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Comparison of hydrodynamic and “hybrid” hydrodynamics + transport calculations with heavy-ion data
inevitably requires the conversion of the fluid to particles. For dissipative fluids the conversion is ambiguous
without additional theory input complementing hydrodynamics. We obtain self-consistent shear viscous
phase-space corrections from linearized Boltzmann transport theory for a gas of hadrons. These corrections
depend on the particle species, and incorporating them in Cooper–Frye freeze-out affects identified particle
observables. For example, with additive quark model cross sections, proton elliptic flow is larger than pion
elliptic flow at moderately high pT in Au + Au collisions at the BNL Relativistic Heavy Ion Collider. This is in
contrast to Cooper–Frye freeze-out with the commonly used “democratic Grad” ansatz that assumes no species
dependence. Various analytic and numerical results are also presented for massless and massive two-component
mixtures to better elucidate how species dependence arises. For convenient inclusion in pure hydrodynamic and
hybrid calculations, Appendix G contains self-consistent viscous corrections for each species both in tabulated
and parametrized form.
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I. INTRODUCTION

The most common dynamical framework to interpret
data from ultrarelativistic heavy-ion (A + A) reactions is
relativistic hydrodynamics [1]. Application of hydrodynamics
necessitates the conversion of the fluid to particles, which are
then either evolved further in a hadronic transport model or
assumed to free stream to the detectors. The usual approach to
such “particlization” [2] is to do the conversion on a constant-
temperature or -energy-density hypersurface in spacetime via
the Cooper–Frye formula [3]. While unambiguous for fluids
in perfect local thermal equilibrium, i.e., ideal fluids, for
dissipative fluids an infinite class of phase-space densities
can reproduce the same hydrodynamic fields. This is further
exacerbated for mixtures where one can postulate phase-space
corrections for each particle species almost independently.

In practice these ambiguities are commonly ignored, even
in state-of-the-art “hybrid” hydro + transport calculations [4].
For example, shear viscous corrections are simply assumed
to follow quadratic momentum dependence with a common
coefficient for all species; a procedure one of us termed the
“democratic Grad” ansatz [5]. This, however, ignores the very
microscopic dynamics that keeps the hadron gas near local
equilibrium. We apply here instead a self-consistent approach
that obtains shear viscous corrections from linearized kinetic
theory for a gas of hadrons. This extends earlier studies
that considered massless quarks and gluons [6], or hadronic
mixture with two species only [5].

Recently there has been a lot of interest in bulk viscous
corrections [7–9]. While this work focuses on phase-space
corrections due to shear only, the technique used here could
be extended to the bulk viscous case in a straightforward
manner. Shear corrections also affect photon and dilepton
emission from the quark-gluon plasma in heavy-ion collisions
[10].

For simplicity we consider phase-space corrections with
power-law momentum dependence, most prominently the

quadratic Grad form, so that the corrections can be simply
represented by numbers (instead of numerically determined
functions). This will be remedied in a future publication.
General aspects of the approach are presented in Sec. II,
followed by analytic and numerical results for massless and
massive two-component mixtures in Secs. III and IV, and
numerical results on the particle species dependence of differ-
ential elliptic flow v2(pT ) ≡ 〈cos 2φ〉pT

for a multicomponent
hadronic gas in Sec. V. The approach is also verified against
fully nonlinear kinetic theory in Sec. III B. Technical details
are deferred to Appendixes A–F. We only highlight here
Appendix G, which contains tables and parametrizations of
self-consistent species-dependent correction factors to the
commonly used “democratic” Cooper–Frye freeze-out. These
facilitate implementation of our results in hydrodynamic and
hybrid calculations.

II. VISCOUS PHASE-SPACE CORRECTIONS FROM
LINEARIZED TRANSPORT

A. Democratic Grad ansatz

The principle challenge in converting a fluid to particles is
that one needs to obtain phase-space densities

fi(x,p) ≡ dNi(r,p,t)

d3rd3p
(1)

for each of the particle species i solely from hydrodynam-
ics fields; namely, the energy-momentum tensor T μν and
any conserved charge currents N

μ
c (in heavy-ion physics

applications, typically the baryon charge). The conversion is
envisioned in spacetime regions where the hydrodynamic and
particle descriptions are to good approximation equivalent,
so we only switch “language” but the state of the system is
unchanged [11]. The particles are usually modeled as a gas, in
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which case one has to invert1

T μν(x) ≡
∑

i

∫
d3p

E
pμpνfi(x,p) (2)

and

Nμ
c (x) ≡

∑
i

qc,i

∫
d3p

E
pμfi(x,p), (3)

where qc,i is the charge of type c carried by a particle of
species i.

For nondissipative fluids, which by definition are in local
equilibrium everywhere in space at all times, the conversion
is straightforward because in local thermal and chemical
equilibrium particle distributions are2

fi(x,p) ≡ f
eq
i (x,p) = gi

(2π )3
exp

[
μi(x) − pαuα(x)

T (x)

]
,

μi ≡
∑

c

qc,iμc(x), (4)

where gi is the number of internal degrees of freedom for
species i. The combination pαuα is the energy of the particle in
the local rest (LR) frame of the fluid [uμ

LR = (1,0)]. The local
temperature T , chemical potentials {μc}, and four-velocity
uμ of fluid flow are uniquely determined through the ideal
hydrodynamic relations

T
μν

id (x) = [e(x) + p(x)]uμ(x)uν(x) − p(x)gμν,

N
μ
c,id(x) = nc(x)uμ(x), (5)

with the energy density e(T ,{μc}), pressure p(T ,{μc}), and
charge densities nc(T ,{μc}) given by the equation of state
(these can be inverted for T and {μc}). For consistency, at the
point of conversion the equation of state used in fluid dynamics
must of course correspond to a gas of particles.

If the fluid is dissipative, then it is not strictly in local
thermal and chemical equilibrium, and phase-space densities
therefore acquire dissipative corrections

fi(x,p) = f
eq
i (x,p) + δfi(x,p) ≡ f

eq
i (x,p)[1 + φi(x,p)].

(6)
The ideal hydrodynamic forms (5) no longer hold because
the energy-momentum tensor and charge currents acquire
nonideal corrections

T μν = T
μν
id + δT μν, Nμ

c = N
μ
c,id + δNμ

c(
uμδT μνuν = 0, uμδNμ

c = 0
)
, (7)

where δT μν is customarily decomposed further into a shear
stress tensor πμν and bulk pressure �:

δT μν = πμν + �(uμuν − gμν), πμ
μ ≡ 0, (8)

1High-energy physics units � = c = kB = 1 and the metric with
(+,−,−,−) signature are used throughout, with Einstein conventions
in all Lorentz tensor expressions, and Minkowski scalar products
abbreviated as (ab) ≡ aμbμ. Sums over particle species, on the other
hand, are always written explicitly.

2Throughout this paper Boltzmann statistics is assumed but gener-
alization to the Bose or Fermi case is straightforward.

if one uses Landau convention for fluid flow definition (so
uμδT μν ≡ 0). On the other hand, Eqs. (2) and (3) remain valid
and can be recast as

δT μν(x) =
∑

i

∫
d3p

E
pμpνδfi(x,p),

δNμ
c (x) =

∑
i

qc,i

∫
d3p

E
pμδfi(x,p). (9)

Without additional information about the functional form of
the δfi , this finite set of conditions can be satisfied with
infinitely many different δfi (or, equivalently, φi), even if there
is only a single particle species.

Often the only dissipative correction considered is shear
stress. A common prescription that satisfies the constraint (9)
from shear is the democratic Grad ansatz [5], which
assumes phase-space corrections with quadratic momentum
dependence:

φdem
i (x,p) = πμν(x)pμpν

2[e(x) + p(x)]T 2(x)
. (10)

Note that the coefficient in this quadratic form is the same for
all particle species. The reason this ansatz works is that, for
each species, it gives a partial shear stress that is proportional
to the partial enthalpy:

π
μν
i ≡

∫
d3p

E
pμpνδf dem

i = ei + pi

e + p
πμν ⇒

∑
i

π
μν
i = πμν.

(11)

However, this simple choice ignores the very microscopic
dynamics that keeps the gas near local equilibrium. In
particular, one expects species that interact more frequently
to be better equilibrated than those that scatter less often.

B. Covariant transport theory

In contrast, a self-consistent set of dissipative corrections
can be obtained from linearized covariant transport theory.
Consider on-shell covariant transport theory for a multicom-
ponent system with 2 → 2 interactions. For each species i the
evolution of the phase-space density is given by the nonlinear
Boltzmann transport equation

pμ∂μfi(x,p) = Si(x,p) +
∑
jk	

Cij→k	[fi,fj ,fk,f	](x,p),

(12)

where the source term Si encodes the initial conditions, and
the collision terms are3

Cij→k	[fi,fj ,fk,f	](x,p1)

≡
∫

2

∫
3

∫
4

(
gigj

gkg	

f3kf4	 − f1if2j

)
W̄

ij→k	
12→34δ

4(12 − 34),

(13)

3In Eq. (13), outgoing momenta p3 and p4 are understood to be
integrated over full, unrestricted phase-space. This double counts the
rate for identical particles (k = 	) compared to nonidentical particles.
However, this is compensated by double counting in the sum for
k �= 	. See also Eq. (B3).
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with shorthands
∫
a

≡ ∫
d3pa/(2Ea), fai ≡ fi(x,pa), and

δ4(ab − cd) ≡ δ4(pa + pb − pc − pd ). The transition prob-
ability W̄

ij→k	
12→34 for the process i + j → k + 	 with momenta

p1 + p2 → p3 + p4 is invariant under interchange of incom-
ing or outgoing particles,

W̄
ij→k	
12→34 ≡ W̄

ji→k	
21→34 ≡ W̄

ij→	k
12→43 ≡ W̄

ji→	k
21→43, (14)

satisfies detailed balance

W̄
k	→ij
34→12 ≡ gigj

gkg	

W̄
ij→k	
12→34, (15)

and is given by the corresponding unpolarized scattering
matrix element or differential cross section as

W̄
ij→k	
12→34 = 1

16π2

∣∣Mij→k	
12→34

∣∣2 ≡ 4

π
sp2

c.m.

dσ
ij→k	
12→34

dt

≡ 4s
pc.m.

p′
c.m.

dσ
ij→k	
12→34

d�c.m.
. (16)

Here s ≡ (p1 + p2)2 and t ≡ (p1 − p3)2 are standard Man-
delstam variables, while

pc.m. ≡
√

(p1p2)2 − m2
i m

2
j√

s
, p′

c.m. ≡
√

(p3p4)2 − m2
km

2
	√

s
(17)

are the magnitudes of incoming and outgoing particle momenta
in the center-of-mass frame of the microscopic two-body
collision. The degeneracy factors g of the species appear
explicitly in Eq. (15) because unpolarized matrix elements are
summed over internal degrees of freedom (spin, polarization,
color) of outgoing particles, whereas they are averaged over
those of incoming particles. These factors also appear in
Eq. (13) because distribution functions here are assumed to
depend only on momentum and position but not on internal
degrees of freedom, and thus the distribution of each species
is summed over internal degrees of freedom [cf. the local
equilibrium form (4)].

C. Self-consistent viscous corrections from linearized
covariant transport

For small departures from local equilibrium one can split
each phase-space density into a local equilibrium part and a
dissipative correction as in Eq. (6), and linearize Eq. (12) in
δf :

pμ∂μf
eq
i + pμ∂μδfi =

∑
jk	

{
Cij→k	

[
δfi, f

eq
j , δfk, f

eq
	

]
+Cij→k	

[
f

eq
i ,δfj ,f

eq
k ,δf	

]}
, (18)

with the source term dropped and spacetime and momentum
arguments suppressed. The solutions to this coupled set of
equations, of course, depend on both the matrix elements
and initial conditions. However, typical systems quickly relax
on microscopic-scattering timescales to a solution dictated
by gradients of the equilibrium distribution on the left-hand
side (LHS) of Eq. (18). The asymptotic solution, for given
gradients, is then uniquely determined by the interactions in
the system (to see this relaxation worked out explicitly, check

Ref. [12]). In this so-called Navier–Stokes regime, one can
neglect the time derivative of δfi , and if gradients of f

eq
i are

small, one can also ignore4 the spatial derivatives of δfi . At
each spacetime point x one then has a linear integral equation to
solve. This is also the starting point of the standard calculation
of transport coefficients in kinetic theory [13]. For example,
the shear viscosity ηs and bulk viscosity ζ are defined in the
Navier–Stokes limit through

δT
μν
NS ≡ ηsσ

μν + ζ�μν(∂u),

σμν ≡ ∇μuν + ∇νuμ − 2
3�μν(∂u), (19)

where �μν ≡ gμν − uμuν is a convenient projector to isolate
spatial derivatives ∇μ = �μν∂ν in the local rest (LR) frame.

