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Background: Although uncertainty quantification has been making its way into nuclear theory, these methods
have yet to be explored in the context of reaction theory. For example, it is well known that different
parameterizations of the optical potential can result in different cross sections, but these differences have not
been systematically studied and quantified.
Purpose: The purpose of this work is to investigate the uncertainties in nuclear reactions that result from fitting
a given model to elastic-scattering data, as well as to study how these uncertainties propagate to the inelastic and
transfer channels.
Method: We use statistical methods to determine a best fit and create corresponding 95% confidence bands. A
simple model of the process is fit to elastic-scattering data and used to predict either inelastic or transfer cross
sections. In this initial work, we assume that our model is correct, and the only uncertainties come from the
variation of the fit parameters.
Results: We study a number of reactions involving neutron and deuteron projectiles with energies in the range of
5–25 MeV/u, on targets with mass A = 12–208. We investigate the correlations between the parameters in the
fit. The case of deuterons on 12C is discussed in detail: the elastic-scattering fit and the prediction of 12C(d,p)13C
transfer angular distributions, using both uncorrelated and correlated χ2 minimization functions. The general
features for all cases are compiled in a systematic manner to identify trends.
Conclusions: Our work shows that, in many cases, the correlated χ2 functions (in comparison to the uncorrelated
χ 2 functions) provide a more natural parameterization of the process. These correlated functions do, however,
produce broader confidence bands. Further optimization may require improvement in the models themselves
and/or more information included in the fit.
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I. INTRODUCTION

For nuclei close to the limits of stability, nuclear theory
needs to become more predictable, because not all systems
will be measured directly. For those nuclei that are studied
experimentally, a deep understanding of the probe and its
uncertainties is essential. For these exotic systems, diverse
reaction probes exist that enable the study of a wide variety of
nuclear phenomena. A solid understanding of reaction theory
is crucial in the interpretation of these experiments. This
understanding must include the sources of uncertainty within
the models.

There are four main sources of uncertainty in reaction
theory, as discussed in Ref. [1]. These include approximations
to (a) the few-body problem, (b) the effective interactions
used, and (c) the structure functions (such as overlaps).
Most of these have been investigated, in Ref. [1] (and the
references therein) and elsewhere. However, these investi-
gations typically rely on the comparison of two models
or parameterizations. Concerning (a), for example, methods
such as the adiabatic approximation or continuum-discretized
coupled-channels method have been benchmarked against the
Faddeev method [2–4]. To address (b), the uncertainty from
the effective interactions used, the standard procedure is to use
two different parameterizations of the optical model within
the same reaction theory framework, with the percent errors
coming from the difference between the results obtained with

these two parameterizations. The same approach is taken when
investigating (c), the effect of simplifications in the structure
functions.

Although comparative methods can be used to investigate
each of these sources of uncertainties, they are not systematic.
They also do not allow us to know, a priori, when these effects
will become important. In order to move the field forward,
systematic ways to compute uncertainties must be developed.

As opposed to reaction theory, in other nuclear theory
subfields, systematic methods of uncertainty quantification
have become widespread. Bayesian methods for parameter
estimation are being used in effective field theories (EFTs),
for example [5,6], as well as in nuclear data evaluations
[7]. Truncation errors are being systematically investigated
in EFTs and the derivation of the nuclear force [8–11].
Uncertainty quantification has also been investigated in and
applied to density functional theory (DFT), for example, in
Refs. [12–14].

Uncertainty quantification has also been used widely
in fields outside low-energy nuclear physics. For example,
Bayesian approaches are used in measuring neutron star radii
[15] and estimating parameters for heavy-ion collisions [16].
Of course, systematic error quantifications are also the topic of
research in fields beyond physics. The many lessons learned
from the large array of applications can guide the work on
uncertainty quantification in reaction theory; however, many
specifics need to addressed to improve on the state of the art.
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Our approach therefore is to start with simple formulations of
the process and focus on developing a systematic and robust
methodology that holds specifically for nuclear reactions. This
work represents the first step in this process.

