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Nuclear shape evolution based on microscopic level densities

D. E. Ward,1 B. G. Carlsson,1 T. Døssing,2 P. Möller,3 J. Randrup,4 and S. Åberg1
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By combining microscopically calculated level densities with the Metropolis walk method, we develop a
consistent framework for treating the energy and angular-momentum dependence of the nuclear shape evolution
in the fission process. For each nucleus under consideration, the level density is calculated microscopically for
each of more than five million shapes with a recently developed combinatorial method. The method employs
the same single-particle levels as those used for the extraction of the pairing and shell contributions to the
macroscopic-microscopic potential-energy surface. Containing no new parameters, the treatment is suitable for
elucidating the energy dependence of the dynamics of warm nuclei on pairing and shell effects. It is illustrated
for the fission fragment mass distribution for several uranium and plutonium isotopes of particular interest.
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I. INTRODUCTION

The highly dissipative character of collective nuclear
dynamics renders the evolution of the nuclear shape akin
to Brownian motion. As a result, it has proven possible to
describe the fission process as a Metropolis walk on the
associated multidimensional potential-energy surface [1]. This
calculationally simple method has yielded remarkably good
fission-fragment mass distributions [2]. Though merely a
rough approximation to the underlying Langevin-type trans-
port description of the nuclear shape dynamics, the Metropolis
treatment has proven to be quantitatively useful and, because
tabulations of suitable potential-energy surfaces exist for
essentially all nuclei of potential interest [3], the method has
made it possible to predict fission fragment mass distributions
for poorly explored regions of the nuclear chart [4,5].

Using χ to characterize the multidimensional shape, we
may denote the potential-energy surface by U (χ). It is impor-
tant to recognize that U (χ) represents the shape dependence
of the potential energy of cold nuclei, i.e., U (χ) is the energy
of the lowest possible configuration compatible with the shape
χ . However, in processes such as induced fission the nuclear
system is generally warm, i.e., the local excitation energy,
E∗(χ ) ≡ E − U (χ) > 0 (where E denotes the given total
energy), is typically several MeV. Therefore it is necessary
to develop a treatment that takes proper account of the local
excitation. In particular, it is essential to understand the energy
dependence of the pairing and shell effects which play major
roles in fission dynamics and have a decisive influence on
the appearance of the fission-fragment distribution. Qualita-
tively speaking, as the nuclear excitation is increased these
microscopic corrections tend to subside and the resulting
effective potential gradually acquires a purely macroscopic
form; accordingly, for actinides, the fragment mass distribution
evolves from being asymmetric to being symmetric.

This phenomenon was recently addressed in a preliminary
manner by using an ad hoc energy-dependent suppression
function to reduce the microscopic term in the potential en-
ergy [2]. While apparently quite successful, such an approach

is not satisfactory from a theoretical perspective because it
does not properly take into account the considerable structure
of the nuclear level density and its dependence on the nuclear
shape. In particular, the approach does not take into account
the different energy scales for the decrease of the pairing and
shell corrections. There is therefore a need for addressing the
problem in a more fundamental manner. Towards this end, the
present paper presents a formally well-founded approach to
the energy dependence of the fission shape evolution.

We employ a recently developed combinatorial method [6]
for generating the nuclear level density from the single-particle
levels in the mean field associated with the given deformed
system. In that work [6], level densities were calculated and
compared to data at equilibrium shapes of the excited nucleus.
We here extend the treatment to arbitrary shapes and make
applications to the shape evolution in nuclear fission, which
generally involves shapes that are not situated at stationary
points of the potential-energy surface. Furthermore, we include
the total angular momentum which is conserved. Because the
single-particle levels in the level-density calculation are the
same as those used for the calculation of the microscopic
contributions to the potential-energy surface, the approach is
consistent and no new parameters are required. This micro-
scopically based shape-dependent level density, ρ(E,I ; χ ),
then provides, in a well-defined manner and at arbitrary energy
E and angular momentum I , the statistical weights required
for the transport treatment of the nuclear shape dynamics. In
particular, using the Metropolis treatment [1], we study the
energy dependence of fission fragment mass distributions.

In addition to the physics insight gained, the present
development is expected to be useful as a means for providing
energy-dependent mass yields for fission event generators,
such as FREYA [7], FIFRELIN [8], or CGMF [9], especially
for cases where no experimental information is available (or
cannot be obtained in practice).

In Sec. II we briefly review the combinatorial method and
discuss its adaptation to the description of the density of
states for shapes relevant to fission. Section III summarizes
the Metropolis method of the shape evolution and describes

2469-9985/2017/95(2)/024618(12) 024618-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.95.024618


D. E. WARD et al. PHYSICAL REVIEW C 95, 024618 (2017)

how the required statistical weights are obtained on the basis of
the calculated level densities. The resulting refined treatment
is then applied to a number of instructive cases in Sec. IV, and
our concluding remarks are given in Sec. V.

II. LEVEL DENSITIES AT HIGH EXCITATION

In this section we discuss the adaptation of the combinato-
rial method for calculating level densities to fission dynamics.
Relative to the original work [6], the description of fission
requires a large number of relatively complex shapes that are
typically reflection asymmetric, and the internal excitation
energies may grow to several tens of MeV as scission is
approached.

First, in Sec. II A, the combinatorial method is briefly
reviewed, and the effects from pairing and shell structure are
examined in Sec. II B. Then, in Sec. II C, the acquired insight
is used to extrapolate the microscopic level density to higher
excitation energies.

