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Internal and external radiative widths in the combined R-matrix and potential-model formalism
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By using the R-matrix approach we calculate the radiative width for a resonance decaying to a bound state
through electric-dipole E1 transitions. The total radiative width is determined by the interference of the nuclear
internal and external radiative width amplitudes. For a given channel radius the external radiative width amplitude
is model independent and is determined by the asymptotic normalization coefficient (ANC) of the bound state
to which the resonance decays. It also depends on the partial resonance width. To calculate the internal radiative
width amplitude we show that a single-particle-potential model is appropriate. We compare our results with a
few experimental data.
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I. INTRODUCTION

In nuclear astrophysics several important nucleon capture
reactions take place through resonance states which then decay
to bound states. The total capture cross section for such
reactions is then given by the interference of resonant and
nonresonant contributions. Many theoretical models for reso-
nant and nonresonant cross sections require proper knowledge
of the initial and final state and the nature and multipolarity of
the transition [1–4]. In addition, the resonant cross section can
also be expressed in terms of the radiative width and the partial
width of the resonance [1–3]. In fact, the radiative width is one
of the important observables whose precise value is required
in order to accurately determine the resonance capture cross
sections.

The radiative width amplitude in terms of the initial (�)
continuum and final (φ) bound-state wave functions can
be written as 〈φ|Ô|ψ〉, with Ô being the electromagnetic
operator. To calculate it, the R-matrix approach is often
used [1–3,5,6]. In the R-matrix approach the radiative width
amplitude is given by the sum of the nuclear internal
and external (channel) parts. The channel radiative width
amplitude depends only on one model parameter; namely, the
channel radius, and for a given channel radius the channel
radiative width amplitude is model independent. Apart from
this, to calculate the channel radiative width amplitude one
needs to know two observables: the ANC of the final bound
state and the partial resonance width. Therefore, with precise
knowledge of these quantities, the channel radiative width
amplitude can be calculated quite accurately. The channel
radiative width amplitude is a complex quantity and its
imaginary part puts a lower limit on the radiative width [6].
Contrary to this, the internal radiative width amplitude is a
real and model-dependent quantity. In the R-matrix method
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the internal radiative width amplitude is usually taken as a
fitting parameter.

In this paper we use the single-level R-matrix approach
along with the single-particle-potential model to calculate the
radiative width, where the internal radiative width amplitude
and its sign relative to that of the external radiative width
amplitude are calculated by using a potential model consis-
tently [7]. This work follows the R-matrix formalism presented
in Refs. [2,3,6]. The radiative width amplitude is split into
two parts, internal and external. The internal radiative width
amplitude and the relative sign of the internal and external
radiative width amplitudes were fitting parameters. In Ref. [6]
the calculated external width amplitude was used to to set a
lower limit on the radiative width amplitude. Our work presents
a further development of the R-matrix formalism developed in
Refs. [2,3,6] by calculating the internal width amplitude and
its sign rather than using them as fitting parameters. After
calculating the internal width amplitude we calculate also
the total radiative width. We consider both the decay of the
resonances to bound states and the decay of the subthreshold
resonance to the bound state to be important for nuclear
astrophysics.

This paper is organized in the following way: In Sec. II, we
describe our formalism to calculate the internal and external
radiative width amplitudes and the total radiative width. In
Sec. III we discuss few practical cases and present our
calculated radiative widths for those. Our conclusions are
presented in Sec. IV. We use the system of units in which
h̄ = c = 1.

II. FORMALISM

We consider the radiative capture reaction x + A → B∗ →
B + γ , where the intermediate resonance B∗ decays to final
bound state B = (xA). We define �

(+)
i as the initial scattering

wave function and φB as the final bound-state wave function.
Let R be the channel radius, which divides the internal
and external regions of the resonance system (x + A = B∗)
having relative momentum k in the initial state. For very low
initial energies (1/k � R), one can use the long-wavelength

2469-9985/2017/95(2)/024616(8) 024616-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.95.024616


MUKHAMEDZHANOV, SHUBHCHINTAK, BERTULANI, AND HAO PHYSICAL REVIEW C 95, 024616 (2017)

approximation allowing one to treat the individual particles as
structureless. Then the initial scattering wave function can be
written as

�
(+)
i = φxφA�

(+)
li

, (1)

where φx and φA are the internal-state wave functions of nuclei
x and A, respectively, and �

(+)
li

is the scattering wave function
in the partial wave li . In the long-wavelength approximation,
one can write the reaction amplitude as [6]

M =
√

8π (L + 1)

L

k
L+1/2
γ

(2L + 1)!!
√

2Jf + 1
〈φB |ÔL

∣∣φxφA�
(+)
li

〉

=
√

8π (L + 1)

L

k
L+1/2
γ

(2L + 1)!!
√

2Jf + 1

〈
IB
xA

∣∣ÔL

∣∣�(+)
li

〉
. (2)