Our goal here is to quantify uncertainties coming from
parameter variations of the effective interaction within a given
model. In Sec. II, we discuss the formulation used for our
study of uncertainties and summarize the reaction models
that we are considering. The systems that we have studied
are introduced in Sec. III. Results are presented in Sec. IV,
including a detailed example and a summary of the overall
trends, and in Sec. V these results are discussed. We conclude
in Sec. VI by presenting ideas for improving this analysis.

II. THEORETICAL FRAMEWORK

Throughout this work, we assume that all uncertainties are
coming from our choice of parameterization of the interaction
and not from the reaction model itself. Uncertainties in the
reaction model are discussed briefly in Sec. VI.

A. Uncorrelated χ 2 fitting

The goal is to describe a true function, σ (θ ), with a known
model, σ th(x,θ ), where the model is a function of angle, θ ,
and has N free parameters x = (x1, . . . ,xN ). In this work, the
model is a formulation for a differential cross section, and
the free parameters are the parameters in the optical potential;
these are discussed in Sec. II E. The model describes M sets of
data points {(θ1,σ

exp
1 ), . . . ,(θM,σ

exp
M )}, each with an associated

experimental error, �σi . Typically, the data and errors are
independent of one another and normally distributed, such
that

σ
exp
i = σ (θi) + εi, (1)

with the measurement errors being described as

εi ∼ N (0,(�σi)
2), (2)

where N is the normal distribution.
In matrix form, this is

σ exp ∼ N (σ,�), (3)

where � is an M × M diagonal matrix with (�σi)2 on the
diagonal.

The residuals, the differences between the data and the
model, then have the multivariate normal distribution:

[
σ th(x,θ1) − σ

exp
1 , . . . ,σ th(x,θM ) − σ

exp
M

]T ∼ N (0,�). (4)

Maximizing the associated likelihood of x gives us the
minimization objective function,

χ2
UC(x) =

M∑
i=1

[
σ th(x,θi) − σ

exp
i

�σi

]2

, (5)

which is proportional to the definition of the standard χ2

function (here, subscript UC stands for uncorrelated). In
minimizing this function, we can find the best-fit set of
parameters, x̂.

From here, we can define the 95% confidence region about
x̂. To do so, we further assume that the true parameter values are
normally distributed around the minimum of the χ2 function,

N (x̂,Cp) ∼ exp
[− 1

2 (x − x̂)T Cp(x − x̂)
]
, (6)

where Cp is the N × N parameter covariance matrix, de-
scribing the correlations between the fit parameters [17].
This assumption of a normal distribution can be supported
empirically by looking at the two-dimensional slices of
parameter space as a function of χ2

UC value. To take into
account the goodness of the fit, we scale the parameter
covariance matrix by the degrees of freedom

s2 = χ2
UC

M − N
, (7)

such that in Eq. (6) Cp is replaced by s2Cp.
Parameter sets can then be drawn from the scaled distribu-

tion (6) and run through the model σ th. At each angle where the
model was evaluated, the highest 2.5% and lowest 2.5% of the
calculations are removed in order to obtain a 95% confidence
band.

We can then define the average width of the uncorrelated
confidence band as

WUC = 1

Nθ

Nθ∑
i=1

(
σ max

i − σ min
i

)
, (8)

where σ max
i (σ min

i ) is the cross section value at the upper (lower)
limit of the 95% confidence band for a given angle θi and Nθ

is the number of angles included in the calculation.

B. Correlated χ 2 fitting

If there are correlations between the εi errors (e.g., between
the predicted values of the cross section for different angles),
one needs to take a different approach.

Consider, for example, the single-channel elastic cross
section, typically expressed by a partial wave decomposition
as

dσ

d�
= 1

4k2

∣∣∣∣∣
∞∑

L=0

(2L + 1)PL(cosθ )(SL − 1)

∣∣∣∣∣
2

, (9)

where k is the incoming momentum, PL(cosθ ) are the
Legendre polynomials, and SL is the corresponding S matrix
[18]. Because fitting at one angle influences the cross-section
values at all other angles, the correlations between angles may
need to be taken into account in the fitting process.