A. Combinatorial level-density method

In Ref. [6] a method was developed for microscopic
calculations of level densities for deformed nuclei and we
shall adapt it to the fission process. For a specified shape
χ , the single-particle levels for protons and neutrons needed
for the combinatorial calculation of the level density are
obtained by solving the Schrödinger equation in the associated
folded-Yukawa potential. These levels were already used
in Ref. [3] to calculate the microscopic shell and pairing
energies in the construction of the potential-energy surfaces.
The corresponding local many-body vacuum state |0; χ〉 has
N neutrons and Z protons filling the lowest single-particle
states, and the uncorrelated excited states consist of all multiple
particle-hole excitations,

|i; χ〉 =
∏
n�1

a
†
ν

(i)
n

a
μ

(i)
n
|0; χ〉. (1)

For each many-body state |i; χ〉, blocked BCS calculations for
neutrons and protons separately provide the state-dependent
pairing gaps, �n

i (χ) and �
p
i (χ ), respectively, and the energy

of the correlated intrinsic many-body state, Ei(χ) = En
i (χ ) +

E
p
i (χ).
All nuclear shapes considered in the present study have

axial symmetry (around the z axis), so the angular momentum
component along the symmetry axis, Ki , is a good quantum
number for the state |i; χ〉. The value of Ki(χ ) is given in terms
of the individual particles and holes in the intrinsic state (1).
Because the shapes relevant for the present fission study are
well deformed, we assume that a rotational band can be built
on each intrinsic configuration.

For a given value of K , the total angular momentum I may
take on the following values,

I = K,(K + 1),(K + 2), . . . . (2)

and the corresponding rotational energies of the band members
are

Erot
i (I ; χ) = I (I + 1) − Ki(χ )2

2J⊥(χ ,�n
i (χ),�p

i (χ))
. (3)

The moment of inertia J⊥ is approximated by the moment
of inertia of a rigid body with the shape χ , modified by the
calculated pairing gaps for the state [10]. The total energy of
a state is then given by

Ei(I,χ ) = En
i (χ) + E

p
i (χ ) + Erot

i (I ; χ ). (4)

For each shape χ , the resulting states are binned according
to their energy Ei and their total angular momentum I ; the
values at arbitrary energies are then obtained by linear inter-
polation. The bin width is usually taken as �E = 200 keV. For
local excitation energies E∗ � 3 MeV, the mean level spacing
is 1/ρ(E∗) � 1 keV, and the level density is insensitive to the
bin width. But at low excitation energies the discreteness of the
energy levels makes this treatment less accurate. For example,
due to the pairing gaps, only the local ground state exists within
the lowest energy bin and the next several bins are empty. The
binning effectively introduces a smearing of individual energy
levels of the order of �E and so, in the random walk on the
shape lattice, the system can access a given site if its energy
lies within �E of any of the levels at that site. We have tested
the sensitivity of our results to the bin size and found that
doubling or tripling �E produces negligible changes in the
calculated mass distributions.

B. Pairing and shell structure at high excitation

In Fig. 1 we show calculated level densities versus the
backshifted excitation energy for three special shapes in
the fission process of 236U, all calculated for the angular
momentum I = 4h̄: (i) the shape of the isomeric (second)
energy minimum shape, which has a large negative shell
energy, (ii) the shape associated with the symmetric barrier,
which has a large positive shell energy, and (iii) a shape in
between having a rather small shell energy. For each of these
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FIG. 1. The microscopic level density, ρ(E∗), calculated for 236U
at angular momentum I = 4h̄ and plotted versus the backshifted
energy, E∗

shift = E∗ + Esh + Epc, shown for three selected shapes: (i)
the second minimum (red/left) (Esh = −5.4 MeV, Epc = −1.5 MeV),
(ii) the outer symmetric fission barrier (blue/right) (Esh = +8.7 MeV,
Epc = −6.1 MeV), and (iii) a shape in between (green/middle) (Esh =
−0.3 MeV, Epc = −2.5 MeV), either with (solid) or without (dashed)
pairing.
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shapes, the level density is calculated both without and with
pairing. The resulting level densities are plotted against the
backshifted energy given by the actual excitation plus the
shell and pairing energies of the local ground state, E∗

shift(χ ) =
E∗(χ ) + Esh(χ) + Epc(χ). The pairing condensation energy,
Epc, is defined as the difference between the BCS ground-state
energy and the energy of the unpaired ground state. For the
calculations without pairing we have Epc = 0, so for the
intermediate case having Esh ≈ 0 we have E∗

shift ≈ E∗ and
the backshifted excitation energy is approximately zero for
the local ground state. For this case the level density is close
to that of a Fermi gas already at quite low excitation energies.
By comparing the level density versus E∗

shift for the different
cases, we can elucidate how the level density develops with
excitation energy due to the gradual decrease of the pairing
correlations and the shell effects.

At the second minimum, the gaps in the single-particle
spectra for neutrons and protons provide the special stability of
this shape region, quantitatively expressed by a considerable
negative shell correction energy, Esh = −5.4 MeV. On the
other hand, the same gaps render it costly in energy to
make particle-hole excitations, resulting in a slow increase
of the level density when the nucleus is excited. The opposite
situation is encountered at the symmetric barrier, where a high
density of single-particle states around the Fermi energy results
in a large positive shell correction energy Esh = 8.7 MeV,
while at the same time delivering particle-hole states at a low
cost in energy, providing a rapid increase of the level density
with local excitation energy.

These opposite effects of the shell structure on the lowest
energy and on the level density cause the no-pairing results
(dashed curves on Fig. 1) to converge towards the level
density with zero shell energy, illustrating the suppression of
shell energy with increasing excitation energy, as discussed in
Refs. [11–13].

Including pairing (solid curves in Fig. 1), one sees that the
dense single-particle spectra for the symmetric-barrier shape
produces a strong effect, yielding a condensate energy of
Epc = −6.1 MeV. Along with the condensate energy comes a
gap in the spectrum between the ground state and the excited
states, and eventually a weakening of the pair correlations
with increasing excitation energy. The ground state lies at
E∗

shift = 2.6 MeV, two-quasiparticle states dominate at around
4–6 MeV, and four-quasiparticle states are dominant for 6–8
MeV. This structure can be recognized as bumps in the
resulting level density shown Fig. 1. The spectrum grows ever
more regular with increasing excitation energy and the level
density becomes correspondingly smooth.

As more and more particle-hole excitations are added,
the pairing correlations weaken, and the curves in Fig. 1
with pairing included (solid) converge towards the respective
results without pairing (dashed). The second-minimum shape
with its negative shell energy has a smaller pairing energy
(Epc = −1.5 MeV), and the level-density curve with pairing
included quickly approaches the no-pairing curve as the
energy is increased. We can conclude that at some excitation
energy (that depends on the pairing condensate energy of the
ground state) the effects of pairing on the level density are
negligible.