The integration in Eq. (2) is performed over r . ÔL is the
electromagnetic transition operator of multipolarity L, which
in the long-wavelength approximation depends only on the
distance r between the center of mass of x and of A, kγ is
the wave number of the photon, and Jf is the spin of the final
bound state. IB

xA is the radial overlap function of the bound
state of nuclei x, A, and B given by IB

xA = 〈φxφA|φB〉 where
the integration is performed over the internal coordinates of
nuclei x and A. Hence IB

xA depends only on r .
Following the R-matrix formalism we split the scattering

wave function into two parts: the internal (�(+)
li ,int, for r �

R) and external (�(+)
li ,ext, for r � R). Because of the linear

dependence of the total radiative capture amplitude on �
(+)
li

,
we can write it as the sum of the internal and external radiative
capture amplitudes,

M = Mint + Mext, (3)

where

Mint =
√

8π (L + 1)

L

k
L+1/2
γ

(2L + 1)!!
√

2Jf + 1

× 〈
IB
xA

∣∣ÔL

∣∣�(+)
li ,int

〉∣∣
r�R

, (4)

and

Mext =
√

8π (L + 1)

L

k
L+1/2
γ

(2L + 1)!!
√

2Jf + 1

× 〈
IB
xA

∣∣ÔL

∣∣�(+)
li ,ext

〉∣∣
r�R

. (5)

It is clear that Mint is contributed by the radial integral taken
over the nuclear interior (r � R) whereas Mext is contributed
by the radial integral over the nuclear exterior (r � R).

In the single-channel R-matrix method, the internal wave
function for the case of an isolated narrow resonance is given
for r � R by [2]

�
(+)
li ,int(k,r) = −ie

−iδhs
li

[
�

(0)
Ji

]1/2

ER − E − i
�

(0)
Ji

2

Xint(k,r), (6)

where δhs
li

is the hard sphere scattering phase shift for the partial
wave li , E = k2/2μ is the x − A relative kinetic energy, μ is
their reduced mass, ER is the real part of the resonance energy,

and Xint is the real internal R-matrix wave function of the level
closest to the resonance.1 �

(0)
Ji

is the observed partial width of
the resonance having spin Ji for the decay to the channel
x + A. It is related to the observed reduced width (γ (0)

Ji
)2 as

�
(0)
Ji

= 2Pli (E)
(
γ

(0)
Ji

)2
, (7)

where Pli (E) is the penetrability factor and li is the orbital
angular momentum of the resonance in the channel x + A.
The observed reduced width is given by(

γ
(0)
Ji

)2 = (
γJi

)2
Ni, (8)

with [1,8]

Ni = 1

1 − d	li
(E,R)

dE

∣∣
E=ER

(9)

and

	li (E,R) = −kR
F ′

li
(k,r)Fli (k,r) + G′

li
(k,r)Gli (k,r)

F 2
li

(k,r) + G2
li
(k,r)

∣∣∣∣
r=R

γ 2
Ji
,

(10)

where γJi
is the R-matrix formal reduced width amplitude, and

Fli and Gli are the regular and singular Coulomb solutions,
respectively. The prime stands for the differentiation over
ρ = kr .

In this work we calculate the internal R-matrix wave
function Xint by using the potential model [7], where the
scattering potential is adjusted to reproduce the resonance at
the right position. The wave function Xint is normalized to
unity over the internal region:∫ R

0
drX2

int(k,r) = 1. (11)

The scattering wave function in the external region (r � R)
is given by

�
(+)
li ,ext(k,r) =

√
1

v

[
Ili (k,r) − Sli Oli (k,r)

]
, (12)

where v = k/μ is the x − A relative velocity, Ili and Oli are the
incoming and outgoing spherical waves in the partial wave li
and Sli is the elastic-scattering S-matrix element. The elastic-
scattering S-matrix element is given by

Sli = e
−2iδhs

li

⎛
⎝1 + i�

(0)
Ji

ER − E − i
�

(0)
Ji

2

⎞
⎠. (13)

In the R-matrix approach the hard-sphere scattering phase
shift (δhs

li
) is given by

e
−2iδhs

li = Ili (k,R)

Oli (k,R)
. (14)

Using Eq. (13) we can rewrite the external wave function
�

(+)
li ,ext(k,r) as

�
(+)
li ,ext(k,r) = �

(+)(NR)
li ,ext (k,r) + �

(+)(R)
li ,ext (k,r). (15)

1In this paper we use the single-level R-matrix approach.

024616-2



INTERNAL AND EXTERNAL RADIATIVE WIDTHS IN THE . . . PHYSICAL REVIEW C 95, 024616 (2017)

Here,

�
(+)(NR)
li ,ext (k,r) =

√
1

v

[
Ili (k,r) − e

−2iδhs
li Oli (k,r)

]
(16)

is the external wave function contributing to the nonresonant
radiative capture in the R-matrix approach and

�
(+)(R)
li ,ext (k,r) = −

√
1

v

i�
(0)
Ji

ER − E − i
�

(0)
Ji

2

e
−2iδhs

li Oli (k,r), (17)

is the external wave function contributing to the resonant
capture in the external region.