Therefore, along with the condition of Eq. (3), we assume

[σ th(x,θ1), . . . ,σ th(x,θM )]T ∼ N (σ,Cm); (10)

that is, our model is normally distributed with the M × M
model covariance matrix, Cm, which describes the correlations
within the model at each of the experimentally measured
angles. This leaves the residuals distributed as
[
σ th(x,θ1) − σ

exp
1 , . . . ,σ th(x,θM ) − σ

exp
M

]T ∼ N (0,Cm + �).

(11)
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The resulting correlated χ2 minimization objective function
becomes

χ2
C(x̂) =

M∑
i=1

M∑
j=1

Wij

(
σ th(x,θi) − σ

exp
i

)(
σ th(x,θj ) − σ

exp
j

)
,

(12)

where Wij are the (ij )th matrix elements of W = (Cm + �)−1.
Note that interference can occur between the residuals at
different angles because the individual model covariance
matrix elements Wij do not have to be positive. This causes
χ2

C to be less than χ2
UC . In general, we see that χ2

C/M � 1 is
no longer the definition of a statistical fit because the model
covariance matrix is not normalized.

Once the set of parameters corresponding to the best
fit is found with this minimization objective function, 95%
confidence bands can be defined in the same way as described
in Sec. II A, substituting χ2

C for χ2
UC . The average width of

the correlated confidence bands can be defined identically to
Eq. (8), where σ max

i and σ min
i are associated with the correlated

95% confidence bands.

C. Matrices

The parameter covariance matrix is defined as

Cp = (JT J)−1, (13)

where the matrix elements of the Jacobian, J, are

Jij = ∂σ th(x,θi)

∂xj

∣∣∣∣
x=x̂

. (14)

From the covariance matrix, the parameter correlation
matrix can be defined [17] as

Ccorr = AT CpA. (15)

Here, A is the matrix that has, as its diagonal elements, the
inverse of the square roots of the diagonal elements of Cp and
zeros on its off-diagonal elements (Aii = 1/

√
(Cp)ii). The

magnitude of the matrix elements of the correlation matrix
range from zero to one. Zero means no correlation between
the two parameters, and (negative) one means that the two
parameters are fully (anti)correlated. Therefore, the diagonal
elements of the correlation matrix are all one, since every
parameter is fully correlated with itself.

D. Non-Gaussian parameter space

The χ2 function around the minimum in parameter space
may not be approximately quadratic, an assumption required
by Eq. (6). If this is the case, we can pull the parameter sets
from the actual distribution (defined by contours of constant
χ2), rather than the multivariate Gaussian of Eq. (6). For each
parameter set pulled, its χ2(x) value is tested in the inequality

χ2(x) − χ2(x̂) � 9M, (16)

which gives sets of parameters that are approximately within
three standard deviations of the minimum [18].

If the χ2(x) associated with the parameter set fulfills the
requirement of Eq. (16), the parameter set is kept; otherwise, it

is thrown away. When 200 parameter sets have been accepted,
these are run through the model. Since Eq. (16) defines a
99.7% region, confidence bands must be slightly expanded
to represent the 0.3% of parameter set that are rejected. This
is accounted for by removing the highest 2.35% and lowest
2.35% of the calculations at each angle.

E. Reaction models

In this work, we fit elastic-scattering data to predict
inelastic-scattering cross sections as well as transfer cross
sections. Because the focus of this work is to introduce method-
ology to systematically quantify uncertainties in predictions of
nuclear reactions, here, we try to keep the reaction mechanisms
as simple as possible. Therefore, we focus on two reaction
models, the coupled-channels Born approximation (CCBA)
when performing elastic- and inelastic-scattering calculations
and the distorted-wave Born approximation (DWBA) when
performing elastic scattering and transfer calculations [18].
Improvements on reaction models themselves will be per-
formed elsewhere at a later stage.