Both effects on the level density, coming from shell
structure and from pairing correlations, subside smoothly as
the excitation energy increases. Two different energy scales are
involved, with the pairing disappearing at a lower excitation
energy than the shell structure. The present study of fission
shape evolution considers a large number (>5 × 106) of
nuclear shapes and, consequently, a large variety of shell and
pairing energies appear. It is therefore of importance to employ
a level density that accounts for the changes in shell and
pairing effects when the shape is varied. This can be ensured by
employing a microscopic calculation of the level density up to
sufficiently high excitation energies for all shapes considered.
However, the microscopic calculation of the level density of
236U up to excitations of 25 MeV for a single shape takes
roughly one week of CPU time. Performing such calculations
for the more than five million shapes considered is thus
presently impractical. Therefore, to reduce the computation
times, we introduce below an extrapolation scheme that takes
account of the changes in pairing and shell effects with
excitation energy for each shape.

C. Extrapolation of level densities

As illustrated by the examples displayed in Fig. 1, most
of the specific structure of the level density appears below
6 MeV of local excitation energy, such as spectral gaps or
nonmonotonic behavior of the level density (or its derivative).
Therefore, for all shapes χ , the calculated combinatorial level
density is employed up to a local excitation Em ≈ 6 MeV and
then smoothly continued upwards by an analytical expression.
In this way, important structures in the level density are
maintained, while the numerical calculations are kept to a
manageable level (about 3 CPU seconds per shape). For
each particular shape χ , the extrapolation makes use of its
specific shell and pairing energies, Esh(χ) and Epc(χ). Their
influence diminishes with increasing energy, and the level
density approaches the analytical expression for a Fermi gas.

We employ the following simple analytical Fermi-gas
expression [14], which is suitable for deformed nuclei with
a fixed small angular momentum:

ρ(N,Z,E∗(χ ),I ) ∼ E
−3/2
intr exp(2

√
a0Eintr), (5)

where Eintr = E∗(χ) − I (I + 1)h̄2/2J⊥(χ) is the approxi-
mate intrinsic energy of a state in a rotating nucleus with
angular momentum I and moment of inertia J⊥(χ). The
single-particle level-density parameter is

a0 = A/e0 (6)

for mass number A, where e0 is a constant determined below.
Accounting for the different energy scales of shell effects and
pairing effects, we introduce a backshifted intrinsic excitation
energy Ẽintr, which is similar to the effective excitation E∗

eff
of Ref. [2] (see the Appendix) and can be considered as
a generalization of the prescription originally employed by
Ignatyuk et al. [13],

Ẽintr(χ) = Eintr(χ) + (1 − e−Eintr(χ)/Ed,sh )Esh

+ (1 − e−Eintr(χ )/Ed,pc )Epc, (7)
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where Esh is the shell-correction energy and Epc is the
pairing condensation energy. Both quantities are specific to
each considered shape χ . Ed,sh is a parameter that sets the
energy scale for the melting of shell structure and Ed,pc is
the corresponding energy scale for the melting of pairing
correlations. The form of the pairing shift, the third term in
Eq. (7), is chosen for simplicity. It approximately includes the
rapid decrease of the pairing correlations seen when comparing
the level densities obtained in microscopic calculations with
and without pairing; see Fig. 1. The low-energy irregularities
are accounted for by the microscopic level density. By fitting
the analytic expression for a number of typical shapes (see
below), optimal values of Ed,sh and Ed,pc are determined
and then applied for all shapes. The full backshift, Ẽintr =
Eintr + Esh + Epc (used as the abscissa in Fig. 1), emerges
when Eintr is much larger than both damping scales.

The extrapolation of the level density is then given by the
following analytical expression,

ρ(N,Z,E∗(χ),I ) = C(χ )Ẽ−3/2
intr exp(2

√
a0Ẽintr), (8)

where the normalization constant C is determined by continu-
ity with the corresponding microscopic value at the matching
energy E∗(χ) = Em, for which we use Em = 5.9 MeV for all
shapes (see below).

The three parameters introduced above, e0, Ed,sh, Ed,pc, are
determined by a nonlinear least-squares fit of the logarithm of
the extrapolated values to the corresponding microscopically
calculated level densities for 236U. The microscopic level den-
sity is evaluated for E∗(χ) = 5.9,6.1, . . . ,20.1 MeV, and for
angular momenta I = 0,1 . . . ,9 at 15 different representative
shapes between the second minimum and the outer barrier.
These shapes include both symmetric and asymmetric shapes
having negative as well as positive shell-correction energies.

The fit yields the optimal values e0 = 10.48 MeV, Ed,sh =
13.18 MeV, and Ed,pc = 4.07 MeV. The root-mean-square
error of the logarithm of the extrapolated level densities
is 0.20, the largest error being a factor 1.9 occurring for
angular momentum I = 8 at the excitation energy E∗(χ) =
20.1 MeV. Figure 2 compares the extrapolated results to the
microscopic calculations for three different shapes. As can
be seen, the agreement is good. The extrapolation formula
captures the variation in the level densities when excitation
energy, shape, or angular momentum is varied.

Using the procedure described above, the microscopic level
densities for all 5 009 325 physical sites in the five-dimensional
(5D) shape lattice are calculated up to a local excitation energy
of Em = 5.9 MeV and then extended upwards by matching the
form (8) using the optimal parameter values. As was done for
the calculation of the potential-energy surfaces for the nuclei
in the region considered here [3], the single-particle levels
employed are those obtained for the nucleus 232U.

III. SHAPE EVOLUTION

The fission shape evolution is treated by the Metropolis
method presented in Ref. [1]. The treatment is based on the
assumption that the nuclear shape is strongly coupled to the
residual system so that its evolution is akin to Brownian
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FIG. 2. Microscopic level densities (solid lines) compared to
extrapolated values (dashed lines). Three different deformations for
236U are considered: curve A corresponds to the second minimum, B
to the asymmetric second saddle, and C to an elongated symmetric
shape close to the outer barrier. Extrapolated values are shown
for local excitation energies E∗(χ) � 6 MeV. The inset shows the
angular momentum distribution of the level density at the asymmetric
saddle (B) for different excitation energies.

motion. Formally, this type of dynamics is governed by the
Smoluchowski equation of motion which emerges from the
general Langevin description in the highly dissipative limit.

