Ti(τ )

5si(τ )

[
ηg(τc)

sg(τc)

]−1

(76)

with i = g,π according to Eq. (49). We find (not shown) that
the cross sections during the phase transition fluctuate around
the given constant values in the pure gluonic or pionic phase.

In Fig. 2 we compare the numerical extracted gluon
fraction fg [according to Eq. (74)] with the expected function
[according to Eqs. (44) and (45)] and see a perfect agreement.
With the expected function fg we find the time τe = 8.233fm/c
when the hadronization finishes in the considered volume
element. Numerically we define τe, when on average, the gluon
number in a cell is less than two. We find τe = 8.055fm/c,
which is slightly earlier than expected. At τe there are still few
gluons left (about 1% of initial gluons), because one gluon in
a cell cannot find another gluon to hadronize. Our numerical

024907-8



DYNAMICAL SCHEME FOR HADRONIZATION WITH . . . PHYSICAL REVIEW C 95, 024907 (2017)

FIG. 2. The time evolution of the gluon fraction. The solid curve
(in black) depicts the numerical result, while the dashed curve (in
red) depicts the expected function.

handling is as follows: At τe we just rename the left gluons to
pions without any other changes.

Analogously to the relation between the collision prob-
ability and the cross section in Eq. (48), we define the

FIG. 3. The time evolution of the mean transition cross sections
and the factor x.

FIG. 4. The time evolution of the number and the kinetic energy
density. The black (red) curves are for gluons (pions). The dashed
lines depict the values at τc. From τe = 8.055fm/c, the densities of
gluons are zero (not plotted).

transition cross sections of the processes g + g → π + π ,
g + g → g∗ + g∗ + π , and g + g → g∗ + g∗ from their tran-
sition probabilities. Figure 3 shows the time evolution of the
mean transition cross sections and the factor x during the
phase transition. The cross section of g + g → g∗ + g∗ + π
is multiplied by 20 and is negligible small due to the small
value of ηm/sm. During the phase transition all cross sections
are below 6 mb except for the cross section of g + g → π + π
within 0.5fm/c before the end of the phase transition, which in-
creases into infinity. The divergence happens, because shortly
before the complete hadronization the number of gluons is
approaching to zero and on the other hand, the hadronization
has an approximately constant rate, i.e., −dVg ∼ Adτ , where
A is the transverse area.

Figures 4(a) and 4(b) show the time evolution of the
number and the kinetic energy density of gluons (black curves)
and pions (red curves), respectively, evaluated according to
Eqs. (70), (71), and (74). For comparisons, the densities of
pions are multiplied by the ratio of the degeneracy factors
dg/dπ . We see good agreements between the gluonic densities
and the amplified pionic densities. We also see that the
densities maintain almost constant during the phase transition,
expect for larger statistical uncertainties of pionic densities

024907-9



BOHAO FENG, ZHE XU, AND CARSTEN GREINER PHYSICAL REVIEW C 95, 024907 (2017)

FIG. 5. Same as Fig. 4. From top to bottom: The time evolution
of the pressure, the temperature, the chemical potential to the
temperature ratio, and the entropy density.

after τc and those of gluonic densities before τe due to the
small amount of particles. Both the average values of the
gluon number density and the kinetic energy density agree
well with nc

g = ng(τc) = 1.9724 fm−3 and ec
g − B = eg(τc) −

B = 1.3427 GeV fm−3, which are denoted by the dashed
lines.