1. CCBA

CCBA couples the elastic and inelastic channels together
by solving N coupled-channel equations,

[Hα − Eα]ψααi
(Rα) +

N∑
β �=α

Vαβψβαi
(Rβ) = 0, (17)

where αi denotes the incoming elastic channel, ψααi
is the

two-body wave function for a given outgoing channel α, and
Vαβ is the coupling potential [18].

In this work, CCBA is used when calculating neutron
elastic- and inelastic-scattering cross sections, coupling only
the first excited state to the ground state.

2. DWBA

For A(d,p)B reactions, the one-step distorted-wave ap-
proximation is made. The elastic scattering of the deuteron is
described by an effective deuteron-target interaction, VdA. For
the transfer reaction, in DWBA, instead of solving the true
scattering three-body d + A problem, the three-body deuteron
scattering wave function is replaced by the deuteron elastic
component, namely a deuteron distorted wave multiplied by
the corresponding bound state of the deuteron [18]:

TDWBA
post = 〈nA(�rnA)χp( �Rf )|Vnp + �|np(�rnp)χd�ki

( �Ri)〉.
(18)

Here, np(�rnp) is the initial bound-state wave function for
the deuteron, χd�ki

( �Ri) is the distorted wave of the d + A
system, nA(�rnA) is the final bound-state wave function of B,
χp( �Rf ) is the distorted wave of the outgoing proton interacting
with B, Vnp is the deuteron binding potential, and � is the
difference between the A + p and B + p optical potentials.
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After calculating the transfer cross section, spectroscopic
factors are typically extracted from

(
dσ

d�

)exp

= Sexp

(
dσ

d�

)DWBA

(19)

at the first peak of the angular distributions. Sexp describes
the single-particle nature of the transferred nucleon in the
composite nucleus, B, relative to nucleus A [18].

3. Optical model

For both the CCBA and DWBA calculations, optical
potentials are used. These are characterized by a real part
and an imaginary part,

U (r) = V (r) + iW (r). (20)

The imaginary part takes into account the flux that leaves
the elastic channel and is not explicitly described by the model.

These potentials have volume, surface, and spin-orbit parts
that are characterized by a Woods-Saxon shape or derivatives
of a Woods-Saxon shape. If we consider

V (r) = − Vo

1 + exp
(

r−Ro

ao

) (21)

and

W (r) = − WV

1 + exp
(

r−Rw

aw

) (22)

for the volume terms, there are six free parameters in the fit. In
this parameterization, Ri = riA

1/3, where A is mass number
and the fitted parameter is ri . The surface term is defined
by the derivative of a Woods-Saxon shape and is typically
purely imaginary, which introduces another three parameters,
Ws , rs , and as . The spin-orbit potential is also parameterized
by the derivative of a Woods-Saxon shape; however, to limit
the number of free parameters for this introductory work, we
keep all the spin-orbit parameters fixed at the original values
from the parameterizations referenced in Table I. The Coulomb
potential is included in the usual way (e.g., Ref. [19]) and is

TABLE I. Reactions studied in this work. The third column gives
the reference for the corresponding data set, and the fourth column
gives the reference for the starting optical model parameterization.

System Energy (MeV) Data Potential

12C(d,d)12C 11.8 [20] [21]
12C(d,p)13C 11.8 [22]
90Zr(d,d)90Zr 12.0 [23] [24]
90Zr(d,p)91Zr 12.0 [25]
12C(n,n)12C 17.29 [26] [27]
12C(n,n′)12C(2+

1 ) 17.29 [26]
48Ca(n,n)48Ca 7.97 [28] [29]
48Ca(n,n′)48Ca(2+

1 ) 7.97 [28]
54Fe(n,n)54Fe 16.93 [30] [31]
54Fe(n,n′)54Fe(2+

1 ) 16.93 [30]
208Pb(n,n)208Pb 26.0 [32] [30]
208Pb(n,n′)208Pb(3−

1 ) 26.0 [33]

parameterized by a single Coulomb radius, which is also kept
fixed throughout this work.