The underlying physical picture is that the evolving system
can be characterized by its shape degrees of freedom χ . The
associated shape parameters are treated as classical variables
which are coupled dissipatively to the remaining microscopic
degrees of freedom. The resulting large-amplitude collective
motion then exhibits a strongly damped diffusive evolution
that can be described as a random walk on the associated
multidimensional potential-energy surface U (χ). The values
of the potential are available on a (five-dimensional) lattice of
shapes (see below) and the Smoluchowski equation can then
be approximately simulated by means of a random walk on
this lattice [1].

Because the random walk must satisfy detailed balance, the
following relation must hold between the rates, ν, of transition
from one lattice site to another,

ν(χ → χ ′)/ν(χ ′ → χ ) = ρ(χ ′)/ρ(χ ), (9)

where ρ(χ ) is the level density at the lattice site having the
shape χ . This condition can be satisfied in many ways and the
Metropolis procedure [15] is merely one particularly simple
possibility: A proposed shape change from χ to χ ′ is accepted
unconditionally if ρ(χ ′) > ρ(χ ), whereas it it accepted only
with the probability ρ(χ ′)/ρ(χ ) otherwise; it is readily verified
that this procedure satisfies detailed balance (9).

In Ref. [1] and all subsequent applications until now,
smooth Fermi-gas level-density expressions were used and
the ratio between the level densities for neighboring lattice
sites could therefore be approximated as

ρ(χ ′)/ρ(χ ) ≈ exp(−�U/T ), (10)
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where �U = U (χ ′) − U (χ) is the change in the potential
energy associated with the proposed shape change and T =
1/[∂ ln ρ(E∗)/∂E∗] is the local temperature,

In the present work we wish to account for pairing
correlations and shell effects. We therefore use the microscopic
level densities described in Sec. II to calculate the required
ratio ρ(χ ′)/ρ(χ ). Because those have been calculated from
the same levels that were used to obtain the potential-energy
surface, this provides a consistent treatment of the fission shape
evolution.

The Metropolis walk is performed on a discrete lattice of
more than five million shapes given in the three-quadratic-
surface parametrization [16]. The five independent parameters
characterizing a shape are the overall elongation of the
nucleus (in terms of the reduced quadrupole moment q2),
the constriction of the central part (in terms of the neck
radius c), the spheroidal deformations εf1 and εf2 of the
two nascent fragments, and the reflection (mass) asymmetry
αg. The corresponding five lattice indices are denoted by
I,J,K,L,M , respectively.

The dimensionless elongation parameter q2 is proportional
to the quadrupole moment Q2 of the nuclear charge distribu-
tion [3],

q2 = 4πQ2

3ZeR2
A

, (11)

where A and Z are the total mass and charge numbers of
the system, respectively, and RA = 1.2 A1/3 fm is the nuclear
radius.

The potential energy for the shapes in the lattice were
available from previous calculations within the microscopic-
macroscopic model [3],

U (χ) = Umacro(χ) + Umicro(χ), (12)

where Umicro(χ) = Esh(χ ) + Epc(χ ) − Ẽpc(χ), where Ẽpc(χ )
is the smooth pairing energy [17]. But, because the shell
and pairing terms are needed individually for the analytical
extrapolation of the microscopic level densities (see Sec. II C),
those were recalculated for the present study using the same
model.

A. Calculational details

At each Metropolis stage, the candidate site is selected
randomly from the 242 neighboring sites in the circumscribed
5D hypercube, and the corresponding level densities are
then compared in order to determine whether the step is
taken or not. When the critical neck radius c0 is reached
during the walk, the value of the asymmetry coordinate αg

and the corresponding fission fragment mass and charge are
registered; as in the previous studies [1,2,18], the critical
neck radius used is c0 = 2.5 fm. A total of 105 random
walks are performed in each case, ensuring robust charge
yield, Y (Zf), and mass yield, Y (Af).

From tests with both the previous treatment and the current
refinement, it is found that the fission yields are insensitive to
the starting point of the random walk, as long as it lies well
inside the second barrier, as one would expect because only a
single “valley” exists up to the second, isomer minimum, and

therefore equilibration occurs before the trajectory escapes
over the barrier. For the cases studied in this work, this implies
that one may start the random walk in the second minimum.

However, there is little advantage to merely doing that
because the trajectory is likely to fall into the first minimum.
Therefore the previous studies [1,2,18] employed a fictitious
bias potential to reduce the probability of the random walk
going further inwards when the shape is already fairly compact.
To avoid the (small but existing) influence of the bias potential,
we instead introduce a “wall” at the elongation corresponding
to the first barrier, while the remaining potential is left
unmodified. Steps that would take the random walk from a
point adjacent to the wall to a point with a smaller elongation
are forbidden, while all other step probabilities are calculated
without modification.

To reduce the time to run a fission simulation, an upper limit
on the number of steps in each random walk is used. If a random
walk does not reach fission within the upper limit of steps,
that trajectory is discarded altogether and not counted towards
the yield. This removes trajectories stuck in hard-to-escape
minima in the 5D space. A 2 × 105 step limit is used and
increased if necessary to ensure that at least 70% of the tracks
reach fission. By varying the step limit, we have checked that
this cutoff has very little influence on the yields. For example,
for 236U at E∗ = 6.55 MeV, the largest error in the mass yield
is 0.0035%.

The calculations are performed for a fixed total angular
momentum, I , of the compound nucleus. The influence of I
on the yields is discussed in Sec. IV B. If not noted otherwise,
we use I = It + 1

2 , where It is the known ground-state angular
momentum of the isotope with one less neutron, as is most
likely the case for neutron-induced fission at low energy.

We study the fission process at different excitation energies
of the fissioning system. The excitation energy is measured
relative the ground state of the fissioning nucleus Eexc ≡
E∗(χgs).