Correspondingly, the external radiative capture amplitude
Mext can be split into two parts:

Mext = MNR + M
(R)
ext , (18)

where

MNR =
√

8π (L + 1)

L

k
L+1/2
γ

(2L + 1)!!
√

2Jf + 1

× 〈
IB
xA

∣∣ÔL

∣∣�(+)(NR)
li ,ext

〉∣∣
r�R

(19)

is the nonresonant radiative capture amplitude in the R-matrix
approach and

M
(R)
ext =

√
8π (L + 1)

L

k
L+1/2
γ

(2L + 1)!!
√

2Jf + 1

× 〈
IB
xA

∣∣ÔL

∣∣�(+)(R)
li ,ext

〉∣∣
r�R

. (20)

is the external radiative capture amplitude in the R-matrix
approach. Then, in the R-matrix approach, we can write the
radiative capture amplitude as

M = M (R) + M (NR). (21)

It is worth noting that, in the R-matrix method, the radiative
capture amplitude is split into a resonant part, which is
contributed by both internal and external amplitudes, and the
nonresonant amplitude, which is entirely contributed only by
the external nonresonant radiative capture while the internal
nonresonant radiative capture is absorbed into the internal
resonant capture.

The resonant radiative capture amplitude is

M (R) = Mint + M
(R)
ext

=
√

8π (L + 1)

L

k
L+1/2
γ

(2L + 1)!!
√

2Jf + 1

〈
IB
xA

∣∣ÔL

∣∣�(+)
li ,int

〉∣∣
r�R

+
√

8π (L + 1)

L

k
L+1/2
γ

(2L + 1)!!
√

2Jf + 1

〈
IB
xA

∣∣ÔL

∣∣�(+)
li ,ext

〉∣∣
r�R

.

(22)

Matching the internal and external wave functions at the
channel radius R we get at E = ER:

Xint(kR,R) =
√

μ

kR

√
�Ji

√
F 2

li
(kR,R) + G2

li
(kR,R)

=
√

2μRγ
(0)
Ji

, (23)

where ER = k2
R/(2μ), �

(0)
Ji

= 2Pli (E)(γ (0)
Ji

)2, γ
(0)
Ji

is the ob-
served reduced width amplitude in the R-matrix approach,
Pli (E) = kR/[F 2

li
(k,R) + G2

li
(k,R)] is the penetrability factor.

Thus early introduced Eq. (6) provides the correct R-matrix
definition of Xint at r = R in terms of the reduced width
amplitude; see Eq. (iV.1.10a) in Ref. [1].

Using Eqs. (6) and (17) we get from Eqs. (4) and (20) the
internal and external radiative capture amplitudes:

Mint = −ie
−iδhs

li

√
�

(0)
Ji

γ
Ji

γ Jf
(int)

ER − E − i
�

(0)
Ji

2

, (24)

and

Mext = −ie
−iδhs

li

√
�

(0)
Ji

γ
Ji

γ Jf
(ch)

ER − E − i
�

(0)
Ji

2

+ Mnr, (25)

where Mnr is the external part of nonresonant (direct)
radiative capture amplitude. The internal part of the direct
radiative capture amplitude is absorbed in Mint. In the above

equations quantities γ
Ji

γ Jf
(int) and γ

Ji

γ Jf
(ch) are the internal and

external (channel) radiative width amplitudes for the decay of
resonance with spin Ji to the bound state having spin Jf . They
are given by

γ
Ji

γ Jf
(int) =

√
8π (L + 1)

L

k
L+1/2
γ

(2L + 1)!!
√

2Jf + 1

× 〈
IB
xA(r)

∣∣ÔL|Xint(r)〉∣∣
r�R

, (26)

and

γ
Ji

γ Jf
(ch) =

√
8π (L + 1)

L

k
L+1/2
γ

(2L + 1)!!
√

2Jf + 1

√
μ

k
�

(0)
Ji

× 〈
IB
xA(r)

∣∣ÔL

∣∣e−iδhs
li Oli (r)

〉∣∣
r�R

. (27)

In the potential model, the radial overlap function IB
xA(r)

can be expressed in terms of the bound-state wave function as

IB
xA(r) =

√
Slf Jf I φ

B
lf Jf I (r), (28)

where Slf Jf I is the spectroscopic factor of the final bound
state with lf being the x − A relative angular momentum of
the bound state and I is the channel spin. The tail of the
bound-state wave function behaves as

φB
lf Jf I (r)

r>R≈ blf Jf IW−ηf ,lf +1/2(2κf r), (29)
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where W−ηf ,lf +1/2(2κf r) is the Whittaker function, κf is the
bound-state wave number, and ηf is the Coulomb parameter
of the bound state. blf Jf I is the single-particle ANC and its
value depends on the bound-state potential. Therefore, in the
external region the overlap function becomes

IB
xA(r) = Clf Jf I W−ηf ,lf +1/2(2κf r), (30)

where

Clf Jf I = blf Jf I

√
Slf Jf I (31)

is the ANC of the final bound state.

Now we discuss the expressions for the internal and
channel radiative width amplitudes, which correspond to both
“resonance → bound state” and “subthreshold resonance
→ bound state” transitions. Note that for the transition
“subthreshold resonance → bound state” the resonance energy
is negative: ER = −εi , where εi is the binding energy of the
subthreshold state. For nuclear astrophysical application we
are interested in the radiative capture cross sections at E → 0.

Following Refs. [3,6,8], the internal and channel radiative
width amplitudes for “the resonance to bound-state” transi-
tions at the resonance energy (E = ER) are then simplified to
(in MeV and fm units)

γ
Ji

γ Jf
(int) =

√
Slf Jf I

√
λN931.5

137E
(Rkγ )L+ 1

2 μL

(
Zx

mL
x

+ (−1)L
ZA

mL
A

)√
(L + 1)(2L + 1)

L

1

(2L + 1)!!