The derivative on the LHS of Eq. (18) can be written as

(p∂)f eq
i = f

eq
i

{
pα

[
∇α μi

T
− (pu)∇α 1

T

]

+ (pu)(u∂)
μi

T
− (pu)2(u∂)

1

T

− pαpβ

2T

[(
∇αuβ + ∇βuα − 2

3
�αβ(∂u)

)

+ 2

3
�αβ(∂u)

]
− (pu)

T
pα(u∂)uα

}
. (20)

To isolate the response to shear, take uniform temperature and
chemical potentials T = const., μc = const., with σμν �= 0
but (∂u) = 0. Only terms on the last two lines remain; the
ones in the square bracket contribute to δT μν , whereas the last
term with temporal derivative (u∂) can be dropped as long as
gradients are weak.5 With symmetric, traceless, purely spatial
(in LR), and dimensionless tensors

P μν ≡ 1

T 2

[
�μ

α�ν
βpαpβ − 1

3
�μν(�αβpαpβ)

]
,

Xμν ≡ σμν

T
= π

μν
NS

ηsT
, (21)

4δfi is, to leading order, proportional to the gradients of f
eq
i , and if

those are small due to a large length scale L in the problem ∇μf
eq
i ∼

1/L, then ∇μδfi ∼ 1/L2 is suppressed compared with ∇μfi .
5Time derivatives of hydrodynamic quantities can be replaced with

spatial ones using the energy-momentum and charge conservation
laws ∂μT μν(x) = 0, ∂μNμ

c (x) = 0. For example,

(u∂)uν = 1

e + p
[∇νp − ∇μδT μν + δT μν(u∂)uμ],

(u∂)nc = −nc(∇u) − ∇μδNμ
c + δNμ

c (u∂)uμ,

and note that (∂u) ≡ (∇u). In shear-viscosity calculations, pressure,
energy density, and charge densities are uniform by assumption, so
derivatives of those vanish as well as derivatives of T and μc. What
remains are first derivatives of dissipative corrections, and dissipative
corrections times first derivatives of ideal hydrodynamic fields. In the
Navier–Stokes regime these are of the same order and correspond to
second derivatives of the ideal fields.
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we then have

(p∂)f eq
i = −T 2

2
f

eq
i P μν(p)Xμν(x). (22)

The right-hand side (RHS) of Eq. (18) simplifies upon the
realization (see Appendix A and Refs. [14,15]) that

φi(x,p) = χi(|p̃|)P μνXμν with
1

T
�μνpν

∣∣∣∣
LR

≡ (0,p̃),

(23)
where p̃ is the LR frame three-momentum normalized by
temperature. This means that δfi are solely determined by real,
dimensionless scalar functions χi of the rescaled momentum.
Substituting Eqs. (23) and (22) into Eq. (18) yields, with the
help of

gigj

gkg	

f
eq
3k f

eq
4	 δ4(12 − 34) ≡ f

eq
1i f

eq
2j δ4(12 − 34), (24)

the integral equation

−1

2
P

μν
1 f

eq
1i = 1

T 2

∑
jk	

∫
2

∫
3

∫
4
f

eq
1i f

eq
2j W̄

ij→k	
12→34

× δ4(12 − 34)
(
χ3kP

μν
3 + χ4	P

μν
4 − χ1iP

μν
1

−χ2jP
μν
2

)
, (25)

which after contraction with P1,μν reads

−1

2
P1 · P1f

eq
1i = 1

T 2

∑
jk	

∫
2

∫
3

∫
4
f

eq
1i f

eq
2j W̄

ij→k	
12→34δ

4(12 − 34)

× (χ3kP3 · P1 + χ4	P4 · P1 − χ1iP1 · P1

−χ2jP2 · P1) (26)

if one introduces the notation

χai ≡ χi(|p̃a|),
Pa · Pb ≡ P μν

a Pb,μν = (p̃ap̃b)2 − 1
3 |p̃a|2|p̃b|2. (27)

It is straightforward to show with the help of Eqs. (14), (15),
and (24) that Eq. (26) is equivalent to the extremization of the
functional

Q[χ ] = 1

2T 2

∑
i

∫
1
P1 · P1f

eq
1i χ1i + 1

2T 4

∑
ijk	

∫
1

∫
2

∫
3

∫
4

× f
eq
1i f

eq
2j W̄

ij→k	
12→34δ

4(12 − 34)(χ3kP3 · P1

+χ4	P4 · P1 − χ1iP1 · P1 − χ2jP2 · P1)χ1i

≡
∑

i

Bi+
∑
ijk	

(
Q

ij→k	
31 +Q

ij→k	
41 − Q

ij→k	
11 − Q

ij→k	
21

)
,

(28)

i.e., Eq. (26) is reproduced by the usual variational procedure
imposing δQ[χ ] = 0 + O(δχ2). This allows one to estimate
χi variationally by using a finite basis {�i,n} as

χi(|p̃|) =
∑

n

ci,n�i,n(|p̃|) (29)

and finding optimal coefficients {ci,n} that maximize Q (one
can in principle use different �n for different species). If
the basis is complete, the limit n → ∞ reproduces the

exact solution. Numerical evaluation of Q is discussed in
Appendix B.

The extremal value of Q is directly related to the shear
viscosity. Comparison of Eq. (19) to Eq. (9) with Eq. (23)
gives

ηs = T xz
LR

σxz
LR

= 2

15T 3

∑
i

∫
d3p

E
p4f

eq
i χi = 4T 3

5

∑
i

Bi,

(30)

with Bi from Eq. (28). On the other hand, from Eq. (26) it
follows that, for the exact solution,

−
∑

i

Bi = 2
∑
ijk	

(
Q

ij→k	
31 + Q

ij→k	
41 − Q

ij→k	
11 − Q

ij→k	
21

)
,

(31)
i.e., the maximum of Q is Qmax = ∑

i Bi/2. Thus, the shear
viscosity is

ηs = 8
5QmaxT

3. (32)

From Eqs. (23), (29), and (21) one concludes that the demo-
cratic Grad ansatz (10) corresponds to a single momentum-
independent (constant) basis function with coefficient ci = 1,
i.e.,

χdem
i = ci

ηsT

2(e + p)
= ηs

2s
(33)

for all species, where in the last step the thermodynamic
identity T s = e + p − ∑

c μcnc was employed with vanishing
chemical potentials appropriate for the midrapidity region in
heavy-ion collisions at energies typical of the BNL Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC). Except for the factor of 1/2, the common χdem

i value is
then just the shear-viscosity-to-entropy ratio. In the following
we study the species dependence of χi from microscopic
dynamics.

III. MASSLESS TWO-COMPONENT SYSTEM

Consider the so-called Grad approximation, in which

χi(|p̃|) = χGrad
i = const., (34)

i.e., phase-space corrections φi are quadratic in momentum.
For massless particles with energy-independent, isotropic
cross sections, the terms in Q[χ ] readily evaluate to (see
Appendix B)

Bi = 10
ni

T 3
χi,

Q
ij→k	
11 = 30(1 + δk	)

σ
ij→k	
tot ninj

T 4
χ2

i ,

Q
ij→k	
21 = 0, (35)

Q
ij→k	
31 = 20

3
(1 + δk	)

σ
ij→k	
tot ninj

T 4
χiχk,

Q
ij→k	
41 = 20

3
(1 + δk	)

σ
ij→k	
tot ninj

T 4
χiχ	,
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where we used Eqs. (B4), (B5), and (B11) with Ea = pa ,
γ3 = β3 = 1/2, and substituted equilibrium densities

ni = gi

π2
T 3eμi/T . (36)

For a one-component massless system,

Q[χ ] = 10n

T 3
χ

(
1 − 10nσtot

3T
χ

)
, (37)

which is maximal at χGrad = 3T λMFP/20, where λMFP =
1/nσtot is the mean-free path. So the viscous correction
is a dimensionless measure of the mean-free path in this
case. The corresponding shear viscosity from Eq. (32) is
the well-known Grad result ηs = 6T/5σtot.

A. Two-component system in Grad approximation

Extension to a minimalist multicomponent system with two
massless species and elastic two-body interactions involves
three interaction channels A + A → A + A, B + B → B +
B, and A + B → A + B. Crossing symmetry would also
imply inelastic A + A → B + B and B + B → A + A but
these are ignored here in order to isolate shear only (if
particle densities are allowed to change, there will also be
dissipative effects due to particle diffusion). With isotropic,
energy-independent cross sections σAA, σBB , and σAB , for this
system in the Grad approximation,

Q = 10

T
(nAχA + nBχB) − 100

3T 4

(
σAAn2

Aχ2
A + σBBn2

Bχ2
B

)
+ 20σABnAnB

3T 4

(
4χAχB − 7χ2

A − 7χ2
B

)
, (38)

which is maximized when

χGrad
A = 3LT

20

5KB(B) + 7KB(A) + 2KA(B)

KA(A)[5KB(B) + 7KB(A)] + KA(B)[9KB(A) + 7KB(B)]
,

χGrad
B = 3LT

20

5KA(A) + 7KA(B) + 2KB(A)

KB(B)[5KA(A) + 7KA(B)] + KB(A)[9KA(B) + 7KA(A)]
. (39)

Here, Ki(j ) ≡ L/λi(j ) = Lnjσij denotes partial inverse Knud-
sen numbers characterizing scattering of species i off species j
and L is the characteristic length scale for gradients in the sys-
tem. All four Ki(j ) play a role because the solution to Eq. (26) is
influenced by any particle in the microscopic scattering process
that is out of equilibrium (whether incoming or outgoing).
The partial inverse Knudsen numbers also come with different
weights; therefore, unlike for a single-component system,
the result cannot in general be reproduced with just the
mean-free path as χi ∼ T λi ≡ LT/Ki = LT/

∑
j Ki(j ). The

Grad estimate of the shear viscosity,

ηGrad
s = 6T

5

σAB(7r + 7r−1 + 4) + 5(σAA + σBB)

7σAB(σAAr + σBBr−1) + 9σ 2
AB + 5σAAσBB

,

r ≡ nA

nB

, (40)

from Eq. (32) is, strictly speaking, a variational lower bound on
the exact ηs value but usually reasonably accurate in practice
(for the isotropic cross sections used here).

B. Comparison to nonlinear transport
with 0 + 1D Bjorken expansion

Linearized transport results correspond to the Navier–
Stokes limit where the system relaxed to a solution dictated by
gradients of hydrodynamic variables. For expanding systems,
such as those in heavy-ion collisions, relaxation to local
equilibrium has to compete with dilution and cooling, so it
is important to check how well the limit applies when local
equilibrium is no longer a static fixed point in time.

A convenient test scenario is a massless system undergoing
boost-invariant 0 + 1D Bjorken expansion6 with homoge-
neous and isotropic transverse directions (x,y), just like in
Ref. [16] but with a two-component A + B mixture. The sys-
tem starts out at longitudinal proper time τ ≡ (t2 − z2)1/2 = τ0

in local thermal equilibrium but due to expansion dissipative
corrections quickly develop and can be easily quantified
using the partial shear stresses of the two species. Due to
scaling of the transport solutions [17], the evolution only
depends on the dimensionless ratio τ̃ ≡ τ/τ0 and partial
inverse Knudsen numbers Ki(j ) ≡ τ/λi(j ) = τnjσij , where the
characteristic scale for gradients is the proper time τ . The
initial temperature T0 does not play any role beyond setting
the momentum scale (all momenta are proportional to T0). As
in Sec. III A, we only include elastic two-body interactions
A + A → A + A, B + B → B + B, and A + B → A + B.
All three cross sections are set to grow with time as σij ∝ τ 2/3,
which ensures7 approximately-scale-invariant dynamics with
ηs/s ≈ const. In such a scenario, longitudinal expansion first
drives the system out of local equilibrium but at late times the
system returns, asymptotically, to local equilibrium.

6By longitudinal boost invariance we mean that the state of the
system at each point in spacetime with t > 0, coordinate rapidity
η �= 0 can be obtained from the state on the η = 0 sheet via a Lorentz
boost along the z direction.

7In a scale-invariant system all cross sections are set by the
temperature, i.e., σ ∝ 1/T 2. However, as shown in Ref. [16], σ ∝
1/T 2 is very well approximated by σ ∝ τ 2/3 because for 0 + 1D
Bjorken expansion T ∝ τ−1/3 as long as the system is near local
equilibrium.
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By symmetry, the phase-space densities fi(τ,pT ,ξ ) only
depend on proper time τ , transverse momentum magnitude
pT , and the difference ξ ≡ η − y between coordinate rapidity
η and momentum rapidity y (see Appendix E for definitions).
The flow velocity is constrained to uμ = (chη, 0, 0, shη), and
for both species shear stress is diagonal in the LR (η = 0)
frame, i.e.,

π
μν
i,LR = diag(0,−πL,i/2,−πL,i/2, πL,i), (41)

where πL,i is the longitudinal shear stress for species i.
Assuming dissipative corrections are quadratic in momentum,
we have

φi = ci

πμνpμpν

2(e + p)T 2
= ci(τ̃ )

πL(τ̃ )

8p(τ̃ )

p2
T

T 2(τ̃ )

(
sh2ξ − 1

2

)

⇒ ci(τ̃ ) = πL,i(τ̃ )

pi(τ̃ )

p(τ̃ )

πL(τ̃ )
, (42)

where ei = 3pi was substituted for massless particles. Up to
the factor p/πL that is common to all species, ci describes
how far species i is from local equilibrium. In the late-time
Navier–Stokes regime, linearized kinetic theory predicts

cB

cA

= 5KA + 2(KA(B) + KB(A))

5KB + 2(KA(B) + KB(A))
, Ki ≡

∑
j

Ki(j ) (43)

[cf. Eqs. (33) and (39), and note that the denominators in
Eq. (39) cancel in the ratio]. The democratic Grad approach, on
the other hand, postulates ci = 1 for all species, so cB/cA = 1.