IV. APPLICATIONS

In this section we apply the presented model of shape
evolution to the description of fission yields of thorium,
uranium, and plutonium isotopes. In Sec. IV A we discuss
the structure obtained from the different trajectories in the
Metropolis simulation. Consequences for the fragment yield of
requiring a conserved angular momentum in the fission process
are studied in Sec. IV B. In Sec. IV C calculated yields for
226Th, 234,236U, and 240Pu are compared to experimental data
and results from the previous benchmark study in Ref. [2]. The
energy dependence of the fission yields is studied in Sec. IV D.

A. Metropolis shape dynamics

To obtain a general understanding of the Brownian
shape evolution towards fission obtained with the Metropolis
method, trajectories are studied for the case 236U at Eexc =
6.55 MeV. The aggregate number of visits to different sites
on the shape lattice is shown in Fig. 3, projected onto the
plane of mass asymmetry αg and elongation q2. The solid
black curve shows the mean “scission” elongation, i.e., the
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FIG. 3. log10(number of visits) to grid points with a given com-
bination of asymmetry αg and elongation q2 for 236U with Eexc =
6.55 MeV. (a) All tracks in the simulation. (b) The tracks ending
in symmetric fission. Energy minima are shown as solid circles
and saddle points as crosses. The solid black curve shows the
mean “scission” elongation. The ridge separating symmetric from
asymmetric fission paths is shown as a solid red (dark gray)/dashed
green curve, where green/red indicates that the ridge is below/above
the total energy, Eexc = 6.55 MeV, and thus accessible/inaccessible.

average elongation, q2, for random walks terminating with
mass asymmetry αg.

Figure 3(a) shows, in the form of a contour plot, the
total number of visits to sites with a given combination of
asymmetry αg and elongation q2, while Fig. 3(b) shows the
distribution of visits for those random walks that lead to
symmetric fission, αg = 0 ± 0.02.

The potential-energy landscape plays a key role in the shape
evolution. Its characteristic features can be determined by
means of the immersion technique [3,19]. The potential-energy
curve from the (symmetric) second-minimum shape via the
(asymmetric) third-minimum shape leading to asymmetric
fission is shown in Fig. 4. The black dots in Fig. 3 show
the location of these two minima and the crosses indicate the
locations of the saddle points in the potential-energy landscape.

The Metropolis walks all start in the second potential-
energy minimum at αg = 0, q2 = 2.36. From this starting
point, they exhibit a diffusive track that probes the potential
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FIG. 4. Potential-energy curves for 236U versus elongation, q2.
The energy path leading to asymmetric fission, starting close to the
(symmetric) second minimum, is shown by a solid line. The valley
leading to symmetric fission (dashed line) is separated from the
asymmetric path by the ridge shown by the red (dark gray) line. The
thin horizontal line indicates the excitation energy Eexc = 6.55 MeV.

landscape at ever larger deformations, including the third
minimum of potential energy located at an asymmetric shape
with αg ∼ ±0.1, q2 ∼ 4. The distribution of site visits reaches
maxima in the region around the second and third minima.

Beyond the outmost saddle point(s) around αg ∼ ±0.2 and
q2 ∼ 5, the potential starts to slope steadily down towards
scission; see Fig. 4. Most often, a decreasing potential
is accompanied by an increase in the level density and
the Metropolis walk then changes its character from being
diffusive to being drift dominated and, as a result, the average
number of site visits tend to become relatively constant with
elongation. Concurrent with this drift in elongation, sideways
diffusive steps are taken, thus providing some possibility for
probing the potential with regard to changes in the fragment
deformations, the neck radius, and, most importantly, the mass
asymmetry. A prominent region of shapes where this kind of
evolution occurs is the interval 6 < q2 < 9, 0.1 < αg < 0.24
[displaying a rather uniform light green (light gray) color on
Fig. 3(a)].

Turning now to symmetric shapes, αg 
 0, we note that
for the considered energy, Eexc = 6.55 MeV, it is not possible
to pass directly though the barrier region while keeping αg

equal to zero. Therefore, in order to reach elongated symmetric
shapes, the nuclear shape must first acquire some degree of
asymmetry. Figure 3(b) displays the mean number of site visits
by those tracks that lead to symmetric fission. A comparison
between the upper and lower parts of Fig. 3 shows that
indeed the diffusion process proceeds in identical ways up
to elongations of q2 � 5.

But beyond that elongation, q2 > 5, the potential landscape
displays an asymmetric and a symmetric valley sloping
towards larger elongation, separated by a ridge, see Fig. 4.
The location of the ridge and its height at each elongation q2

can be determined by application of the immersion method in
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FIG. 5. Contour plot (on a logarithmic scale) of the location of
the end points projected onto the (αg,q2) plane for fission of 236U
at Eexc = 6.55 MeV. Fragment proton numbers (shown on the upper
axis) are obtained as Zf = 46(1 + αg).

the 4D shape subspace associated with that elongation. The
ridge location in the (q2,αg) plane is displayed in Fig. 3, and
the color (type of line) of the ridge line indicates if the potential
energy of the ridge is above or below the total energy of the
nucleus. One should here keep in mind the 5D character of
the overall potential. If q2 and αg were the only two shape
parameters, the grid points on the ridge colored red (solid
dark gray) would receive no visits. With the additional shape
parameters describing the fragment deformations and neck
radius, it is possible to obtain a lower potential energy at the
same q2 and αg . While these points can be visited, adding to
the number of visits in Fig. 3, it is not possible for random
walks in the 4D shape subspace to reach the symmetric valley
if the energy is below the ridge potential energy. To reach
symmetry the walk must proceed to larger elongations where
the ridge between the asymmetric valley and the symmetric
valley becomes lower than 6.55 MeV, which takes place around
q2 ∼ 7; see Fig. 4.

This implies that the distribution of tracks ending up with
symmetric fission, Fig. 3(b), is markedly different from the
total distribution, Fig. 3(a), at elongations exceeding q2 ≈ 7
where the bifurcation occurs. If the ridge is surmounted the
nucleus assumes a more symmetric shape and drifts towards
larger elongation in the down-sloping symmetric valley. In the
symmetric valley, the critical neck radius (at which the walk
is terminated) typically occurs for elongations above q2 ≈ 14.
The random walks therefore proceed to the upper central part
in the figure. However, due to the end of the deformation grid
at q2 = 15.7 there is a local pileup as the tracks explore the
shape space until the neck radius c shrinks below c0. The
extracted fragment mass distribution is practically unaffected
by this artifact.