√
kR

√
(2li + 1)(2Jf + 1)

× (−1)L+lf +I+Ji C
lf 0
li0L0

{
L lf li

I Ji Jf

}
1

RL+1

√
k

μ

∫ R

0
drrLφB

lf Jf I (r)Xint(k,r)N1/2
i , (32)

and

γ
Ji

γ Jf
(ch) = Clf Jf I

√
λN931.5

137E
(Rkγ )L+ 1

2 μL

(
Zx

mL
x

+ (−1)L
ZA

mL
A

)√
(L + 1)(2L + 1)

L

1

(2L + 1)!!

√
�

(0)
Ji

√
kR

√
(2li + 1)(2Jf + 1)

× (−1)L+lf +I+Ji C
lf 0
li0L0

{
L lf li

I Ji Jf

}
1

RL+1

∫ ∞

R

drrLW−ηbs
f ,lf +1/2(2κr)e−iδhs

Oli (k,r), (33)

where λN = 0.2118 fm is the nucleon Compton wavelength,
Zi and mi are the charge and mass of particle i, C

lf 0
li0L0 is the

Clebsch–Gordan coefficient and the quantity in curly bracket is
the 6-j symbol. Note that the above radiative width amplitudes
are expressed in MeV1/2. All masses are expressed in units of
MeV/c2, E and �

(0)
Ji

are in MeV, and the wave number is in
fm−1. The bound-state wave function φB

lf Jf I (r) in Eq. (32) is
normalized to unity over the whole radial space (0 � r < ∞)
and is calculated by solving the Schrödinger equation with a
Woods–Saxon (WS) potential, whose parameters are adjusted
to get the corresponding binding energy of the state. The
resonance-scattering wave function in the internal region is
given by Xint, which is normalized to unity over the internal
region. The channel radiative width amplitude is proportional
to [�(0)

Ji
]1/2.

For the calculations of internal radiative width amplitude
in the case of subthreshold to the bound-state transition, the
factor N

1/2
i should be dropped. The resonance width of the

subthreshold resonance is given by [9]

�
(0)
liJi I

= 1

μ
Pli (E)

[
W−ηbs

i ,li+ 1
2
(2κiR)

]2

R

(
CliJi I

)2
, (34)

where li , Ji , and I are the orbital angular momentum, spin,
and channel spin of the subthreshold state, respectively. κi and
ηbs

i are the bound-state wave number and Coulomb parameter
of the subthreshold bound state. CliJi I is the ANC of the
subthreshold bound state.

It is clear that the internal radiative width amplitude is real
because it involves the product of the real wave functions
φB

lf Jf I (r) and Xint. On the other hand, the channel radiative

width amplitude contains the complex function e−iδhs
Oli (k,r)

and therefore is a complex quantity. Furthermore, the channel
radiative width amplitude has only one model-dependent
parameter, which is the channel radius, whereas the internal
radiative width is model dependent.

Once γ
Ji

γ Jf
(int) and γ

Ji

γ Jf
(ch) are calculated from Eqs. (32)

and (33), we can find the total radiative width amplitude:

γ
Ji

γ Jf
= γ

Ji

γ Jf
(int) + γ

Ji

γ Jf
(ch). (35)

The total radiative width �
Ji

γ Jf
is given by the modulus

square of the total radiative width amplitude,

�
Ji

γ Jf
= ∣∣γ Ji

γ Jf

∣∣2 = ∣∣γ Ji

γ Jf
(int) + γ

Ji

γ Jf
(ch)

∣∣2
, (36)

which further can be written as

�
Ji

γ Jf
= ∣∣γ Ji

γ Jf
(int) + Re

[
γ

Ji

γ Jf
(ch)

]∣∣2 + (
Im

[
γ

Ji

γ Jf
(ch)

])2
.

(37)

Re[γ Ji

γ Jf
(ch)] (real part) and γ

Ji

γ Jf
(int) can interfere either

constructively or destructively. Therefore, the imaginary part
of the channel radiative width amplitude Im[γ Ji

γ Jf
(ch)] gives

the lower limit of the radiative width [6].
In the above equations we derived the radiative width at

resonance energy; however, one can calculate it at any positive
energy by using the energy-dependent relations for the partial
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resonance width and radiative width:

�
(0)
Ji

(E) = Pli (E)

Pli (ER)
�

(0)
Ji

(ER), (38)

and

�
Ji

γ Jf
(E) =

(
E + εf

ER + εf

)2L+1

�
Ji

γ Jf
(ER), (39)

where Pli (E) is the barrier penetrability given by

Pli (E) = kR

F 2
li

(k,R) + G2
li
(k,R)

, (40)

and εf is the binding energy of the state to which resonance
decays.

For the decay of the subthreshold resonance to the lower-
lying bound state, the energy dependence of the radiative width
is given by

�
Ji

γ Jf
(E) =

(
E + εf

εf − εi

)2L+1

�
Ji

γ Jf
(−εi). (41)

Using Eq. (37) we can find �
Ji

γ Jf
(E) at E > 0 and then from

Eq. (41) the radiative width at the subthreshold bound state
�

Ji

γ Jf
(−εi) can be easily calculated.