Figure 1 compares these two extremes to fully nonlinear
transport solutions obtained using Molnar’s parton cascade

 1

 1.25

 1.5

 1.75

 1  5  10

c B
 / 

c A

τ / τ0

democratic

a)  4.4 / 2.2
b)  3.8 / 1.9
c)  2.2 / 1.1
 
 
d)  6.0 / 3.8
e)  4.2 / 2.8
 

FIG. 1. Ratio of dissipative corrections as a function of nor-
malized proper time for a massless two-component system in a
0 + 1D Bjorken scenario, calculated from nonlinear 2 → 2 covariant
transport using MPC [18]. Five different scenarios (a)–(e) with
various cross sections and densities are shown, labeled with the ratio
of inverse Knudsen numbers KA/KB . See Table I for a detailed list
of parameters. Thin, horizontal dotted lines and arrows on the right
side of the plot correspond to the expectation from a self-consistent
calculation based on linearized transport in the quadratic Grad
approximation (“dynamical Grad” approach). Only four such lines
and arrows are visible because scenarios (b) and (c) are identical
except for the timescale of relaxation to Navier–Stokes regime;
scenario (b) relaxes 5/3 times quicker than scenario (c).

TABLE I. Inverse Knudsen numbers for the two species and
ratios of densities and cross sections for the two-component massless
covariant transport calculation in Fig. 1.

Scenario KA KB nA : nB σAA : σAB : σBB

(a) 4.4 2.2 3 : 1 20 : 10 : 5
(b) 3.8 1.9 2 : 2 20 : 10 : 5
(c) 2.2 1.1 2 : 2 12 : 6 : 3
(d) 6 3.8 1 : 3 24 : 24 : 12
(e) 4.2 2.8 2 : 2 20 : 13.3 : 8.89

(MPC) [18]. The simulations are initialized with uniform
coordinate rapidity distributions dN/dη in a wide window
|η| < 5. To avoid the |η| >∼ 4 edges of the system where
boost invariance is strongly violated, shear stress evolution is
extracted only using particles with |η| < 2 (all boosted to the
η = 0 frame). A variety of relative cross sections and densities
between the two species are explored in five different scenarios
shown in Table I, which all keep species A closer to equilibrium
than B. In all five cases, the ratio of viscous corrections
cB/cA starts from unity but then relaxes to a constant value
at late times that depends on the partial inverse Knudsen
numbers in the system. While the commonly used democratic
Grad ansatz fails to account for the species dependence of
viscous corrections, linearized transport [Eq. (43)] captures the
corrections with better than 10% accuracy in all five scenarios
despite rapid longitudinal expansion.

Shear stress evolution in a particle mixture has also been
studied in Ref. [19], albeit by using a different approach
based on imposing the second law of thermodynamics (entropy
production). In that work, an approximate relation for partial
shear stress ratios has also been obtained [cf. Eq. (12) therein].
While that result qualitatively captures both the rise and
saturation of the curves in Fig. 1, quantitatively, the predicted
asymptotic values are not identical to Eq. (43) here. However,
those results are for an assumed uniform flow velocity across
the entire system, which is inconsistent with πμν ∼ ∇μuν

in the Navier–Stokes regime considered here. It would be
interesting to compare these two approaches in more detail
in the future.

IV. MASSIVE TWO-COMPONENT SYSTEM

For nonrelativistic particles, in the Grad approximation (see
Appendix D),

Bi = 5zi

2

ni

T 3
χi,

Q
ij→k	
11 = 1

3
√

2π

z
3/2
i

z
1/2
j

15z2
i + 40zizj + 24z2

j

(zi + zj )3/2

× (1 + δk	)
σ

ij→k	
tot ninj

T 4
χ2

i ,

Q
ij→k	
21 = − 1

3
√

2π

(
zizj

zi + zj

)3/2

(1 + δk	)
σ

ij→k	
tot ninj

T 4
χiχj ,
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Q
ij→k	
31 = 5√

2π

z
3/2
i z2

k

z
1/2
j (zi + zj )3/2

(1 + δk	)
σ

ij→k	
tot ninj

T 4
χiχk,

Q
ij→k	
41 = 5√

2π

z
3/2
i z2

	

z
1/2
j (zi + zj )3/2

(1 + δk	)
σ

ij→k	
tot ninj

T 4
χiχ	,

(44)

where z ≡ m/T and equilibrium densities

nNR
i = gi

(2π )3/2 (miT )3/2e(μi−mi )/T (45)

were substituted. For a one-component nonrelativistic system,
the above imply

χGrad = 5
√

π

32

√
T

m

T

nσtot
⇒ ηGrad

s = 5
√

π

16

√
mT

σtot
, (46)

reproducing the familiar nonrelativistic viscosity expression.
Notice that, for fixed density and cross section, the relative
viscous correction δf/f eqdecreases when mass increases, even
though shear viscosity increases with mass.

For a one-component system the shear viscosity is known
analytically, in Grad approximation, for arbitrary m/T with
fully relativistic kinematics (see Chapter XI of Ref. [14]):

ηGrad
s = 15z2K2

2 (z)h2(z)

16[(15z2 + 2)K2(2z) + (3z3 + 49z)K3(2z)]

T

σtot
,

h(z) ≡ zK3(z)/K2(z), (47)

where Kn is a modified Bessel function of the second kind. The
numerical integration method in Appendix B reproduces this
result, and we also rechecked the complete derivation of the
formula in Ref. [14] (note the typographic error in the book;
the correct coefficient in the denominator is 15, not 5).

A. Two-component nonrelativistic system
in Grad approximation

For a two-component nonrelativistic A + B system with
isotropic, energy-independent, elastic scattering, in the Grad
approximation

Q[χA,χB]

=
[

5zAnAχA

2T 3
− 8σAAn2

Az
3/2
A χ2

A√
πT 4

+ 8
√

2σABnAnBz
3/2
A z

1/2
B [(5zA + 3zB)χA − 2zBχB]χA

3
√

πT 4(zA + zB)3/2

]

+A ↔ B. (48)

The general structure of the solution is very similar to the
massless case, namely, all partial inverse Knudsen numbers
contribute with different weights that now also depend on the
masses. In the limit when species B is much more dilute than
species A (for example, because it is very heavy), we can
approximate nB → 0 to obtain

χGrad
A

∣∣
nB→0 = 5

√
π

32

√
T

mA

T

σAAnA

,

χGrad
B

∣∣
nB→0 = χGrad

A

3(μ + 1)2σAA + 2
√

2μ(1 + μ)σAB√
2μ(1 + μ)(3 + 5μ)σAB

,

μ = mB

mA

. (49)

In this special case species A is unaffected by species B, and
also σBB is irrelevant. On the other hand, for species B we
have

χB

χA

= 3σAA

4σAB

+ 1

4
if mA = mB,

χB

χA

≈ 3σAA

5
√

2σAB

if mB � mA, (50)

which tells that the heavier species tends to have smaller
viscous correction even when its interaction cross section is
the same as that of the light species.

B. Pion-nucleon gas and elliptic flow

Next, consider a more realistic pion-nucleon system, with
relativistic kinematics. Lumping isospin states and antipar-
ticles into a single species, this is a two-component system
with mπ = 0.14 GeV, gπ = 3, mN = 0.94 GeV, gN = 4. For
temperatures 120 MeV <∼ T <∼ 165 MeV of interest we ap-
proximate the two-body cross sections with constant, energy-
independent, effective values σ eff

ππ = 30 mb, σ eff
πN = 50 mb,

and σ eff
NN = 20 mb. These values are set so that, for a static

system [uμ = (1,0)] in thermal and chemical equilibrium the
mean times τ̄i(j ) between scatterings for particles of species i
with particles of species j , defined through

1

τ̄i(j )
= 〈njσij vrel〉

= 1

ni

∫
d3p1

E1

d3p2

E2
f

eq
i (p1)f eq

j (p2)σijF (s), (51)

are comparable to the values shown in Figs. 2(b) and 5(a) of
Ref. [20] (Table II lists the mean scattering times with these
effective cross sections as a function of temperature, including
T = 100 and 200 MeV outside the matching range). Here,

F (s) ≡ pc.m.
√

s ≡ E1E2vrel

= 1
2

√(
s − m2

i − m2
j

)2 − 4m2
i m

2
j (52)

is the flux factor. Note that, at these temperatures, pions are
much more abundant than nucleons, and therefore nucleon-

TABLE II. Mean scattering times in a pion-nucleon gas with
effective cross sections σ eff

ππ = 30 mb, σ eff
πN = 50 mb, and σ eff

NN =
20 mb. Values are rounded to the two most significant digits.

T [MeV] τ̄ππ [fm] τ̄N(π ) [fm] τ̄NN [fm]

100 12.7 8.2 8300
120 6.6 4.2 1200
140 3.9 2.4 280
165 2.2 1.4 73
200 1.2 0.73 18
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FIG. 2. Self-consistent dissipative corrections for shear stress as
a function of temperature for a chemically equilibrated pion-nucleon
gas, in the Grad approximation, with effective cross sections σ eff

ππ =
30 mb, σ eff

πN = 50 mb, and σ eff
NN = 20 mb. The ratio of coefficients

cπ/cN is shown, where ci is the dissipative correction for species i

relative to the commonly used democratic ansatz (see text).

nucleon scattering affects viscous corrections negligibly (one
could put σNN = 0 to good approximation).

For the π − N system, the ratio of viscous coefficients is
cπ/cN ∼ 2 in the temperature window 100 < T < 200 MeV,
as shown in Fig. 2. This means that nucleons are about twice
as close as pions to equilibrium (at the same momentum),
in qualitative agreement with the analytic results in Sec. IV.
For example, the nonrelativistic formula (49) would predict
cπ/cN ≈ 2.9, which is not bad considering that pions are
relativistic at these temperatures. The primary origin of the
pion-nucleon difference is the larger πN cross section—a
nucleon scatters more frequently off pions than a pion scatters
off another pion. But based on the earlier discussion one would
expect cπ > cN even for σππ = σπN .

The above pion-nucleon difference is reflected in pion vs
proton observables if the self-consistent, species-dependent
viscous corrections are included in Cooper–Frye freeze-out.

To estimate the effect, we perform a hydrodynamic simulation
of Au + Au at top RHIC energy

√
sNN = 200 GeV with

impact parameter b = 7 fm and look at the difference between
pion and proton elliptic flow. The calculations are done with
AZHYDRO [21,22] version 0.2p2, which is a 2 + 1D code
with longitudinal boost invariance. This version includes the
fairly recent s95-p1 equation of state parametrization [23]
by Huovinen and Petreczky that matches lattice QCD results
to a hadron resonance gas. Because there is no dissipation
in AZHYDRO, we estimate shear stress on the conversion
hypersurface from gradients of the ideal flow fields by using the
Navier–Stokes formula (19), i.e., πμν = ηsσ

μν . This is in the
same spirit as an early exploration of shear stress corrections by
Teaney [24], except that we use real hydrodynamic solutions
instead of a parametrization. We set ηs/s = 0.1, and determine
the shear viscosity from the hydrodynamic solutions using

ηs = ηs

s

e + p

T
, μB = 0. (53)

For initial conditions at Bjorken proper time τ0 = 0.5 fm we
set the transverse entropy density distribution ds/d2xT dη to a
25% + 75% weighted sum of binary collision and wounded-
nucleon profiles (σ inel

NN = 40 mb), with diffuse Woods–Saxon
nuclear densities for gold nuclei (Woods–Saxon parameters
R = 6.37 fm, δ = 0.54 fm), a peak entropy density value

s0 = 1

τ0

ds(xT = 0)

d2xT dη
= 110/fm3,

and vanishing baryon density nB = 0 everywhere. With or-
dinary, ideal (δf = 0) Cooper–Frye freeze-out at temperature
Tconv = 140 MeV, this roughly reproduces the measured pion
spectrum. In the following we keep the initial conditions fixed
but vary Tconv and study pion and proton elliptic flow from
fluid-to-particle conversion with self-consistent viscous δf
corrections. The viscous Cooper–Frye procedure is discussed
in Appendix E (the AZHYDRO code only handles ideal freeze-
out, i.e., δf = 0).