In Fig. 5 we present the time evolution of the pressure,
temperature, chemical potential, and entropy density, which
are obtained from the number and energy densities shown in
Fig. 4. Figure 5(a) pictures the pressure of gluons and pions,
which are obtained according to the equations of state Eqs. (1)
and (3). The temperatures are calculated from Eq. (72) and
shown in Fig. 5(b). We see that the pressures and temperatures
are almost constant during the phase transition. The average
values also agree well with Pc = Pg(τc) = 0.0834 GeV fm−3

FIG. 6. The time evolution of the total number, energy, and
entropy density. The solid curves (in black) depict the numerical
densities, while the dashed curves (in red) depict the analytical
solutions.

and Tc = Tg(τc) = 0.2269 GeV, which are denoted by the
dashed lines. From the number and the kinetic energy density
we also obtain the chemical potential of gluons and pions
according to the definition (6). In Fig. 5(c) we plot the
time evolution of the ratio of the chemical potential to the
temperature. μg/Tg is exactly the same as μπ/Tπ during
the phase transition, because this is the assumption for
extracting fg [see Eq. (74)]. We see that μg/Tg (also μπ/Tπ )
is almost constant around μc/Tc = μg(τc)/Tg(τc) = −0.223.
We have demonstrated that the Gibbs condition (5) is realized
in our numerical implementations. Finally we show in Fig. 5(d)
the time evolution of the entropy density of gluons and pions
obtained according to Eq. (24). Same as the number and
the kinetic energy density, the entropy density of pions is
multiplied by dg/dπ for comparison. We see that sg and
sπdg/dπ have almost the same constant value during the
phase transition. The average value of sg agrees well with
sc
g = sg(τc) = 8.3297 fm−3, denoted by the dashed line.

After the phase transition is complete in the considered
volume element, the number, energy, and entropy density,
and the temperature of pions in that volume element decrease
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FIG. 7. Same as Fig. 6, but for the total entropy per space-time
rapidity per transverse area.

in time. The numerical results agree well with the analytical
solutions (not shown).

In Fig. 6 we present the time evolution of the total number,
energy, and entropy density in the mixed phase according to
Eqs. (8), (9), and (25), but replacing nc

g , nc
π , ec

g , ec
π , sc

g , and sc
π by

the numerical values given in Figs. 4 and 5. Comparisons with
the analytical solutions given in Eqs. (46), (47), and (44) show
perfect agreements. The total entropy per space-time rapidity
and per transverse area is obtained by multiplying the total
entropy density by the time τ and is depicted in Fig. 7. We see
that the increase of the total entropy during the hadronization
is realized in our dynamical hadronization scheme and agrees
well with the analytical solution.

VII. SUMMARY AND OUTLOOK

In this article we have implemented a dynamical hadroniza-
tion scheme describing the first-order confinement and de-
confinement phase transition between gluons and pions. The
continuous change of the gluon volume and the pion volume
are derived theoretically by the energy balance according

to the condition of the phase equilibrium. Based on the
derived volume changes, the transition probabilities of the
considered microscopic processes g + g → π + π , g + g →
π + π + π , and their back reactions are determined to mimic
the phase transition within a kinetic transport approach. We
have carried out a simulation of the phase transition in a
one-dimensional expansion with Bjorken boost invariance and
compared the numerical results with the analytical solutions.
We have seen almost perfect agreements. This demonstrates
the applicability of our dynamical scheme in describing the
first-order confinement and deconfinement phase transition in
a more realistic expansion of the QCD matter produced in
relativistic heavy-ion collisions.

In future works we will first improve the present hadroniza-
tion scheme by adding quarks and more hadron species and
apply it to study the relation between the collective flow of
hadrons and that of quarks and gluons. In particular, we would
like to address the contribution of gluons to the collective flow
of hadrons and to examine whether there is a real quark number
scaling. Second, we will investigate the dissipative effect in the
distribution function of hadrons during the phase transition
and quantify the difference from that obtained by using
the Cooper-Frye prescription after viscous hydrodynamic
calculations. Third, we will implement hadronic transport
processes and establish a multiphase transport model, which is
able to describe all stages of heavy-ion collisions. In addition,
referring to the dynamics within the chiral σ model [38,39] or
the Nambu-Jona-Lasinio model [40,41], we want to include
both the confinement and chiral phase transition in one
transport approach, where interactions between particles and
fields [42] will be implemented explicitly.
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