III. RESULTS AND DISCUSSIONS

Using the formalism presented in the previous section,
we now calculate the radiative width amplitudes (internal
and external) for some cases which involve E1 decay of the
resonance to the bound state. The calculated radiative widths
are compared with the corresponding experimental values.
Because we are using the R-matrix approach, the channel
radius R is a model parameter. Usually the channel radius is
determined by using the relation R = 1.4(x1/3 + A1/3), unless
the experimental data for astrophysical factors are available,
and in those cases it is determined by fitting the experimental
data. Here, x means the mass number of a (valence) particle
and A is that of the nucleus. To calculate the external radiative
width amplitude we use the experimental values of the partial
resonance width and ANC of the bound state. Let us consider
some particular cases.

A. Decay of 13N( 1
2

+
, Ex = 2.365 MeV) →

13N( 1
2

−
, Ex = 0 MeV)

We consider the decay of the 1/2+ resonance in 13N
at ER = 0.421 MeV (where ER is the p + 12C resonance
relative kinetic energy) to the ground state 1/2−, having a
proton binding energy εf = 1.944 MeV. This transition plays
an important role in the radiative proton capture 12C +p →
13N +γ reaction, which is the very first reaction of the carbon
nitrogen oxygen (CNO) cycle responsible for the energy
generation in massive stars [10].

The 1/2+ and 1/2− states of 13N are obtained by coupling
the 12C (0+) core with 2s1/2 and 1p1/2 protons, respectively.
We use the experimental ANC for the ground state of 13N,
Clf =1,Jf =1/2,I=1/2 = 1.43 ± 0.09 fm−1/2 [11], and the proton
resonance width 31.7 ± 0.8 keV [12]. Using Eq. (33), the

channel radiative width amplitude calculated for R = 4.6 fm
and for the channel spin I = 1/2 is γ

1/2
γ 1/2(ch) = −0.519 −

i0.018 eV1/2. The determination of γ
1/2
γ 1/2(int) given by Eq. (32)

requires the calculation of the bound-state wave function of
the ground state and resonance wave function in the interior
region (r � R). We adopt the Woods–Saxon potential with
geometry r0 = 1.25 fm and a = 0.65 fm and the depth of the
spin-orbit potential −10 MeV. With these potential parameters,
the potential depths required in order to reproduce the ground
and resonance state energies are Vb = −43.525 MeV and Vc =
−55.90 MeV, respectively (the index b stands for “bound”
and c stands for “continuum”). The single-particle ANC is
blf =1,Jf =1/2,I=1/2 = 2.008 fm−1/2. Then from Eq. (31) we get
that the spectroscopic factor for the ground state is 0.51. These
values yield the internal radiative width amplitude obtained
from Eq. (32) as γ

1/2
γ 1/2(int) = −0.262 eV1/2. Thus, when

calculating the total radiative width the interference between
the internal radiative width amplitude and the real part of the
channel radiative width amplitude is constructive.

The total radiative width calculated using Eq. (37) is
�

1/2
γ 1/2 = 0.61 ± 0.05 eV, which is close to the previously

measured radiative widths 0.65 ± 0.07 [13], 0.67 [14], 0.50 ±
0.04 [12], and 0.45 ± 0.05 [15]. We also checked that with
6.5% variation in the channel radius, the radiative width
changes only by 4%. To calculate the uncertainty 	 of the
total radiative width we use the equation

	 =
√

	2
ANC + 	2

� + 	R2, (42)

where 	ANC, 	� , and 	R are the uncertainties of the
radiative width caused by the uncertainty of the experimental
ANC, of the partial resonance width and the channel radius,
correspondingly. Here, we assigned 10% uncertainty for the
square of the ANC and in all the cases below.

B. Decay of 13O( 1
2

+
, Ex = 2.69 MeV) → 13O( 3

2
−
, Ex = 0 MeV)

We now consider the transition of 1/2+ resonance at
ER = 1.17 MeV in 13O to the ground state 3/2− with
εf = 1.515 MeV. The 1/2+ and 3/2− states of 13O are
obtained by coupling the 12N (1+) core with 2s1/2 and 1p1/2

proton, respectively. The proton resonance width in this case
is 0.45 ± 0.10 MeV [16]. The square of the ANC for the
ground state obtained in Ref. [17] is C2

lf =1,Jf =3/2,j=1/2 =
2.53 ± 0.30 fm−1. This ANC was obtained in the jj coupling
scheme and the last quantum number in the subscript j = 1/2
is the total angular momentum of the proton. However in the
R-matrix method, the LS coupling scheme is used in which
only the channel spin I = 1/2 contributes, so the proton ANC
of the ground state of 13O for the channel spin I = 1/2 is
Clf =1,Jf =3/2,I=1/2 = 2/3Clf =1,Jf =3/2,j=1/2 (see Ref. [17]). For

R = 4.6 fm, the channel radiative width amplitude γ
1/2
γ 3/2(ch)

for this case is 0.601 + i0.187 eV1/2. To calculate the internal
radiative width amplitude, we use the same Woods–Saxon
potential parameters as in Ref. [17]. The values of the
potential depths Vb and Vc in this case are −45.15 MeV
and −51.405 MeV, respectively. The obtained value of the
single-particle ANC is b1,3/2,1/2 = 2.16 fm−1, which for the
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given ANC leads to the spectroscopic factor 0.24. Then for
γ

1/2
γ 3/2(int) we obtain 0.286 eV1/2.