The left plot in Fig. 3 shows differential elliptic flow results
for pions and protons for freeze-out at Tconv = 165 MeV. Pion

 0

 0.1
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165 MeV
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dashed: π
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FIG. 3. Differential elliptic flow v2(pT ) of pions and protons in Au + Au at
√

sNN = 200 GeV at RHIC with impact parameter b = 7 fm,
using 2 + 1D boost invariant hydrodynamic solutions from AZHYDRO [21,22], and Cooper–Frye fluid-to-particle conversion at Tconv = 165 MeV
(left plot) or 140 MeV (right plot). Dashed lines are for pions, while solid curves are for protons. The standard democratic Grad approach (open
boxes) is compared to self-consistent shear corrections (crosses) computed for a pion-nucleon gas from linearized kinetic theory (see text).
In both cases, ηs/s = 0.1 at conversion. Results with uncorrected, local equilibrium phase-space distributions (δf = 0) are also shown (filled
circles).
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and proton v2 separate already in the ideal case (filled circles),
following the characteristic mass ordering of v2 in hydro.
However, at high pT this effect diminishes. Viscous freeze-out
with the commonly used democratic ansatz (open boxes)
preserves the mass ordering but with v2 strongly suppressed by
dissipation, even for the modest ηs/s = 0.1 used here. In this
calculation dissipative effects are only present in the viscous
phase-space corrections δfi at fluid-to-particle conversion but
viscous corrections to the evolution of hydrodynamic flow
and temperature fields are known [7,25,26] to have smaller
influence on v2 than δf itself. In contrast, self-consistent
species-dependent freeze-out (crosses) leads to a clear pion-
proton elliptic flow splitting at moderately high transverse
momenta, with the proton v2 exceeding the pion v2 by 30%.
Both species exhibit a strong viscous suppression in v2.
However, the suppression is smaller for protons because they
are more equilibrated than pions. At low pT the mass effect is
still present, which means that the pion and proton elliptic flow
curves necessarily cross each other (at around pT ∼ 1 GeV in
this calculation). The reason why the pion results are almost
identical to democratic freeze-out is that, at T = 165 MeV,
the pion density is much higher than the proton density, i.e.,
the dynamics of pions is largely unaffected by the protons,
and both the shear viscosity and the entropy density are then
dominated by pions. The temperature T = 165 MeV used here
is the same as the typical switching temperature in hybrid
hydro + transport models [4]. It would be very interesting
to initialize the transport stage of hybrid calculations with
self-consistent viscous distributions for each species and check
the effect on identified particle elliptic flow at the end of the
hadron transport evolution.

The right plot of Fig. 3 shows the same v2(pT ) calculation
but with a lower Tconv = 140 MeV. The qualitative picture is the
same, but in this case the viscous suppression of v2 is smaller
in magnitude because, for the Navier–Stokes stresses (19)
used here, flow gradients ∂μuν ∼ 1/τ are smaller. The mass
ordering is also stronger, which is expected because it is
driven by m/T . At the same pT ∼ 2 − 2.5 GeV, the relative
difference between proton v2 curves from the democratic
and the self-consistent approaches is smaller than for Tconv =
165 MeV. However, the relative change in viscous suppression
of v2 is actually larger; the difference for protons between ideal
hydrodynamic freeze-out and the viscous result shrinks by a
factor of two at Tconv = 140 MeV when the fluid is converted to
particles with the self-consistent (species-dependent) scheme.

At even lower temperature Tconv = 120 MeV, dissipative
corrections for ηs/s = 0.1 are basically negligible for protons
for pT < 2.5 GeV, at least with the Navier–Stokes shear stress
used here. For pions there is a less then 10% suppression in v2

at high pT .

C. Simple four-source model of viscous elliptic flow

The elliptic-flow results presented in Sec. IV B come
from numerical hydrodynamic solutions, where both inho-
mogeneities over the Cooper–Frye hypersurface and also the
shape of the hypersurface matter. It is desirable to gain at least
some qualitative analytic insight into how viscous corrections
affect differential v2(pT ) for particles of different masses. To

this end we generalize the simple model in Ref. [27] (cf.
Fig. 6 therein), which considered four uniform, nonexpanding
fireballs boosted symmetrically in back-to-back pairs along
the x and y directions in the transverse plane, respectively,
with velocities ±vx and ±vy (vx > vy � 0). All four sources
have the same temperature, chemical potential, and volume
in the laboratory frame. Isochronous t = const. emission is
considered at zero momentum rapidity, in which case flow
coefficients are given by

vn(pT ) =
∫ 2π

0 dφf (pT ,φ) cos (nφ)∫ 2π

0 dφf (pT ,φ)
, (54)

with8

f (pT ,φ) ≡ f(+x)(pT ,φ,y = 0) + f(−x)(pT ,φ,y = 0)

+ f(+y)(pT ,φ,y = 0) + f(−y)(pT ,φ,y = 0).

(55)

For each source we take viscous corrections of the Grad
form (42) with uniform shear stress across the fireball, where
πμν is a boosted copy of the 0 + 1D Bjorken shear stress
solution (41). This way, the dimensionless κ ≡ πL/(e + p) is
our only extra parameter, and it is the same for all four fireballs.
Note that, for typical viscous 0 + 1D Bjorken evolution, κ < 0
because the longitudinal shear stress is negative (see Ref. [16]
for an extensive analysis). Setting κ = 0 reproduces the ideal
fluid results in Ref. [27].

Straightforward calculation yields anisotropic flow coeffi-
cients in terms of modified Bessel functions of the first kind
(see Appendix F for details). Here we only discuss v2 but in
general all even vn are nonzero. From Eq. (F7),

v2(pT ) = G2(ax,bx,z,cκ) − G2(ay,by,z,cκ)

G0(ax,bx,z,cκ) + G0(ay,by,z,cκ)
, (56)

where

z ≡ m

T
, ai ≡

√
m2 + p2

T

T

√
1 − v2

i

, bi ≡ vipT

T

√
1 − v2

i

, i = x,y,

(57)
c is the magnitude of the viscous correction relative to the
democratic Grad case, and Gn is given by Eq. (F8). Figure 4
shows the result for T = 140 MeV, vx = 0.5, vy = 0.45,
with κ = −0.06 which corresponds to πL/p ≈ −0.4 (at this
temperature e/p ≈ 5.5). The local thermal equilibrium curves
(filled circles) exhibit the well-known mass ordering of elliptic
flow (see Ref. [27] for more discussion). Relative to this
baseline, viscous corrections reduce elliptic flow for both
protons and pions. The reduction for protons, however, is
only half as large from the self-consistent approach (crosses)
compared with the democratic Grad ansatz (open boxes).
Although this simple model does not capture the flattening
of v2 at pT

>∼ 1.5 GeV in Fig. 3, it does illustrate that viscous
corrections generally make elliptic flow smaller.

8We trust that the reader will not confuse the momentum rapidity
variable y and the y axis in the transverse plane.
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FIG. 4. Differential elliptic flow v2(pT ) from a viscous general-
ization of the simple four-source model of Ref. [27] with parameters
vx = 0.5, vy = 0.45, T = 140 MeV, and κ ≡ πL/(e + p) = −0.06.
Dashed lines are for pions, while solid curves are for protons. The
standard democratic Grad approach (open boxes, cπ = cp = 1) is
compared with self-consistent shear corrections (crosses, cπ = 1.03
and cp = 0.55) computed for a pion-nucleon gas from linearized
kinetic theory (see Sec. IV B). Results with uncorrected, local
equilibrium phase-space distributions (cπ = cp = 0) are also shown
(filled circles).

V. MULTICOMPONENT HADRON GAS

In Sec. IV B self-consistent corrections were calculated for
a pion-nucleon gas. This is clearly only an estimate because it
ignores interactions of pions and nucleons with other species in
the system. It is natural to extend the investigation to mixtures
with many hadronic species, in which case each species will
have its own dissipative corrections based on the microscopic
dynamics. The problem is complicated, however, because it
requires knowledge of hadronic scattering rates between all
species. In principle these are encoded in hadron transport
codes, such as UrQMD [28], AMPT [29], or JAM [30], and we plan
to apply these in a future study. Here we only pursue two simple
models: (i) a hadron gas with the same, fixed scattering cross
section for all species, which is the model in Ref. [31]; and (ii) a

gas with more realistic cross sections that follow additive quark
model [28,32] (AQM) scaling, i.e., constant meson-meson,
meson-baryon, and baryon-baryon cross sections with ratios
σMM : σMB : σBB = 4 : 6 : 9. In both cases we only consider
elastic ij → ij channels (allowing for i = j ), with energy-
independent, isotropic cross sections.

For the fixed-cross-section scenario we use σij = 30 mb,
the same value as the effective σππ for the pion-nucleon gas
earlier (cf. Fig. 3). For the AQM model, we take σMM = 30 mb,
which implies σMB = 45 mb, and σBB = 67.5 mb. To simplify
the computation, we combine, as in Sec. IV B, members of the
same isospin multiplet, and their antiparticle partners as well,
into a single species with appropriately scaled degeneracy so
that the number of degrees of freedom and the particle densities
stay the same. The following calculation includes hadrons up
to m = 1.672 GeV, i.e., the �(1672), which translates into 49
effective species (the ci coefficients for the 49 species in the
various scenarios are listed in Appendix G).

A. Elliptic flow for mixture in Grad approximation

Figure 5 shows pion and proton elliptic flow v2(pT ) in Au +
Au at RHIC at b = 7 fm from a calculation analogous to the
π -N system in Sec. IV B with Cooper–Frye particle conversion
applied at Tconv = 165 MeV, except now with self-consistent
phase-space corrections δfi calculated for the multicomponent
hadron gas. The left plot is for σij = const., in which case
pion and proton elliptic flow are very close to results from
the democratic approach. The lack of species dependence is
very similar to the findings of Ref. [31]. If one looks closely,
however, at high pT , proton flow is actually slightly higher than
pion flow, reflecting the decrease in shear stress corrections
with mass at fixed cross section (cf. Sec. IV).

The right plot of Fig. 5 shows, on the other hand, that more
realistic additive quark model cross sections do generate a
pion-proton difference in elliptic flow, of magnitude similar
to the difference seen for a pion-nucleon gas earlier. Crossing
between pion and proton v2 also happens at about the same
pT ∼ 1 GeV. The likely explanation for this is that, even
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FIG. 5. Same as Fig. 3, except the self-consistent viscous corrections are computed for a gas of all hadron species up to m = 1.672 GeV
[�(1672)], with members of each isospin multiplet (and antiparticles) combined together into a single effective species. There are 49 effective
species this way. (left plot) All hadron species interacting with the same constant isotropic cross section σij = 30 mb. (right plot) Constant
isotropic cross sections with additive quark model scaling σMM : σMB : σBB = 4 : 6 : 9 and σMM = 30 mb. Calculations with the democratic
Grad ansatz for ηs/s = 0.1 (open boxes) and with local equilibrium distribution (filled circles) are also shown. In all cases, and for both plots,
the Cooper–Frye prescription is applied at Tconv = 165 MeV.
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FIG. 6. Same as Fig. 5, except after feed down from resonance decays using the RESO code in the AZHYDRO package [21].

though interactions with all species are now considered,
interactions with pions dominate because at Tconv = 165 MeV
pions have a much higher density compared to all other species,
including kaons, the second lightest species. Although not
shown here, we note that, for Tconv = 140 MeV, one finds
the same: the fixed-cross-section scenario closely matches
the democratic Grad results, whereas pion-proton splitting
in the AQM scenario is very similar in magnitude to the
Tconv = 140 MeV result of Fig. 3 (right plot).

The Cooper–Frye prescription gives the momentum distri-
bution of particles emitted directly from the fluid (“primary”
particles). In a pure hydrodynamic approach, i.e., without a
hadronic afterburner, many of these particles later decay en
route to the detectors. Figure 6 shows the pT dependence
of pion and proton elliptic flow from the same calculation
shown in Fig. 5, except unstable resonances are decayed by
using the RESO code in the AZHYDRO package [21] (stable
hadrons in RESO are the pions, kaons, and nucleons). For ideal
freeze-out (δf = 0), the democratic Grad ansatz, and also the
constant-cross-section scenario, the main effect of resonance
decays on elliptic flow is a reduction of the pion-proton
splitting at low pT , while at high pT there is barely any
effect. At Tconv = 165 MeV the difference between pions

and protons for all three scenarios gets washed out almost
completely (this is not universal at all temperatures, for lower
Tconv = 140 or 120 MeV, a portion of the difference survives).
In contrast, in the more realistic AQM scenario, with self-
consistent viscous fluid-to-particle conversion, proton elliptic
flow stays 30% higher at pT ∼ 2 GeV than pion elliptic
flow even after resonance decays are taken into account.
The same insensitivity to resonance decays is present at
Tconv = 140 MeV and 120 MeV as well (not shown).