Figure 5 shows the distribution of end points for the random
walks where the neck radius for the first time becomes smaller
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FIG. 6. Logarithm of the ergodicity ratio, log10(r), where r is
given by Eq. (13), for 236U with Eexc = 6.55 MeV.

than the critical value and the mass split of the fission event
is registered. The most probable end point has αg = ±0.16,
q2 = 9.2 [corresponding to the asymmetric peak in the charge
yield in Fig. 10 (see Sec. IV D), Zf = 38/54].

As noted above, symmetric fission events occur at larger
elongations, shown by the local maximum in the top center of
Fig. 5. This bimodal character of the end-point distribution
reflects the asymmetry dependence of the shell-correction
energy in the scission region: For asymmetric shapes the
combined shell correction of the two prefragments encourages
early neck formation, while the more symmetric configurations
have a smaller shell energy.

Because the shape evolution inside the last barrier, q2 �
5, is largely diffusive, one would expect a large degree of
equilibration to occur in the regime of compact configurations,
prior to the negotiation of the last barrier. By contrast, the
subsequent drift-dominated descent towards scission proceeds
relatively rapidly and is expected to have a nonequilibrium
character.

A quantitative measure of the degree of local equilibration
is given by the ratio between the mean number of site visits
during the walks and the local level density,

rIM = N
∑

JKL n̄IJKLM∑
JKL ρIJKLM (Eexc)

, (13)

that we shall refer to as the “ergodicity ratio.” Here n̄IJKLM

is the average number of visits to the shape lattice site
having the indices I,J,K,L,M per walk, and ρIJKLM (Eexc)
is the level density for that shape at the local excitation
energy, E∗ = Eexc − [UIJKLM − U (χgs)]. In the sum over
level densities only visited lattice sites are included. The
constant N normalizes the ergodicity ratio to unity at the site
of the second minimum.

Equilibration implies r ≈ 1. The ergodicity ratio is shown
in Fig. 6. The density of visits is relatively equilibrated up
to elongation q2 = 5, in agreement with the observation from
Fig. 3. The equilibrated region thus ends around the outermost
saddle point in the potential-energy landscape. Beyond this
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FIG. 7. Angular-momentum dependence of the yield for 234U
at two different excitation energies, (a) Eexc = 6.84 MeV and (b)
11 MeV. The values I = 0,1, . . . ,9 for the compound nucleus are
considered. The yield curves for the different angular momenta are
on top of each other, except for I = 0 at the thermal-neutron induced
fission energy Eexc = 6.84 MeV.

elongation, the above mentioned drift towards larger defor-
mation sets in, while the level density keeps increasing. Thus,
these grid points must be visited less frequently than suggested
by the accessible level density.

As points along the mean scission elongation (thick black
line) have different ergodicity ratios the yield distribution is
not proportional to the level density at scission shapes. This is
assumed in some statistical scission models and was shown to
be an oversimplification in Ref. [18].

B. Angular-momentum dependence

If there is no neutron or photon emission during the shape
evolution, the angular momentum I of the fissioning system is
conserved. In the current treatment, this implies that the level
densities employed in the Metropolis walk should be evaluated
for the given fixed angular momentum I at all the different
shapes χ . For s-wave neutron-induced fission the compound
system acquires one of two possible I values, namely It ± 1

2
where It is the angular momentum of the target nucleus.

To see how the fragment yields change with angular mo-
mentum, we consider fission of 234U for I = 0,1, . . . ,9. The
resulting charge yields are shown in Fig. 7. For the excitation
energy Eexc = 6.84 MeV, the angular momentum I = 0 gives
the smallest asymmetric peak and largest symmetric yield. The
peak yield increases when I is increased for I = 1,2, while
the remaining angular momenta give virtually the same yields.
For Eexc = 11 MeV the yields are practically independent
of I .

A basic feature of the level density is the amount of
rotational energy contained in the local excitation energy,
proportional to I (I + 1). Increasing the rotational energy
decreases the intrinsic energy, effectively making the system
cooler, and should thus decrease the symmetric yield. This is
borne out to some degree in Fig. 7(a). This simple picture

is complicated by the fact that the level density can have
a complex dependence on the angular momentum for low
energies, including odd-even I staggering [20].

At sufficiently high excitation energies, the level densities
show a smooth dependence on the angular momentum I , cf.
the inset in Fig. 2. This implies that the ratio of level densities at
adjacent lattice sites is insensitive to changes in I , and therefore
the fragment yields in Fig. 7(b) show little dependence on
angular momentum.

Because the yields are sensitive to the angular momentum
I only at low excitation energies, the specific I value used for
the compound nucleus will influence the results mainly when
comparing to low-energy data. The calculations below have
been carried out using I = It + 1

2 .

C. Comparison with previous calculations
and experimental data

As mentioned in Sec. I, the energy dependence of fission
fragment yields was previously treated using an ad hoc energy-
dependent suppression function to describe the diminishing
influence of the shell and pairing structure when Eexc is
increased, corresponding to using an effective level density,
ρeff, in Eq. (10) [2]. The suppression function was adjusted
for the case of 234U, where high-quality data exist for charge
yields at two different energies. In the Appendix we show the
correspondence between the present treatment and the earlier
description with a phenomenological suppression function.

Figure 8 shows the calculated charge yields for 234U,
compared with yields obtained using the previous treatment
with ρeff (cf. Fig. 4 in Ref. [2]) and with experimental data. The
results for excitation energy Eexc = 6.84 MeV are similar, and
both are in good agreement with data. For Eexc = 11 MeV, the
current approach correctly reproduces the symmetric yield of
around 2%. On the other hand, the yields for highly asymmetric
splits are too large. The yields for Eexc = 16 MeV are quite
similar in both approaches. It is noteworthy that our treatment
captures most of the nontrivial energy dependence of the yields
without the use of any adjustable parameters.