Now, using Eq. (37), we get for the total radiative width for
this transition �

1/2
γ 3/2 = 0.8 ± 0.2 eV, which changes only by

4% if we vary the channel radius by 6.5%. The obtained value
of the total radiative width is close to that reported in Ref. [17]
for a channel radius of 4.25 fm, which is significantly larger
than the value of 24 meV reported in Ref. [18]. In fact, the
radiative width of Ref. [18] is even smaller than the lower limit
of 35 meV of the radiative width obtained from the imaginary
part of the channel radiative width amplitude and has been
questioned in Ref. [6]. Furthermore, the present value of the
radiative width is smaller than the value of 3 eV obtained in
Ref. [16], where a larger value of 1.85 fm−1 of the ANC for
the channel spin I = 1/2 was used.

C. Decay of 17F( 1
2

−
, Ex = 3.104 MeV) →

17F( 1
2

+
, Ex = 0.495 MeV)

This is an example of the resonance decay to the excited
bound state. Here, the 1/2− resonance at ER = 2.504 MeV
of 17F decays to the 1/2+ bound state with the binding
energy εf = 0.105 MeV. The 1/2+ and 1/2− states of 17F
are obtained by coupling of the 16O (0+) core with the 2s1/2

and 1p1/2 protons, respectively. The square of the ANC for the
1/2+ state is 6490 ± 680 fm−1 [19] and the partial resonance
width of the proton is 19 ± 1 keV [20]. From Eq. (33), using
the channel radius R = 4.9 fm and the channel spin I =
1/2, we get γ

1/2
γ 1/2(ch) = −0.202 − i0.179 eV1/2. In this case

the experimental value of radiative width (1.2 ± 0.2) × 10−2

eV [21] is smaller than the lower limit imposed by the
imaginary part of channel radiative width 3.16 × 10−2 eV.

To calculate the internal radiative width amplitude we use
the same potential parameters as in Ref. [22]. The potential
depths Vb and Vc required for this case are −50.70 MeV
and −20.98 MeV, respectively. The single-particle ANC
obtained for the bound state is 79.145 fm−1/2 and therefore
the spectroscopic factor is 1.04. Our calculated γ

1/2
γ 1/2(int) for

this transition is 0.15 eV1/2.
The calculated total radiative width �

1/2
γ 1/2 = (3.5 ± 0.6) ×

10−2 eV is contributed by the destructive interference of the
internal and real part of the channel radiative width amplitudes
and is only slightly higher than the radiative width 3.16 × 10−2

eV obtained from the imaginary part of the channel radiative
width amplitude. The total radiative width changes by 14%
when the channel radius varies by 6%.

D. Decay of 17F( 5
2

−
, Ex = 3.857 MeV) → 17F( 5

2
+
, Ex = 0 MeV)

As a fourth example we consider the decay of the second
resonance 5/2− in 17F at ER = 3.257 MeV to the ground state
5/2+ with the binding energy 0.6 MeV. The 5/2+ and 5/2−
states of 17F are obtained by the coupling the 16O (0+) core with
1d5/2 and 1f7/2 protons, respectively. The measured square
of the proton ANC for the ground state of 17F is 1.08 ± 0.1
fm−1 [19] and the proton resonance width is 1.5 keV [23]. From
our calculations we get γ

5/2
γ 5/2(ch) = −0.049 − i0.0062 eV1/2

for R = 4.9 fm. With the same potential parameters as in the

previous case, the potential depths Vb and Vc required for the
ground and resonance states are −53.45 and −75.59 MeV,
respectively. The single-particle ANC of the ground state of
17F for the adopted bound-state potential is 0.9313 fm−1/2,
which corresponds to the spectroscopic factor 1.24.

Then the calculated internal radiative width amplitude is
−0.164 eV1/2. Thus in this case we obtain the constructive
interference of the internal and external radiative width
amplitudes when calculating the total radiative width, which
is �

5/2
γ 5/2 = 0.046 ± 0.005 eV. Our calculated total radiative

width is almost half of the value 0.11 ± 0.02 eV reported in
Ref. [23]. The use of the upper limit of the ANC results in a 9%
increase of our calculated �

5/2
γ 5/2 while 6% variation of the chan-

nel radius leads to the 4% change of the total radiative width.

E. Decay of 12N(2−, Ex = 1.191 MeV) → 12N(1+, Ex = 0 MeV)

We now consider the decay of the resonance at
ER = 0.591 MeV of 12N with the spin-parity Ji = 2−
to the ground state Jf = 1+ with the binding energy 0.6 MeV.
This transition contributes to the proton-capture reaction
11C +p → 12N + γ , which is an important branching point in
the alternative path from the slow 3α process to produce CNO
seed nuclei [18,24]. In this case the 2− and 1+ states of 12N
are obtained by the coupling of the 11C (3/2−) core with 2s1/2

and 1p1/2 protons, respectively. The proton resonance width
is 51 ± 20 keV [25] and the measured square of the proton
ANC for the ground state of 12N is 1.73 ± 0.25 fm−1 [24]. For
the channel radius R = 4.5 fm and the channel spin I = 2, the
channel reduced width amplitude obtained by using Eq. (33) is
γ 2

γ 1(ch) = 0.173 + 0.029 eV1/2. To calculate the bound-state
wave function φB

lf =1,Jf =1,I=2 and Xint, we use the same
Woods–Saxon parameters as in case A. The potential depths
Vb and Vc are set to −40.67 and −55.18 MeV, respectively.
The calculated value of the internal reduced width amplitude
is γ 2

γ 1(int) = −0.101 eV1/2. It is important that the sign of this
amplitude is negative what determines the destructive inter-
ference between the internal and the real part of the channel
reduced width amplitudes when calculating the total radiative
width.