B. Elliptic flow for mixture with δ f ∝ p or p3/2

Finally, to investigate systematic errors due to the assumed
quadratic momentum dependence of dissipative corrections
(Grad ansatz), we explore instead power-law momentum
dependence with δfi/f

eq
i ∝ p and p3/2. These correspond to

Eq. (23) with

χ
(1)
i (|p̃|) = ci |p̃|−1 χdem

i ,

χ
(3/2)
i (|p̃|) = ci |p̃|−1/2 χdem

i , (58)

χGrad
i = ciχ

dem
i ,

where coefficients are determined variationally via maximiz-
ing Q[χ ] and thus, in general, they vary among species.

 0

 0.1

 0.2

 0  0.5  1  1.5  2  2.5

v 2

pT [GeV]

Final
165 MeV
30mb

solid: p
dashed: π

Ideal
Dem Grad
Dyn p1.5

 0

 0.1

 0.2

 0  0.5  1  1.5  2  2.5

v 2

pT [GeV]

Final
165 MeV
AQM

solid: p
dashed: π

Ideal
Dem Grad
Dyn p1.5

FIG. 7. Differential elliptic flow v2(pT ) for pions and protons in Au + Au at
√

sNN = 200 GeV at RHIC with impact parameter b = 7 fm,
using 2 + 1D boost invariant hydrodynamic solutions from AZHYDRO [21,22], followed by Cooper–Frye fluid-to-particle conversion at Tconv =
165 MeV with either the standard democratic approach (open boxes) or self-consistent shear corrections (crosses) with momentum dependence
δf ∝ p3/2 computed from kinetic theory for a gas of hadrons up to m = 1.672 GeV. In both plots, dashed lines are for pions, while solid curves
are for protons, and feed down from resonance decays is included. (left plot) Scenario with constant 30 mb hadronic cross sections. (right plot)
Cross sections based on the additive quark model (AQM). Results with uncorrected, local equilibrium phase-space distributions (δf = 0) are
also shown (filled circles).
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FIG. 8. Same as Fig. 7, except with momentum dependence δf ∝ p for the curves from self-consistent fluid-to-particle conversion (crosses).

These choices are motivated by earlier studies that found p3/2

dependence for a mixture of massless quarks and gluons with
small-angle 1 ↔ 2 interactions [6], and also close to p3/2

dependence for single-component and two-component sys-
tems of massless particles with energy-independent, isotropic
2 → 2 cross sections [5]. The two new forms here have weaker
momentum dependence than the quadratic Grad correction, so
at high pT they will in general exhibit smaller dissipative
effects than the dynamical Grad results. For example, elliptic
flow is less suppressed at high pT .

Figures 7 and 8 show pion and proton elliptic flow as a
function of pT for the gas of hadrons up to m = 1.672 GeV
with fluid-to-particle conversion at Tconv = 165 MeV using
self-consistent linear δfi ∝ p, and δfi ∝ p3/2, respectively.
For both figures, feed down from resonance decays is included.
For the constant-cross-section scenario (left plots), pions and
protons have basically the same v2, and the main effect is an
overall increase in v2 at high pT by nearly 20% and 40% for
p3/2 and p1 momentum dependence, respectively, relative to
the common democratic Grad approach. For the more realistic
AQM scenario, we see a narrowing of the separation between
pion and proton v2 as the power n increases in δf ∝ pn. At the
same time, v2 increases for both species. With self-consistent
fluid-to-particle conversion the viscous suppression of proton
elliptic flow is nearly two times smaller for δf ∝ p3/2, and
slightly more than two times smaller for δf ∝ p, relative to
the democratic approach.

One can check which of the three powers is most consis-
tent, variationally, with the underlying microscopic dynamics
by looking at the maximum value of Q. As shown in
Tables III and IV, in the entire temperature range 100 <
Tconv < 165 MeV we studied, p3/2 dependence is favored

TABLE III. Variational maxima of the functional Q[χ ] as a
function of temperature for a mixture of hadrons up to m =
1.672 GeV, with power-law variational ansatz δfi ∝ pα , and zero
chemical potentials, for constant cross sections σij = 30 mb. All
values are rounded to the two most significant digits.

δf/f eq T = 100 120 140 165 MeV

∝p1 (linear) 1.10 0.79 0.60 0.45
∝p3/2 1.16 0.83 0.63 0.47
∝p2 (Grad) 1.12 0.80 0.61 0.45

compared with both linear and quadratic momentum depen-
dence in δf . This should provide impetus for using δf ∝ p3/2

dependence instead of the common quadratic ansatz in fluid
dynamical calculations and hybrid models. However, the
results here underscore the need for species-dependent viscous
corrections even in that case.

C. Sensitivity to shear viscosity

The results in Secs. V A and V B correspond to a fixed set
of values for hadronic cross sections or, equivalently, a fixed
shear-viscosity-to-entropy-density ratio ηs/s = 0.1. In Fig. 9
we explore the sensitivity of differential elliptic flow v2(pT ) in
Au + Au at RHIC to ηs/s for both p2 (Grad) and p3/2 viscous
corrections in the AQM scenario. All parameters are the same
as in Figs. 6 and 7, except that the bands plotted for pions
and protons correspond to 0.05 � ηs/s � 0.15 (σMM is varied
between 20 and 60 mb, and all hadronic cross sections are
scaled up and down proportionally). The magnitude of viscous
corrections in v2(pT ) relative to the ideal (nonviscous) case,
of course, varies with ηs/s. In fact, the dependence on ηs/s is
monotonic, with the top of the bands always corresponding to
the lowest value ηs/s = 0.05. Still, the pion-proton splitting in
v2(pT ) due to the self-consistent viscous corrections is present
at all ηs/s values, and the relative difference between pion and
proton viscous corrections stays roughly the same.

VI. CONCLUSIONS

Reliable extraction of medium properties from heavy-
ion data using hydrodynamics or hybrid hydrodynamics +
transport models inevitably requires conversion of a dissipative
fluid to particles (hadrons). The popular approach is to apply

TABLE IV. Variational maxima of the functional Q[χ ] as a
function of temperature for a mixture of hadrons up to m =
1.672 GeV, with power-law variational ansatz δfi ∝ pα , and zero
chemical potentials, for additive quark model [32] (AQM) cross
sections with σMM = 30 mb (see text). All values are rounded to
the two most significant digits.

δf/f eq T = 100 120 140 165 MeV

∝p1 (linear) 1.09 0.76 0.55 0.39
∝p3/2 1.15 0.80 0.58 0.41
∝p2 (Grad) 1.10 0.77 0.56 0.39
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FIG. 9. Same as the right plots in Figs. 6 and 7 for Au + Au at RHIC with self-consistent viscous corrections in the additive quark model
(AQM) scenario with δf ∝ p2 (left) and δf ∝ p3/2 (right) but with ηs/s varied in the range 0.05 � ηs/s � 0.15. Shaded bands are shown
together with curves at the lowest ηs/s = 0.05 (squares) and highest ηs/s = 0.15 (triangles) boundaries.

the Cooper–Frye formula (E2) with hadron phase-space den-
sities fi = f

eq
i + δfi that include nonequilibrium corrections

of quadratic form in momentum with a universal species-
independent coefficient (democratic Grad ansatz). This simple
scheme ignores the dynamics of equilibration in the hadron
gas. In this work we obtain instead self-consistent shear
viscous corrections from linearized kinetic theory (Sec. II).
This approach in general gives species-dependent phase-space
corrections δfi , which are then reflected in identified particle
observables. The effect on identified particle elliptic flow is
demonstrated in Sec. V.

Phenomenological applications are necessarily numerical
because of the many species involved. But to aid with
interpretation we discuss extensively analytic and numerical
results for massless and massive two-component systems in
Secs. III and IV. We also provide a comparison to fully
nonlinear covariant transport to justify the approach.

Several simplifications are made in this work, which will
be improved in future publications. For example, realistic
energy-dependent hadronic cross sections and realistic viscous
hydrodynamic evolution will, of course, have to be included.
The momentum dependence of viscous corrections δfi/f

eq
i

is also simplified here to quadratic or power-law form in
momentum. Nevertheless, it would be very interesting to
check how the self-consistent viscous distributions obtained
here influence observables from hydrodynamic and hybrid
models, and the interpretation of heavy-ion data. To aid this
we provide scaling factors in Appendix G that can be used
to “patch” the commonly used democratic approach with the
species-dependent viscous corrections calculated in this work.
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APPENDIX A: GENERAL FORM OF φ

The form (23) comes from expanding φi(x,p) in terms of
irreducible tensors [33]

φi(x,p) =
∞∑

r=0

ar (|p̃|)P (r)(p) · X(r)(x), (A1)

which is just a Lorentz-covariant way to write an expansion
over spherical harmonics in the LR frame [the (·) denotes
full contraction of tensors P (r) and X(r)]. P (r) is a rank-r
irreducible tensor projected out from the fully symmetric,
rank-r Lorentz tensor pμ1pμ2 · · · pμr such that P (r) is purely
spatial in the LR frame (orthogonal to u in any index) and
vanishes under contraction of any two of its indices, so it is the
irreducible representation with maximal angular momentum
r from the tensor product of r three-dimensional (spin-1)
vectors in the LR frame,

r︷ ︸︸ ︷
p̃ ⊗ p̃ ⊗ · · · ⊗ p̃ .

For example, with suitable normalization, P (2)
μν (p) = Pμν

defined in Eq. (21). Because φi is a Lorentz scalar, X(r) is
also a rank-r irreducible tensor, while the coefficients ar are
invariant under rotations in the LR frame, so their momentum
dependence is only through the LR-frame particle energy or,
equivalently, the normalized momentum magnitude |p̃|. The
expansion (A1) can be inverted for X(r) through integration
using the orthogonality of invariant tensors:

X(r)(x) ∝
∫

d3p

E
P (r)(p)φi(x,p), (A2)

where the omitted proportionality constant depends on |p̃|.
Inverting both sides of Eq. (20), the shear source term (22)
only contributes for r = 2, and the result is proportional
to Xμν , so the RHS must give a similar contribution
only for r = 2. Because the linearized collision operator
commutes with Lorentz transformations and contains scalar
functions of momentum, and f

eq
i only depends on |p̃|, the

collision operator preserves the expansion (A1) except for the
coefficients ar . Thus, Eq. (23) indeed follows.
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APPENDIX B: CALCULATION OF MOMENTUM
INTEGRALS IN Q[χ ]

All required integrals are scalars, so it is convenient to
integrate momenta 3 and 4 in the center-of-mass (c.m.) of the
scattering process (momentum conservation is simpler), while
momenta 1 and 2 are integrated in the LR frame of the fluid
(so that f eq ∝ e−E/T is isotropic). For brevity, in this entire
section LR subscripts are omitted, while c.m. variables are
distinguished with an overbar wherever confusion might arise.
Spherical coordinates are also helpful.

B1 can be reduced to one-dimensional integration, Q11 and
Q22 to three dimensions, while Q31 and Q41 can be reduced to
five dimensions in general, or four in the case of isotropic cross
sections. All remaining integrals were performed numerically
by using adaptive integration routines from the GNU Scientific
Library (GSL) [34].

1. Reduction of terms B, Q11, and Q21

The source term Bi in Eq. (28), which is linear in χi ,
immediately reduces this way to

Bi = 2π

3T 6

∫ ∞

mi

dE1p
5
1f

eq
1i χ1i . (B1)

In the terms quadratic in χ , p̄4 can be eliminated by using
the δ function in three-momentum, and the magnitude of |p̄3|
is set by the δ function in energy:∫

3

∫
4
δ4(12 − 34)(· · · )

= 1

4

∫
d�̄3dp̄3

p̄2
3

Ē3Ē4
δ(Ē3 + Ē4 − √

s) (· · · )

= p′
c.m.

4
√

s

∫
d�̄3 (· · · )

∣∣∣∣
p̄3=p′

c.m.

. (B2)

For the χ2
1i and χ1iχ2j terms one can substitute Eq. (16) to

obtain∫
34

δ4(12 − 34)W̄ ij→k	
12→34 = pc.m.

√
s(1 + δk	)σ ij→k	

tot (s), (B3)

and the calculation is then analogous to the scattering rate in
Appendix C. Keeping t12 ≡ cos θ12, one has

Q
ij→k	
11 = 2π2

3T 8
(1 + δk	)

∫ ∞

mi

dE1p
5
1f

eq
1i χ2

1i

×
∫ ∞

mj

dE2p2f
eq
2j

∫ 1

−1
dt12F (s)σ ij→k	

tot (s) (B4)

and

Q
ij→k	
21 = π2

3T 8
(1 + δk	)

∫ ∞

mi

dE1p
3
1f

eq
1i χ1i

×
∫ ∞

mj

dE2p
3
2f

eq
2j χ2j

∫ 1

−1
dt12

(
3t2

12 − 1
)
F (s)

× σ
ij→k	
tot (s), (B5)

where F is given by Eq. (52).