The charge yield for 226Th at excitation energy Eexc =
11.20 MeV, and yields for 236U and 240Pu corresponding to
235U(nth,f ) and 239Pu(nth,f ) are compared to experimental
data in Fig. 9.

The largest difference between the current and previous
treatments occur for 226Th. Using the microscopic level-
density results in a lower symmetric yield, more in line with
the experimental data. However, both calculations obtain the
peak asymmetric yield at Z = 33, whereas the experimental
data is peaked at Z = 36. (It was demonstrated in Ref. [18]
that in this case the location of the asymmetric peak is quite
sensitive to the deformation dependence of the Wigner term in
the macroscopic energy, which is poorly understood.)

There is a very good agreement between calculation
and experiment for 236U in both treatments. For 240Pu the
asymmetric peaks are slightly lower than the data, and the
symmetric valley and the far asymmetric shoulders are slightly
higher, with the largest deviations occurring for the treatment
using microscopic level densities.
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FIG. 8. Fission-fragment charge yields for 234U at three different
excitation energies: (a) Eexc = 6.84 MeV, (b) 11 MeV, and (c) 16 MeV.
The blue solid curves have been obtained with the microscopic
level densities, while the dashed red curves were calculated with
the effective level density ρeff introduced in Ref. [2]. The results for
Eexc = 6.84 MeV are compared to (nth,f ) data [21], while those for
Eexc = 11 MeV are compared to (γ,f ) data [22].

D. Energy dependence of yields

The transition from asymmetric to symmetric fission with
increasing energy in the actinides is usually associated with
the so called “melting of shell structure,” with the yield
gradually assuming the symmetric form characteristic of the
macroscopic limit. This feature should automatically appear
when the microscopic level densities are used, as discussed in
Sec. II B.

Figure 10 shows the calculated charge yields from fission
of 236U at different excitation energies. As the energy is
increased, the shape diffusion process can more directly enter
the symmetric valley, both because it can surmount the ridge
already at smaller elongations and because of the gradual
attenuation of the microscopic effects in the level density. As a
result, there is a marked increase in the symmetric component
of the mass distribution as Eexc is increased from 6.55 to
11.55 MeV. At still higher energies the effects of pairing
and shell structure are strongly suppressed, as illustrated in
Fig. 1 and applied in the accurate extrapolation of the level
density, Eq. (8). Consequently, the level density at high energy
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FIG. 9. 226Th charge yields obtained using either the microscopic
level density (blue solid line) or effective level-density parametriza-
tion [2] (red dashed line), compared to various experimental data: (a)
226Th(γ,f ) [22], (b) 235U(nth,f ) [21], and (c) 239Pu(nth,f ) [21]. It
is not within the present scope of the models to treat the odd-even
staggering seen in the data.
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squares show various experimental data from Refs. [22] (A), [21]
(B), [21] (C), and [23] (D); the charge yields from Ref. [22] have
been multiplied by Z/A.

is essentially determined by the excitation energy above the
macroscopic liquid-drop energy, which will favor symmetric
shapes at all elongations and lead to a wide mass distribution
centered at symmetry.

The calculated yields correspond to first-chance fission. At
excitation energies above ≈11 MeV the system is above the
second-chance fission threshold, with an increasing relative
probability of multichance fission as the energy is further
increased. Therefore the results in Fig. 10 cannot be com-
pared directly to experiments with, e.g., high-energy neutrons
impinging on 235U.

Figure 11 shows calculated and experimental mass yields
at symmetry as a function of excitation energy for 226Th, 234U,
and 240Pu. (To compare with the GSI data [22], the measured
charge yield at symmetry Y (Zf) has been multiplied Z/A,
where Z and A are the charge and mass numbers of the
compound nucleus.) The general increase of the symmetric
yield with increasing excitation energy is well reproduced
by the calculations. However, for 240Pu, the calculations
overpredict the symmetric yield by about a factor of 10.

In Fig. 11, the results from using the microscopic level
densities are compared with calculations using the recipe of
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FIG. 12. Mass yields (logarithmic scale) at symmetry for 236U
shown versus excitation energy. The calculated results (blue circles)
are compared with experimental data A (open squares) from Ref. [24]
and B (filled squares) from Ref. [21]. Results of two additional
calculations are also shown, one where the level densities are obtained
without pairing (green crosses) and one where the pairing strength
is increased by 25% (triangles). The potential-energy surface used in
the three calculations is the same, consistent with standard pairing.

Ref. [2] in which the microscopic contributions to the potential
energy are attenuated by means of an adjusted suppression
function. The latter method yields a monotonic increase of
the symmetric yield with increasing energy, while the use
of microscopic level densities leads to a more complicated
structure showing bumps in the yield.

To examine more closely this non-monotonic behavior,
Fig. 12 displays results for the nucleus 236U obtained with
different strengths of the pairing interaction entering into the
microscopic level densities. With the standard parameters, the
yield at symmetry has a local maximum at Eexc = 7 MeV,
followed by a local minimum at 8 MeV. This bump is followed
by a second bump ending with an inflection at around 10 MeV.
The experimental data show a qualitatively similar behavior,
in particular a local maximum at Eexc = 7 MeV, although
the calculated yields generally exceed the data by a factor of
3–10.

The nonmonotonic behavior of the symmetric yield seen in
Figs. 11 and 12 has its origin in the structure of the microscopic
level density related to pairing. To highlight the effect of
pairing, two additional calculations of the symmetric fission
yield of 236U were performed based on different microscopic
level densities: one where the pairing is increased to produce
a 25% larger mean pairing-gap and another without any
pairing. In order to make the interpretation of the results
more straightforward, the potential energy (obtained with the
standard pairing strength) was kept the same. For any given
excitation energy Eexc, the local excitation energy at each shape
is then the same in all three calculations.

Figure 12 shows that the symmetric yield is highly sensitive
to the pairing properties of the level density. As the pairing is
increased the two bumps in yield as a function of excitation
energy are more pronounced. Without pairing the symmetric
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FIG. 13. Level densities at the first three accessible points along
the ridge separating the asymmetric and symmetric valleys.

yield is generally larger and increases smoothly with excitation
energy. These features resemble features of the level density:
without pairing the level density is a smoothly increasing
function from the lowest energy state, while pairing creates
a gap in the level density and introduces more structure.
When the pairing-free level density is used, the absence
of a gap produces a larger level density at a given local
excitation energy. The increase is larger at shapes with positive
shell-correction energies, as the single-particle level density
and the pairing gap are both larger.