Using Eq. (37) we get the total radiative width �2
γ 1 = (6.0 ±

5.4) × 10−3 eV for R = 4.5 fm. The calculated radiative
width in this case, due to the destructive interference, is
very sensitive to the choice of the channel radius: for the
channel radius varying between R = 4.2 and 4.8 fm the
total radiative width changes from �2

γ 1 = 1.34 × 10−2 to
1.36 × 10−3 eV, respectively. In fact, the radiative width for
this case is a controversial subject. The value of �2

γ 1 from the
latest measurement at RIKEN is (13 ± 0.5) × 10−3 eV [26],
whereas the previous GANIL measurement [27] gave �2

γ 1 =
6+7

−3.5 × 10−3 eV with quite large uncertainty.

F. Decay of 16O(1−, Ex = 12.44 MeV) → 16O(0+, Ex = 0 MeV)

As an another example, we consider the decay of the
ER = 0.312 MeV resonance of 16O with the spin-parity
Ji = 1− to the ground state 0+ with εf = 12.13 MeV. We
consider this example because of the importance of the reaction
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15N +p → 16O + γ , which provides a path from the CN cycle
to the CNO bi-cycle and CNO tri-cycle. The cross section
for this reaction is dominated by two 1− resonances at 0.312
and 0.962 MeV [28,29]. In this case the 1− and 0+ states of
16O are obtained by coupling the 15N (1/2−) core with 2s1/2

and 1p1/2 protons, respectively. The proton partial width �
(0)
Ji

is calculated from its reduced width amplitude γ
(0)
Ji

by using

the relation, �(0)
Ji

= 2Pli (E)[γ (0)
Ji

]2, where [γ (0)
Ji

]2 = 353.3 keV
and R = 5.03 fm are adopted from Ref. [5]. The experimental
proton ANC for the ground state of 16O is 14.154 fm−1/2

Ref. [5]. Our calculated channel radiative width amplitude is
1.35 + i0.0014 eV1/2.

To calculate the internal part of the radiative width ampli-
tude in the potential model, we use the same Woods–Saxon
parameters as in Ref. [5]. The potential depths Vb and Vc are set
to −53.74 and −48.99 MeV, respectively. The obtained single-
particle ANC for the ground state of 16O is 10.314 fm−1/2, and
the corresponding spectroscopic factor is 1.9. Using Eqs. (32)
and (37) we get γ 1

γ 0(int) = −3.90 eV1/2. Again, as in the
previous case, we get the negative sign of the internal radiative
width amplitude. Hence we have the destructive interference
of the internal and real part of the channel radiative width when
calculating the total radiative width, which is �1

γ 0 = 7.0 ± 1.0
eV. The present value overlaps with �1

γ 0 = 7.5 eV obtained
in Ref. [5] using the R-matrix fit of the astrophysical factor
for the p + 15N → 16O + γ radiative capture. Our calculated
radiative width is lower than 12 ± 2 eV, which is quoted in
Ref. [23] and overlaps with the low limit of �1

γ 0 = 9.5 ± 1.7
eV determined from the 12C +α resonance scattering [23].

G. Decay of 16O(1−, Ex = 13.090 MeV) →
16O(0+, Ex = 0 MeV)

Next we consider the decay of the second 1− resonance of
16O at ER = 0.962 MeV to the ground state of 16O. The spin-
parities of the initial and final states, ground-state potential,
the single-particle ANC, spectroscopic factor, R and ANC of

the ground state are the same as those in the previous case.
However, the potential depth Vc required to reproduce the
resonance at ER = 0.962 MeV is −9.92 MeV. The squared
partial reduced width amplitude for this second 1− resonance
is (γ (0)

1 )2 = 231.4 keV [5]. Then our calculated γ 1
γ 0(ch) and

γ 1
γ 0(int) for 0.962 MeV resonance are 1.32 + i0.101 eV1/2

and −9.73 eV1/2, respectively. Again we observe a destructive
interference of the internal and real part of the channel reduced
width amplitudes when calculated the total radiative width for
the decay of the second 1− resonance of 16O, for which we
obtain �1

γ 0 = 71 ± 8.0 eV. The present value is larger than
38.7 eV [30], 44 ± 8 eV [23] but it lies between the values of
63.6 [5] and 88 eV [29].