2. Reduction of terms Q31 and Q41

The last two χ1χ3 and χ1χ4 terms in general involve
numerical integration in 9 − 4 = 5 dimensions [three three-
dimensional momentum integrals with a four-dimensional
δ-function constraint] because χ3 and χ4 depend on outgoing
three-momenta in the LR frame. Interchange symmetry (14)
with 3 ↔ 4, k ↔ 	 implies Q

ij→k	
41 = Q

ij→	k
31 , so it is enough

to discuss Q31. For isotropic cross section, it is possible to do
one more integral analytically, if the LR frame momentum p3

is expressed by using the c.m.-frame momentum p̄3 ≡ p′
c.m.n̄3

(here |n̄3| = 1). Lorentz boost from c.m. to LR gives

E3 = γ3ET + β3pT n̄3,

p3 = p′
c.m.n̄3 + pT

(
γ3 + β3

pT n̄3

ET + √
s

)
, (B6)

where

β3 ≡ p′
c.m.√
s

, γ3 ≡ Ē3√
s

=
√

β2
3 + m2

k

s
,

ET ≡ E1 + E2, pT ≡ p1 + p2 (B7)

only depend on p1 and p2 but not on p̄3. With convenient
angles n̄3(φ3,θ3) for the d�̄3 integration such that the zenith
direction is parallel to pT ,

n̄3pT = pT cos θ3,

n̄3p1 = p1(sin θ1 sin θ3 cos φ3 + cos θ1 cos θ3), (B8)

where

cos θ1 ≡ pT p1

pT p1
= p1 + p2t12

pT

. (B9)

Because |p̄3| does not depend on φ3, the only φ3 dependence
is in the (p3p1)2 term from P3 · P1, which can be integrated.
So even if the total cross section depends on energy, we have
only four integrals remaining:∫

1

∫
2

∫
d�̄3(· · · ) = 4π × 2π × 2π

4

∫ ∞

mi

dE1p1

∫ ∞

mj

dE2p2

×
∫ 1

−1
dt12

∫ 1

−1
dt3〈(· · · )〉φ3 , (B10)

i.e.,

Q
ij→k	
31 = π2

2T 8
(1 + δk	)

∫ ∞

mi

dE1p1f
eq
1i χ1i

∫ ∞

mj

dE2p2f
eq
2j

×
∫ 1

−1
dt12F (s)σ ij→k	

tot (s)
∫ 1

−1
dt3χ3k〈P3 · P1〉φ3 ,

(B11)

where t3 ≡ cos θ3, p3 = |p3| = [(γ3ET + β3pT t3)2 − m2
k]1/2,

and

〈(· · · )〉φ3 ≡ 1

2π

∫ 2π

0
dφ3(· · · ) (B12)
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denotes averaging over φ3. The following φ3 averages appear:

〈n̄3p1〉φ3 = p1 cos θ1t3,

〈(n̄3p1)2〉φ3 = p2
1

2

[(
3t2

3 − 1
)

cos2 θ1 + 1 − t2
3

]
, (B13)

in terms of which

〈P3 · P1〉φ3

= 1

T 4

[
(p′

c.m.)
2〈(n̄3p1)2〉φ + p2

1(p1 + p2t12)2

×
(

γ3 + β3
pT t3

E1 + E2 + √
s

)2

+ 2p′
c.m.p1(p1 + p2t12)

×
(

γ3 + β3
pT t3

E1 + E2 + √
s

)
〈n̄3p1〉φ

]
− p2

1p
2
3

3T 4
. (B14)

3. Integration using auxiliary variable ω

The method outlined above is practical but limited to
isotropic cross section. For general dσ (s,t)/dt , one can
evaluate Q31 and Q41 via extending the technique used in
Ref. [15] to massive particles. The key elements of that
technique are splitting the energy conservation integral with
the help of the energy transfer ω as

δ(E1 + E2 − E3 − E4)

≡
∫ ∞

−∞
δ(ω + E1 − E3)δ(ω − E2 + E4), (B15)

eliminating p4 through momentum conservation, and swap-
ping p3 for the momentum transfer q ≡ p3 − p1. Exploiting
rotation invariance, we introduce angles such that

q = q(0,0,1), p1 = p1(sin θ1q, 0, cos θ1q),

p2 = p2(cos φ sin θ2q, sin φ sin θ2q, cos θ2q). (B16)

Then the Mandelstam variables for the scattering process are

s = m2
i + m2

j + 2(E1E2 − p1p2), t = ω2 − q2, (B17)

the magnitudes of outgoing momenta are

p3 =
√

(E1 + ω)2 − m2
k, p4 =

√
(E2 − ω)2 − m2

	, (B18)

and the scalar products that appear in s and P · P are

p1p2 = p1p2(cos θ1q cos θ2q + cos φ sin θ1q sin θ2q),

p1p3 = p2
1 + m2

i − m2
k + 2E1ω + t

2
,

p1p4 = p2
1 + p1p2 − p1p3, (B19)

where the θ angles are fixed by the δ functions:

cos θ1q = m2
i − m2

k + 2E1ω + t

2p1q
,

cos θ2q = m2
	 − m2

j + 2E2ω − t

2p2q
. (B20)

Five integrals remain:∫
1

∫
2

∫
3

∫
4
δ4(12 − 34) (· · · )

= π2

2

∫ ∞

mi

dE1

∫ ∞

mj

dE2

∫ 2π

0
dφ

∫ ∞

0
dq

×
∫ ∞

−∞
dω�(1 − cos2 θ1q)

×�(1 − cos2 θ2q)(· · · ), (B21)

where the Heaviside functions set the integration limits.
For equal masses mi = mj = mk = m	 ≡ m,∫

1

∫
2

∫
3

∫
4
δ4(12 − 34) (. . .)

= π2

2

∫ ∞

0
dq

∫ q

−q

dω

∫ ∞

�̄(q,−ω)
dE1

∫ ∞

�̄(q,ω)
dE2

×
∫ 2π

0
dφ (· · · ), (B22)

where

�̄(q,ω) =
√

m2 + �2(q,ω), �(q,ω) =
∣∣∣∣∣∣
q + ω

√
1 − 4m2

t

2

∣∣∣∣∣∣,
(B23)

and we verified that both methods give numerically identical
results with isotropic cross sections. The main disadvantage
compared with the method in the previous section is speed—
for isotropic cross section one still has five numerical integrals
to do compared with four in Eq. (B11).

APPENDIX C: EVALUATION OF SCATTERING RATES

The scattering-rate integral (51) right away reduces from
six dimensions to only three because in the static case the
phase-space density f eq ∝ e−E/T and Mandelstam

s ≡ m2
i + m2

j + 2(E1E2 − p1p2) (C1)

only depend on the magnitudes of momenta and the angle
θ12 between them. Replacing cos θ12 with s, in spherical
coordinates we then have∫

d3p1

E1

d3p2

E2
(· · · )

= 4π × 2π

∫ ∞

mi

dE1

∫ ∞

mj

dE2

∫ s+

s−
ds(· · · ), (C2)

with limits s± = m2
i + m2

j + 2{E1E2 ± [(E2
1 − m2

i )(E2
2 −

m2
j )]1/2}.
Although not pursued here, further simplification of the

2 → 2 scattering rate is possible. If speed of evaluation is a
concern, consult Appendix A of Ref. [35] (integrated rate for
equal-mass particles), Appendix B of Ref. [36] (rate for fixed
particle momentum), or Ref. [37] (integrated rate for arbitrary
masses).
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APPENDIX D: GRAD RESULTS
IN NONRELATIVISTIC LIMIT

In the nonrelativistic limit one can replace terms in
Eqs. (B4), (B5), and (B11) with their nonrelativistic coun-
terparts:

d3p

E
→ d3p

m
, dE → dpp

m
,

exp

(
−E

T

)
→ exp

(
−m

T
− p2

2mT

)
, (D1)

F (s) → mimj |v1 − v2|.
Similarly, in Eq. (B14),

γ3 → m3

m1 + m2
= m3

m3 + m4
, β3 → 0,

p2
3 → (p′

c.m.)
2 + γ 2

3 p2
T + 2p′

c.m.γ3pT t3. (D2)

Note that it is simpler to get the above result for p3 from
p3 ≈ p̄3 + γ3pT than from (E2

3 − m2
k)1/2 because there is an

almost-perfect cancellation in the latter.
It is further convenient to switch variables from p1 and p2

to total momentum and relative velocity

pT = p1 + p2, vrel ≡ v1 − v2

i.e.,

p1 = m1

m1 + m2
(pT + m2vrel), p2 = m2

m1 + m2
(pT − m1vrel),

(D3)

for which

d3p1d
3p2 =

(
m1m2

m1 + m2

)3

d3pT d3vrel, (D4)

so∫ ∞

mi

dE1

∫ ∞

mj

dE2

∫ 1

−1
dt12F (s)(· · · )

→
(

mimj

mi + mj

)3 ∫ ∞

0
dpT

∫ ∞

0
dvrel

∫ 1

−1
d cos θ̃

p2
T v3

rel

p1p2
(· · · ),

(D5)

where θ̃ is the angle between pT and vrel, while in the exponents

p2
1

2m1T
+ p2

2

2m2T
= p2

T + m1m2v
2
rel

2(m1 + m2)T
. (D6)

Straightforward integration leads then to Eq. (44).

APPENDIX E: LONGITUDINAL BOOST INVARIANCE
AND COOPER–FRYE INTEGRALS

For longitudinally boost invariant systems (cf. footnote 6)
hyperbolic η ≡ 1

2 ln t+z
t−z

and τ ≡ (t2 − z2)1/2 coordinates are

most convenient for spacetime, while rapidity y ≡ 1
2 ln E+pz

E−pz

and transverse mass mT ≡ (p2
T + m2)1/2 for momenta:

xμ = (τchη, xT , τ shη), pμ = (mT chy, pT ,mT shy). (E1)

The Cooper–Frye formula for the distribution of particles
emitted from a surface element dσμ of a three-dimensional

(3D) spacetime hypersurface is

E
dNi(x,p)

d3p
≡ dNi(x,pT ,y)

d2pT dy
= pμdσμ(x)fi(x,p). (E2)

Often a �(pμdσμ) factor is also included to cut out potential
negative contributions from spacelike surface elements but it
is not used in this work. With boost invariance,

dσμ = nμτdηd2xT , nμ = (n0chη,nT , n0shη), (E3)

i.e.,

pμdσμ = τ [mT n0chξ − pT nT ]dηd2xT , (E4)

where ξ ≡ η − y. In the thermal equilibrium distribution (4),

uμ = γ (chη, vT , shη), γ ≡ 1√
1 − v2

T

so

(pu) = γ (mT chξ − pT vT ), (E5)

and in the shear correction (23), |p̃| = [(pu)2 − m2]1/2/T ,

πμνpμpν = m2
T (π00ch2ξ + πzzsh2ξ )

− 2mT chξ (pxπ
0x + pyπ

0y)

+p2
xπ

xx + p2
yπ

yy + 2pxpyπ
xy, (E6)

with shear stress components all taken at η = 0. For several
equivalent forms of the last expression, see Ref. [38].

Boost invariant 2 + 1D viscous fluid dynamics provides
hydrodynamic fields (T , {μc}, vT , πμν) and hypersurface
elements (n0, nT ) in the η = 0 frame, as a function of τ and
xT . If one is only interested in the momentum distribution, one
integrates Eq. (E2) over the hypersurface, which includes at
each τ and xT integration over η:

τ

∫ ∞

−∞
dη[mT n0chξ − pT nT ]fi(τ,xT ,pT ,ξ )

= 2τ

∫ ∞

0
dξ [mT n0chξ − pT nT ]fi(τ,xT ,pT ,ξ ), (E7)

with reflection symmetry along the beam axis assumed. For
the ideal piece, Eq. (E7) yields

2τ
gi

(2π )3 eαT [mT n0K1(zT ) − pT nT K0(zT )],

zT ≡ γmT

T
, αT ≡ μi + γ pT vT

T
. (E8)

For the viscous correction (23), the integral can only be
evaluated analytically in special cases. For example, for
quadratic corrections in momentum (34), one has9

χGrad

ηsT 3

gi

(2π )3
eαT 2τ

{
mT n0

[
m2

T

(
K1(zT ) + K2(zT )

zT

)
π00

+m2
T

K2(zT )

zT

πzz

9There are many equivalent ways to write these expressions be-
cause of Bessel function identities, such as Kn−1(x) + 2nKn(x)/x ≡
Kn+1(x).
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− 2mT

(
K0(zT ) + K1(zT )

zT

)
(pxπ

0x + pyπ
0y)

+K1(zT )
(
p2

xπ
xx + p2

yπ
yy + 2pxpyπ

xy
)]

− pT nT

[
m2

T

(
K0(zT ) + K1(zT )

zT

)
π00 + m2

T

K1(zT )

zT

πzz

− 2mT K1(zT )(pxπ
0x + pyπ

0y)

+K0(zT )
(
p2

xπ
xx + p2

yπ
yy + 2pxpyπ

xy
)]}

. (E9)

APPENDIX F: FLOW ANISOTROPIES FOR VISCOUS
FOUR-SOURCE MODEL

Here we calculate differential harmonic flow coefficients
vn(pT ) for the four-source model of Sec. IV C. For isochronous
emission from a spatially uniform fireball, the momentum
distribution of particles is dN/d3p = Vf . By assumption, the
laboratory-frame volume V is the same for all four fireballs
in the model. Below we construct f using viscous corrections
φ of the Grad form (10) for each source, and then evaluate
vn(pT ) via Eq. (54). It is sufficient to calculate f(+x) because
f for the other three sources can be obtained via suitable
rotation and/or mirror symmetry in the transverse plane. Unless
noted otherwise, all vectors and tensors below are in laboratory
(observational) frame coordinates.