As discussed and illustrated in Sec. IV A, when fissioning at
low energy the nucleus starts out being asymmetric and in order
to acquire symmetric shapes the ridge must be surmounted (see
Fig. 4). The probability of crossing the ridge depends strongly
on the level density for shapes around the ridge.

Figure 13 shows the level density as a function of the
excitation energy Eexc for three shapes along the ridge. The
shell energy Esh for these deformations is positive, yielding
a dense single-particle spectrum and a large pairing gap. The
level densities have bumps characteristic of the quasiparticle
structure of low-lying excitations: The ground state has no
quasiparticle excitations; the two-quasiparticle states begin to
appear above a gap caused by the breaking of a pair, and
after yet another pair-breaking the four-quasiparticle states
follow. This structure creates the bumps in the level density
(cf. Ref. [25]). It should be recognized that the ridge may
be surmounted not just at a single crossing point in the
5D shape space, but at many different locations along the
ridge line, which implies an entire distribution of effective
ridge energies. At each of these shapes, the level density
will qualitatively display the structure shown by the three
examples on Fig. 13. Tentatively, one may ascribe the local
maximum in the symmetric yield in Fig. 12 to the onset
of two-quasiparticle states and the bump around 9 MeV
to the onset of four-quasiparticle states. A stronger pairing
produces a larger gap and, consequently, shifts this structure
to correspondingly higher excitation energies.

V. CONCLUSIONS AND OUTLOOK

We have refined the Metropolis-walk approximation to
the Brownian-motion treatment of fission dynamics [1] by
employing microscopic local level densities obtained by the
recently developed combinatorial method [6]. Because the
single-particle levels used are the same as those employed
for the macroscopic-microscopic calculation of the potential-
energy surfaces, the approach is consistent and no new
parameters need be introduced. Moreover, the combinatorial
procedure provides access to the level density for a fixed value
of angular momentum.

In order to reduce the considerable computing effort
required for calculating the level density up to sufficiently
high excitations, we employ an analytical extension above
≈6 MeV where the combinatorial level density has be-
come smooth. This procedure uses a damped backshift of
the excitation energy based on the local pairing and shell
energies. In this manner, we have obtained the local level
density ρ(N,Z,E,I ; χ ) for over five million shapes of several
nuclei in the uranium region and for angular momenta up
to I = 9.

Using these parameter-free microscopic level densities
with the Metropolis-walk method, we calculate fission frag-
ment charge distributions for 226Th, 234,236U, and 240Pu.
The agreement with experimental data was on par with
or better than the yields obtained previously with a phe-
nomenological level-density parametrization [2]. The angular-
momentum dependence of the fission yields was found to
be relatively small and decreasing with increasing excitation
energy.

Because the microscopic level densities automatically
contain the diminishing effects of pairing correlations and
shell structure, the present refined model makes it possible
to make more detailed predictions for the energy dependence
of the fission yields. The gradual transition from asymmetric
to symmetric fission and the detailed energy dependence of
the symmetric yield were studied.

Particularly interesting is the finding that the symmetric
fragment yield is not monotonically increasing with excitation
energy. This perhaps counterintuitive effect appears to be a
result of the large pairing correlations for shapes with positive
shell-correction energies separating the asymmetric-fission
path from symmetric shapes. It is in this connection intriguing
that a recent experiment has reported a nonmonotonic energy
dependence of the asymmetric peak shape in the fragment
mass yields for fission of 240Pu [26]. We plan to investigate
these phenomena in more detail.

The present refined model provides a consistent and com-
putationally manageable theoretical framework for studying
large-scale collective motion of warm nuclear systems far
from equilibrium and, in particular, it provides a unique
tool for calculating energy-dependent fission fragment mass
distributions. The present work extends the use of microscopic
level densities from nuclei in shape equilibrium to arbitrary
shapes, and our present studies have revealed the intriguing
possibility that the pairing interaction in shapes far from
equilibrium may manifest itself in a measurable manner
through the energy dependence of the fission yields.
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APPENDIX: EFFECTIVE POTENTIAL

In the earlier approximative treatment [2], the gradual
attenuation of the microscopic structure effects was taken into
account by replacing the true potential U , Eq. (12),

U (χ) = Umacro(χ) + Umicro(χ )

= Umacro(χ) + Esh(χ ) + Epc(χ) − Ẽpc(χ), (A1)

with an energy-dependent effective potential UE ,

UE(χ ) = Umacro(χ) + S(Eintr(χ)) [Esh(χ)

+Epc(χ) − Ẽpc(χ)], (A2)

where Eintr(χ ) = E − U (χ) is the local excitation energy
and S(Eintr) is a phenomenological suppression function that
decreases monotonically from S(0) = 1 towards zero as Eintr

is increased. Thus the effective potential UE equals the true
potential U for Eintr = 0, whereas it approaches Umacro as Eintr

grows large.
Such a simple and intuitively appealing description is

generally not possible in the present treatment based on
microscopic level densities. However, a correspondence exists
above the matching energy Em where the level density is given
an analytical form. In that energy regime, one may define the
effective potential as

Ũ (χ) = U (χ) − [Ẽintr(χ) − Eintr(χ )]

= Umacro(χ) − Ẽpc(χ)

+ e−Eintr(χ )/Ed,shEsh(χ) + e−Eintr(χ )/Ed,pcEpc(χ ),

(A3)

where the expression (7) for Ẽintr has been used. Thus the
single suppression function S(Eintr) used in Ref. [2], which
acted on the combined shell and pairing corrections, has been
replaced by two separate suppression functions,

Ssh(Eintr) = e−Eintr(χ )/Ed,sh , (A4)

Spc(Eintr) = e−Eintr(χ )/Ed,pc , (A5)

acting on the shell correction and pairing condensation,
respectively.
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[20] S. Åberg, B. G. Carlsson, Th. Døssing, and P. Möller, Nucl.
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