H. Decay of 15O(3/2+, Ex = 6.79 MeV) →
15O(1/2−, Ex = 0 MeV)

One of the most interesting cases is the decay of a subthresh-
old resonance. The subthreshold resonance is a weakly bound
state (also called the subthreshold bound state) having its tail
extended to the continuum which works like a resonance. The
radiative capture to the ground state occurs as a capture to
the subthreshold resonance at positive energy E followed by
its decay to the ground state by emitting the photon. Here we
consider the decay of the subthreshold resonance (3/2+) in
15O with the binding energy εi = 0.504 MeV to the ground
state 1/2− of 15O with εf = 7.297 MeV. The value of the
radiative width of this decay is one of the unsolved problems
in the analysis of the 14N +p → 15O + γ reaction, which is
the bottleneck reaction of the CNO cycle [31–33]. The 3/2+
and 1/2− states of 15O are obtained by coupling of the 14N
(1+) core with 2s1/2 and 1p1/2 protons, respectively. It is clear
from Eqs. (34) and (33), that the channel radiative width in
this case is proportional to the product of the squares of the
ANCs of these two bound states. For the channel spin 3/2, the
experimental squared ANCs of the ground and subthreshold
states are 54 ± 6.0 fm−1 and 24 ± 5.0 fm−1 [32], respectively.

TABLE I. Calculated radiative width (�γ ) and its comparison with some of the previously measured or calculated values (�M
γ ).

Transition �γ (eV) �M
γ (eV)

A. 13N
(

1
2

+
, Ex = 2.365 MeV

) → 13N
(

1
2

−
, Ex = 0 MeV

)
0.61 ± 0.06 0.65±0.07 [13], 0.67 [14],

0.50±0.04 [12], 0.45±0.05 [15]
B. 13O

(
1
2

+
, Ex = 2.69 MeV

) → 13O
(

3
2

−
, Ex = 0 MeV

)
0.8 ± 0.2 0.95 [17], 0.024 [18],

3 [16], 1.12 [6]
C. 17F

(
1
2

−
, Ex = 3.104 MeV

) → 17F
(

1
2

+
, Ex = 0.495 MeV

)
(3.5 ± 0.6)×10−2 (1.2 ± 0.2) × 10−2 [21]

D. 17F
(

5
2

−
, Ex = 3.857 MeV

) → 17F
(

5
2

+
, Ex = 0 MeV

)
0.046 ± 0.005 0.11±0.02 [23]

E. 12N(2−, Ex = 1.191 MeV) → 12N(1+, Ex = 0 MeV) (6.0 ± 5.4)×10−3 (13 ± 0.5) × 10−3 [26],
6+7

−3.5 × 10−3 [27]
F. 16O(1−, Ex = 12.44 MeV) → 16O(0+,Ex = 0 MeV) 7.0 ± 1.0 12±2 [23], 7.5 [5],

9.5±1.7 [23]
G. 16O(1−, Ex = 13.090 MeV) → 16O(0+, Ex = 0 MeV) 71 ± 8.0 38.7 [30], 44±8 [23],

63.6 [5], 88 [29]
H. 15O(3/2+, Ex = 6.79 MeV) → 15O(1/2−, Ex = 0 MeV) 14.5 ± 3.5 >0.85 [36], 0.4+0.34

−0.13 [34],
0.95+0.6

−0.95 [35]
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With a channel radius of 5.5 fm we get γ
3/2
γ 1/2(ch) =

0.83 eV1/2, which is real as the imaginary part in this case
is negligible. γ

3/2
γ 1/2(int) is calculated by replacing the Xint in

Eq. (32) by the bound-state wave function corresponding to
the subthreshold state, which is normalized to unity over the
entire radial space (0 � r < ∞), multiplied by the square root
of its spectroscopic factor. Furthermore, kγ in this case is
given by (εi − εf )/h̄c. The wave functions (φB

lf Jf I and Xint) are
generated by taking the potential parameters used in Ref. [4].
The potential depths and single-particle ANCs for the ground
and subthreshold bound states from our adopted potentials are
−43.45 MeV, −53.00 MeV, and 6.102 fm−1/2, −5.75 fm−1/2,
respectively. From our calculations we get γ

3/2
γ 1/2(int) = 2.98

eV1/2 and the total radiative width calculated using Eq. (37)
is �γ 0 = 14.5 ± 3.5 eV. This value is significantly larger than
0.4+0.34

−0.13 eV [34], 0.95+0.6
−0.95 eV [35], and 0.85 eV [36] (lower

limit only). The value of the radiative width obtained by
using the R-matrix fitting in Ref. [6] is 3.75 eV, which is
also obtained for the constructive interference of the internal
and external radiative width amplitudes. This shows that the
potential model correctly predicts the sign of the internal part
in this case but overestimates its magnitude.

We summarize all our results in Table I, where we compare
our calculated values of radiative width with those from
previous measurements and theoretical estimates.

IV. CONCLUSIONS

We have calculated the radiative width for the decay of a
resonance to a bound state by using the R-matrix formalism
previously developed in Refs. [2,3]. However, instead of using
the internal radiative width as as fitting R-matrix parameter, we
applied a combined R-matrix formalism and potential model.
The potential model was adopted to calculate the internal
radiative width amplitude and its sign relative to the channel
part. The external part is determined by the ANC and the
proton resonance width. The total radiative width depends
upon the type of the interference between the internal and
external radiative width amplitudes. We apply our formalism
to some cases of isolated resonance γ decay for which the
single-level R-matrix is sufficient and compare our calcula-
tions with some of the previous experimental or theoretical
estimates. A consistent picture emerges for the relevance of
interference of the internal and external parts of the radiative
widths.
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