For the source moving with a three-velocity (vx,0,0), the
equilibrium phase-space distribution evaluated at a general
on-shell four-momentum p with azimuth such that pT ≡
pT (cos φ, sin φ) is

f eq = Ne−γxmT chy/T eγxvxpT cos φ/T ,

with

N ≡ g

(2π )3 eμ/T , γx ≡ 1√
1 − v2

x

(F1)

[cf. Eqs. (4), (E1), and (E5)]. The normalization N and the
volume V drop out in the anisotropy coefficients. The Grad
viscous corrections depend on πμνpμpν given by Eq. (E6).
Instead of boosting Eq. (41) to obtain the shear stress tensor
for the fireball, it is simpler to evaluate this scalar via inverse
boosting p to the fluid rest frame, where

p
μ
LR = (γx(mT chy − vxpT cos φ),γx(pT cos φ − vxmT chy),

pT sin φ,mT shy), (F2)

and π
μν
LR is diagonal. Straightforward algebra then yields, at

midrapidity y = 0,

f(+x) = Ne−ax ebx cos φ

×
[

1 + cκ

4

(
z2 − a2

x + 2axbx cos φ − b2
x cos2 φ

)]
,

(F3)

with

κ ≡ πL

e + p
, z ≡ m

T
, (F4)

TABLE V. Species-dependent shear viscous phase-space correc-
tions calculated as a function of temperature for a gas of hadrons up to
m = 1.672 GeV with the same constant cross section for all species,
assuming quadratic momentum dependence δf/f eq ∝ p2 (dynamical
Grad approximation).

Species T = 100 120 140 165 MeV

π 1.08 1.13 1.17 1.21
K 0.89 0.96 1.02 1.08
η 0.87 0.94 1.00 1.06
f0 0.85 0.92 0.98 1.04
ρ 0.80 0.87 0.93 0.99
ω 0.80 0.86 0.93 0.99
K∗(892) 0.77 0.83 0.90 0.96
N 0.76 0.82 0.88 0.94
η′(958) 0.75 0.82 0.88 0.94
f0(980) 0.75 0.81 0.87 0.93
a0(980) 0.75 0.81 0.87 0.93
φ(1020) 0.74 0.81 0.86 0.92
� 0.72 0.79 0.84 0.90
h1(1170) 0.72 0.78 0.83 0.89
� 0.71 0.77 0.83 0.89
b1(1235) 0.71 0.76 0.82 0.88
�(1232) 0.71 0.76 0.82 0.88
a1(1260) 0.71 0.77 0.82 0.88
K1(1270) 0.70 0.76 0.81 0.87
f2(1270) 0.70 0.76 0.81 0.87
f1(1285) 0.70 0.76 0.81 0.87
η(1295) 0.70 0.75 0.81 0.87
π (1300) 0.70 0.75 0.81 0.87
� 0.69 0.75 0.81 0.86
a2(1320) 0.69 0.75 0.81 0.86
�(1385) 0.68 0.74 0.80 0.85
f0(1370) 0.69 0.74 0.80 0.85
K1(1400) 0.68 0.74 0.79 0.85
�(1405) 0.68 0.74 0.79 0.85
K∗(1410) 0.68 0.74 0.79 0.85
η(1405) 0.68 0.74 0.79 0.85
ω(1420) 0.68 0.74 0.79 0.84
f1(1420) 0.68 0.73 0.79 0.84
K∗

0 (1430) 0.68 0.73 0.79 0.84
K∗

2 (1430) 0.68 0.73 0.79 0.84
N(1440) 0.68 0.73 0.79 0.84
ρ(1450) 0.67 0.73 0.78 0.84
f0(1500) 0.67 0.72 0.78 0.83
�(1520) 0.67 0.72 0.77 0.83
N(1520) 0.67 0.72 0.77 0.83
f ′

2(1525) 0.67 0.72 0.77 0.83
�(1530) 0.67 0.72 0.77 0.83
N(1535) 0.67 0.72 0.77 0.83
�(1600) 0.66 0.71 0.76 0.82
�(1600) 0.66 0.71 0.76 0.82
�(1620) 0.66 0.71 0.76 0.81
ω(1650) 0.65 0.71 0.76 0.81
N(1650) 0.65 0.71 0.76 0.81
� 0.65 0.70 0.75 0.81
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TABLE VI. Species-dependent shear viscous phase-space cor-
rections calculated as a function of temperature for a gas of hadrons
up to m = 1.672 GeV with additive quark model [32] (AQM) cross
sections, assuming quadratic momentum dependence δf/f eq ∝ p2

(dynamical Grad approximation).

Species T = 100 120 140 165 MeV

π 1.08 1.15 1.21 1.27
K 0.90 0.98 1.06 1.14
η 0.88 0.95 1.03 1.12
f0 0.86 0.94 1.01 1.10
ρ 0.80 0.88 0.96 1.04
ω 0.80 0.88 0.95 1.04
K∗(892) 0.77 0.85 0.92 1.01
N 0.56 0.62 0.68 0.74
η′(958) 0.76 0.83 0.91 0.99
f0(980) 0.75 0.83 0.90 0.98
a0(980) 0.75 0.83 0.90 0.98
φ(1020) 0.75 0.82 0.89 0.97
� 0.53 0.59 0.64 0.70
h1(1170) 0.72 0.79 0.86 0.94
� 0.52 0.58 0.63 0.69
b1(1235) 0.71 0.78 0.85 0.93
�(1232) 0.52 0.57 0.62 0.68
a1(1260) 0.71 0.78 0.85 0.93
K1(1270) 0.70 0.77 0.84 0.92
f2(1270) 0.70 0.77 0.84 0.92
f1(1285) 0.70 0.77 0.84 0.92
η(1295) 0.70 0.77 0.84 0.91
π (1300) 0.70 0.77 0.83 0.91
� 0.51 0.56 0.61 0.67
a2(1320) 0.70 0.76 0.83 0.91
�(1385) 0.50 0.55 0.60 0.66
f0(1370) 0.69 0.75 0.82 0.90
K1(1400) 0.68 0.75 0.82 0.89
�(1405) 0.50 0.55 0.60 0.66
K∗(1410) 0.68 0.75 0.82 0.89
η(1405) 0.68 0.75 0.82 0.89
ω(1420) 0.68 0.75 0.81 0.89
f1(1420) 0.68 0.75 0.81 0.89
K∗

0 (1430) 0.68 0.75 0.81 0.89
K∗

2 (1430) 0.68 0.75 0.81 0.89
N(1440) 0.49 0.54 0.60 0.65
ρ(1450) 0.68 0.74 0.81 0.88
f0(1500) 0.67 0.74 0.80 0.88
�(1520) 0.48 0.53 0.59 0.64
N(1520) 0.48 0.53 0.59 0.64
f ′

2(1525) 0.67 0.73 0.80 0.87
�(1530) 0.48 0.53 0.58 0.64
N(1535) 0.48 0.53 0.58 0.64
�(1600) 0.48 0.53 0.58 0.63
�(1600) 0.48 0.53 0.58 0.63
�(1620) 0.48 0.52 0.57 0.63
ω(1650) 0.66 0.72 0.78 0.85
N(1650) 0.47 0.52 0.57 0.63
� 0.47 0.52 0.57 0.62

TABLE VII. Species-dependent shear viscous phase-space cor-
rections calculated as a function of temperature for a gas of hadrons
up to m = 1.672 GeV with the same constant cross section for all
species, assuming power-law momentum dependence δf/f eq ∝ p3/2.

Species T = 100 120 140 165 MeV

π 2.56 2.68 2.79 2.87
K 2.31 2.45 2.58 2.69
η 2.28 2.42 2.55 2.66
f0 2.26 2.39 2.52 2.64
ρ 2.19 2.32 2.45 2.57
ω 2.19 2.32 2.44 2.56
K∗(892) 2.15 2.28 2.41 2.52
N 2.14 2.27 2.39 2.51
η′(958) 2.14 2.26 2.38 2.50
f0(980) 2.13 2.26 2.38 2.49
a0(980) 2.13 2.25 2.38 2.49
φ(1020) 2.12 2.24 2.37 2.48
� 2.10 2.22 2.34 2.45
h1(1170) 2.09 2.21 2.32 2.44
� 2.09 2.20 2.32 2.43
b1(1235) 2.08 2.20 2.31 2.42
�(1232) 2.08 2.20 2.31 2.42
a1(1260) 2.08 2.20 2.31 2.42
K1(1270) 2.07 2.19 2.30 2.41
f2(1270) 2.07 2.19 2.30 2.41
f1(1285) 2.07 2.19 2.30 2.41
η(1295) 2.07 2.18 2.30 2.40
π (1300) 2.07 2.18 2.29 2.40
� 2.07 2.18 2.29 2.40
a2(1320) 2.07 2.18 2.29 2.40
�(1385) 2.06 2.17 2.28 2.38
f0(1370) 2.06 2.17 2.28 2.39
K1(1400) 2.06 2.17 2.27 2.38
�(1405) 2.06 2.16 2.27 2.38
K∗(1410) 2.06 2.16 2.27 2.38
η(1405) 2.06 2.16 2.27 2.38
ω(1420) 2.05 2.16 2.27 2.38
f1(1420) 2.05 2.16 2.27 2.37
K∗

0 (1430) 2.05 2.16 2.27 2.37
K∗

2 (1430) 2.05 2.16 2.27 2.37
N(1440) 2.05 2.16 2.27 2.37
ρ(1450) 2.05 2.16 2.26 2.37
f0(1500) 2.04 2.15 2.26 2.36
�(1520) 2.04 2.15 2.25 2.35
N(1520) 2.04 2.15 2.25 2.35
f ′

2(1525) 2.04 2.15 2.25 2.35
�(1530) 2.04 2.15 2.25 2.35
N(1535) 2.04 2.15 2.25 2.35
�(1600) 2.03 2.14 2.24 2.34
�(1600) 2.03 2.14 2.24 2.34
�(1620) 2.03 2.13 2.24 2.34
ω(1650) 2.03 2.13 2.23 2.33
N(1650) 2.03 2.13 2.23 2.33
� 2.03 2.13 2.23 2.33
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TABLE VIII. Species-dependent shear viscous phase-space cor-
rections calculated as a function of temperature for a gas of hadrons
up to m = 1.672 GeV with additive quark model [32] (AQM) cross
sections, assuming power-law momentum dependence δf/f eq ∝
p3/2.

Species T = 100 120 140 165 MeV

π 2.57 2.72 2.87 3.03
K 2.32 2.48 2.66 2.83
η 2.29 2.45 2.63 2.81
f0 2.27 2.43 2.60 2.78
ρ 2.20 2.36 2.52 2.70
ω 2.20 2.35 2.52 2.70
K∗(892) 2.16 2.31 2.48 2.66
N 1.57 1.69 1.81 1.95
η′(958) 2.15 2.30 2.46 2.63
f0(980) 2.14 2.29 2.45 2.63
a0(980) 2.14 2.29 2.45 2.62
φ(1020) 2.13 2.28 2.44 2.61
� 1.53 1.65 1.77 1.90
h1(1170) 2.10 2.24 2.40 2.57
� 1.52 1.63 1.75 1.88
b1(1235) 2.09 2.23 2.38 2.55
�(1232) 1.51 1.62 1.74 1.87
a1(1260) 2.09 2.23 2.38 2.55
K1(1270) 2.08 2.22 2.37 2.54
f2(1270) 2.08 2.22 2.37 2.54
f1(1285) 2.08 2.22 2.37 2.54
η(1295) 2.08 2.22 2.37 2.53
π (1300) 2.08 2.22 2.37 2.53
� 1.50 1.61 1.73 1.85
a2(1320) 2.08 2.21 2.36 2.53
�(1385) 1.49 1.60 1.71 1.84
f0(1370) 2.07 2.20 2.35 2.52
K1(1400) 2.07 2.20 2.34 2.51
�(1405) 1.49 1.59 1.71 1.83
K∗(1410) 2.06 2.20 2.34 2.51
η(1405) 2.06 2.19 2.34 2.50
ω(1420) 2.06 2.19 2.34 2.50
f1(1420) 2.06 2.19 2.34 2.50
K∗

0 (1430) 2.06 2.19 2.34 2.50
K∗

2 (1430) 2.06 2.19 2.34 2.50
N(1440) 1.49 1.59 1.70 1.83
ρ(1450) 2.06 2.19 2.33 2.49
f0(1500) 2.05 2.18 2.33 2.49
�(1520) 1.48 1.58 1.69 1.81
N(1520) 1.48 1.58 1.69 1.81
f ′

2(1525) 2.05 2.18 2.32 2.48
�(1530) 1.48 1.58 1.69 1.81
N(1535) 1.47 1.58 1.69 1.81
�(1600) 1.47 1.57 1.68 1.80
�(1600) 1.47 1.57 1.68 1.80
�(1620) 1.47 1.57 1.68 1.80
ω(1650) 2.04 2.16 2.30 2.46
N(1650) 1.46 1.56 1.67 1.79
� 1.46 1.56 1.67 1.79

TABLE IX. Species-dependent shear viscous phase-space cor-
rections calculated as a function of temperature for a gas of hadrons
up to m = 1.672 GeV with the same constant cross section for all
species, assuming linear momentum dependence δf/f eq ∝ p.

Species T = 100 120 140 165 MeV

π 5.81 6.06 6.29 6.49
K 5.78 6.03 6.27 6.46
η 5.79 6.03 6.27 6.46
f0 5.79 6.03 6.27 6.46
ρ 5.82 6.04 6.27 6.46
ω 5.82 6.04 6.27 6.46
K∗(892) 5.85 6.06 6.28 6.46
N 5.86 6.07 6.28 6.46
η′(958) 5.87 6.07 6.28 6.46
f0(980) 5.87 6.07 6.29 6.46
a0(980) 5.87 6.07 6.29 6.46
φ(1020) 5.88 6.08 6.29 6.46
� 5.91 6.10 6.30 6.47
h1(1170) 5.93 6.11 6.31 6.47
� 5.94 6.11 6.31 6.47
b1(1235) 5.95 6.12 6.32 6.48
�(1232) 5.95 6.12 6.32 6.48
a1(1260) 5.95 6.12 6.32 6.48
K1(1270) 5.96 6.13 6.32 6.48
f2(1270) 5.96 6.13 6.32 6.48
f1(1285) 5.97 6.14 6.32 6.48
η(1295) 5.97 6.14 6.33 6.48
π (1300) 5.97 6.14 6.33 6.48
� 5.98 6.14 6.33 6.48
a2(1320) 5.98 6.14 6.33 6.48
�(1385) 6.00 6.16 6.34 6.49
f0(1370) 6.00 6.16 6.34 6.49
K1(1400) 6.01 6.16 6.34 6.49
�(1405) 6.01 6.17 6.34 6.49
K∗(1410) 6.01 6.17 6.34 6.49
η(1405) 6.01 6.17 6.34 6.49
ω(1420) 6.02 6.17 6.35 6.49
f1(1420) 6.02 6.17 6.35 6.49
K∗

0 (1430) 6.02 6.17 6.35 6.49
K∗

2 (1430) 6.02 6.17 6.35 6.49
N(1440) 6.02 6.17 6.35 6.49
ρ(1450) 6.03 6.18 6.35 6.50
f0(1500) 6.05 6.19 6.36 6.50
�(1520) 6.05 6.19 6.36 6.50
N(1520) 6.05 6.20 6.36 6.50
f ′

2(1525) 6.05 6.20 6.36 6.50
�(1530) 6.06 6.20 6.37 6.50
N(1535) 6.06 6.20 6.37 6.50
�(1600) 6.08 6.22 6.38 6.51
�(1600) 6.08 6.22 6.38 6.51
�(1620) 6.09 6.22 6.38 6.51
ω(1650) 6.10 6.23 6.39 6.52
N(1650) 6.10 6.23 6.39 6.52
� 6.11 6.24 6.39 6.52
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TABLE X. Species-dependent shear viscous phase-space correc-
tions calculated as a function of temperature for a gas of hadrons
up to m = 1.672 GeV with additive quark model [32] (AQM) cross
sections, assuming linear momentum dependence δf/f eq ∝ p.

Species T = 100 120 140 165 MeV

π 5.84 6.15 6.49 6.84
K 5.81 6.12 6.46 6.81
η 5.81 6.12 6.46 6.81
f0 5.82 6.12 6.46 6.81
ρ 5.85 6.13 6.46 6.81
ω 5.85 6.13 6.46 6.81
K∗(892) 5.88 6.15 6.47 6.81
N 4.25 4.47 4.72 4.97
η′(958) 5.89 6.16 6.48 6.81
f0(980) 5.90 6.16 6.48 6.81
a0(980) 5.90 6.16 6.48 6.81
φ(1020) 5.91 6.17 6.48 6.82
� 4.27 4.47 4.72 4.96
h1(1170) 5.96 6.20 6.50 6.82
� 4.28 4.48 4.72 4.96
b1(1235) 5.98 6.21 6.51 6.83
�(1232) 4.29 4.48 4.72 4.96
a1(1260) 5.98 6.21 6.51 6.83
K1(1270) 5.99 6.22 6.52 6.83
f2(1270) 5.99 6.22 6.52 6.83
f1(1285) 5.99 6.23 6.52 6.83
η(1295) 6.00 6.23 6.52 6.83
π (1300) 6.00 6.23 6.52 6.83
� 4.30 4.49 4.72 4.96
a2(1320) 6.01 6.23 6.52 6.84
�(1385) 4.31 4.50 4.72 4.96
f0(1370) 6.02 6.25 6.53 6.84
K1(1400) 6.04 6.25 6.54 6.84
�(1405) 4.31 4.50 4.73 4.96
K∗(1410) 6.04 6.26 6.54 6.85
η(1405) 6.04 6.26 6.54 6.85
ω(1420) 6.04 6.26 6.54 6.85
f1(1420) 6.05 6.26 6.54 6.85
K∗

0 (1430) 6.05 6.26 6.54 6.85
K∗

2 (1430) 6.04 6.26 6.54 6.85
N(1440) 4.32 4.50 4.73 4.96
ρ(1450) 6.06 6.27 6.55 6.85
f0(1500) 6.07 6.28 6.56 6.86
�(1520) 4.33 4.51 4.73 4.97
N(1520) 4.33 4.51 4.73 4.97
f ′

2(1525) 6.08 6.29 6.56 6.86
�(1530) 4.34 4.51 4.73 4.97
N(1535) 4.34 4.51 4.73 4.97
�(1600) 4.35 4.52 4.74 4.97
�(1600) 4.35 4.52 4.74 4.97
�(1620) 4.35 4.52 4.74 4.97
ω(1650) 6.13 6.32 6.59 6.87
N(1650) 4.36 4.53 4.74 4.97
� 4.36 4.53 4.74 4.97

TABLE XI. Parameters as a function of temperature for the fit
function c(x) = δ + α/[1 + (x/γ )β ] to the species-dependent Grad
shear viscous phase-space corrections listed in Tables V and VI.

σ = const. scenario (Grad)

T [MeV] α β γ δ

100 0.698 1.204 0.715 0.467
120 0.700 1.266 0.862 0.493
140 0.702 1.326 0.996 0.519
165 0.693 1.397 1.140 1.243

AQM scenario, mesons (Grad)
T [MeV] α β γ δ

100 0.696 1.214 0.712 0.472
120 0.704 1.278 0.856 0.505
140 0.715 1.342 0.985 0.543
165 0.717 1.414 1.124 0.591

AQM scenario, baryons (Grad)
T [MeV] α β γ δ

100 0.687 1.009 0.623 0.286
120 0.698 1.037 0.801 0.297
140 0.710 1.075 0.987 0.311
165 0.711 1.129 1.204 0.334

and shorthands

ax ≡ γxmT

T
, bx ≡ γxvxpT

T
. (F5)

Species dependence enters through the mass in z and ax ,
and for dynamical Grad corrections also through c. For the
democratic Grad ansatz, only the mass matters because c = 1
is set for all species.

Ninety-degree rotation φ → φ − π/2 and substitution
vx → vy gives f(+y), and similar rotations by π and 3π/2,
or equivalently, reflections vx → −vx , vy → −vy , give the
remaining two source distributions. Thus, at midrapidity,

f (pT ,φ) = f(+x) + f(+x)|bx→−bx

+ f(+x)| ax → ay

bx → by

cos φ → sin φ

+ f(+x)| ax → ay

bx → −by

cos φ → sin φ

. (F6)

Harmonic flow coefficients (54) can now be readily evaluated.
Each term in the denominator reduces to the integral over
f(+x) via shifts φ → φ − π/2, φ → φ − π , φ → φ − 3π/2
in the integrals for f(+y), f(−x), f(−y), respectively, which do
not affect the range of integration. Analogous shifts of φ in
the numerator have the potential side effect of changing the
sign of cos(nφ). For odd n, a shift by π brings a minus sign
and, therefore, contributions cancel, i.e., vn = 0 (this is also
evident from the symmetry of the configuration). For even n,
a shift by π preserves the sign, so the sources moving along
the ±x directions contribute equally. Shifts by π/2 and 3π/2
flip sign in the numerator whenever n is not divisible by four,
so the sources moving along the ±y direction also contribute
equally but with potentially opposite overall sign. Therefore,
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TABLE XII. Parameters as a function of temperature for the fit
function c(x) = δ + α/[1 + (x/γ )β ] to the species-dependent p3/2

shear viscous phase-space corrections listed in Tables VII and VIII.

σ = const. scenario (p3/2)

T [MeV] α β γ δ

100 0.748 1.446 0.559 1.900
120 0.823 1.375 0.712 1.933
140 0.883 1.363 0.876 1.969
165 0.921 1.386 1.061 2.006

AQM scenario, mesons (p3/2)
T [MeV] α β γ δ

100 0.759 1.427 0.561 1.904
120 0.839 1.370 0.714 1.959
140 0.908 1.367 0.874 2.032
165 0.957 1.397 1.047 2.126

AQM scenario, baryons (p3/2)
T [MeV] α β γ δ

100 0.540 1.627 0.760 1.344
120 0.691 1.396 0.836 1.369
140 0.806 1.288 0.974 1.400
165 0.890 1.243 1.177 1.439

for even n,

vn(pT ) = Gn(ax,bx,z,cκ) + (−1)n/2Gn(ay,by,z,cκ)

G0(ax,bx,z,cκ) + G0(ay,by,z,cκ)
, (F7)

where the shorthand

Gn(ax,bx,z,cκ)

≡ 1

2πN

∫ 2π

0
dφf(+x) cos (nφ)

= e−ax

{
In + cκ

4

[(
z2 − a2

x

)
In + axbx(I|n−1| + In+1)

− b2
x

4
(I|n−2| + 2In + In+2)

]}
(F8)

involves modified Bessel functions of the first kind

In ≡ In(bx) ≡ 1

2π

∫ 2π

0
dϕebx cos ϕ cos(nϕ). (F9)

Integrals with cos φ cos(nφ) and cos2 φ cos(nφ) reduce to
those with a single cosine with the help of the cosine addition
theorem and cos2 φ ≡ (cos 2φ + 1)/2. Note that, for κ � 0,
the denominator in Eq. (F7) is strictly positive because, at
midrapidity, πμνpμpν = −πL(p2

x,LR + p2
y,LR)/2 � 0.

TABLE XIII. Parameters as a function of temperature for the
fit function c(x) = α + β|x − γ |δ to the species-dependent p1 shear
viscous phase-space corrections listed in Tables IX and X.

σ = const. scenario (p1)

T [MeV] α β γ δ

100 5.775 0.240 0.419 1.521
120 6.025 0.166 0.502 1.633
140 6.265 0.114 0.599 1.734
165 6.458 0.073 0.747 1.882

AQM scenario, mesons (p1)
T [MeV] α β γ δ

100 5.802 0.239 0.419 1.546
120 6.114 0.167 0.504 1.655
140 6.459 0.118 0.603 1.743
165 6.808 0.080 0.742 1.865

AQM scenario, baryons (p1)
T [MeV] α β γ δ

100 4.245 0.156 0.848 1.404
120 4.466 0.097 0.897 1.603
140 4.715 0.062 1.015 1.842
165 4.963 0.045 1.293 1.931

APPENDIX G: SELF-CONSISTENT GRAD
COEFFICIENT TABLES

Tables V–X tabulate self-consistent viscous phase-space
corrections for the gas of hadrons in Sec. V, using δf/f eq ∝
p2, p3/2, and p, respectively. In all six tables, correction factors
relative to the democratic Grad form (10) are printed (rounded
to two decimal figures). To apply the dynamical correction for
species i, read the coefficient ci from the table for the species
and use Eqs. (58) to obtain the viscous correction with the
desired momentum dependence.

The corrections depend rather smoothly on hadron (pole)
mass, and therefore can also be well represented by fits of the
form

c(x) = δ + α

[
1 +

(
x

γ

)β
]−1

or c(x) = α + β|x − γ |δ,

x ≡ m

1 GeV
, (G1)

where x is the hadron (pole) mass m in GeV units. Tables XI–
XIII list the best fit values for the parameters α, β, γ , and
δ as a function of temperature for the various scenarios in
Tables V–X. The fits are done to the original unrounded
ci values. Note that there are separate fits for mesons and
baryons in the case of additive quark model (AQM) cross
sections. There is no specific physics motivation behind the
forms (G1); the functions are chosen solely for accuracy (the
relative accuracy is better than 8.5 × 10−4 in all cases).
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