III. NUMERICAL DETAILS

In each of the cases studied, elastic-scattering data were fit,
and then either inelastic-scattering or transfer cross sections
were predicted and compared to data. Table I summarizes the
systems that were studied, including references to the starting
optical model and corresponding data set.

The δ2 values used in this work for the inelastic scattering
of 12C, 48Ca, and 54Fe are 1.0852, 0.85, and 0.967 fm,
respectively. For 208Pb, δ3 = 0.296 fm for the uncorrelated fit,
and δ3 = 0.230 fm for the correlated fit. This difference was
introduced to better match the magnitude of the calculated
inelastic-scattering cross sections to the data. All values were
adjusted from Ref. [34] to better describe the magnitude of the
inelastic cross sections.

For the two (d,p) reactions, the outgoing channels were
defined by the potentials described in Ref. [22] for the 12C(d,p)
and Ref. [25] for the 90Zr(d,p) reactions. The binding potential
between the target and transferred neutron was described by a
Woods-Saxon shape with radius of 1.2 fm and diffuseness of
0.60 fm. The depth of this potential was adjusted to reproduce
the experimental binding energy. A spin-orbit potential was
also included, with standard depth, radius, and diffuseness of
7.0 MeV, 1.2 fm, and 0.60 fm, respectively. The np interaction
for the deuteron were taken from Ref. [35].

The statistical approach described in Section II is newly
implemented, but it makes use of the reaction codes FRESCO

and SFRESCO (which employs the MINUIT [36] minimization
routines) [37].

IV. RESULTS

To demonstrate our method, we will consider one of the
cases from Table I in detail: fitting 12C(d,d)12C elastic scatter-
ing to predict the 12C(d,p)13C transfer cross section. We focus
on the difference between uncorrelated and correlated fitting.
The results from all other reactions are then summarized.

A. Detailed example

Starting from the parameterization referenced in Table I
for 12C(d,d)12C and using the χ2

UC minimization function
of Eq. (5), we reach the best-fit parameterization of Table II

TABLE II. Best-fit parameters when 12C(d,d)12C cross sections
were fit to predict the 12C(d,p)13C transfer cross section. The second
row gives the parameters for the uncorrelated fit (UC), and the third
row gives the parameters for the correlated fit (C). The second, third,
and fourth (fifth, sixth, and seventh) columns are the real volume
(imaginary surface) potential parameters. Parameters in bold-face
font were simultaneously minimized, while the parameters in italic
font were fixed during the final fitting procedure.

Vo (MeV) ro (fm) ao (fm) Ws (MeV) rs (fm) as (fm)

UC 111.505 1.002 0.7308 27.582 1.235 0.2841
C 55.126 1.121 0.6700 40.931 1.193 0.1963
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FIG. 1. Pairwise two-dimensional χ 2
UC contour plots for the

best-fit parameterization of Table II. Black stars show the best-fit
parameters.

(UC). The parameters in bold-face font were simultaneously
minimized, and their variations give rise to the 95% confidence
bands; the parameters in italic font were initially varied
but fixed during the final fitting procedure in order to keep
these parameter values from becoming unphysical during the
minimization process.

In order to explore the shape of the χ2
UC function around

this minimum, two-dimensional (2D) χ2
UC contours were con-

structed, shown in Fig. 1, for one standard deviation on either
side of the best-fit parameterization. Since the contours are
elliptical and centered around the best-fit parameterization, we
can safely pull parameter sets from the multivariate Gaussian
[Eq. (6)] to construct the confidence bands. Pulling from the
multivariate Gaussian is useful because pulling directly from
a χ2 distribution can be time-consuming computationally.
The resulting 95% confidence bands (brown) are shown in

FIG. 2. 95% confidence bands constructed from the uncorre-
lated fitting of d + 12C elastic-scattering data, for elastic-scattering
angular distribution (a) and the 12C(d,p)13C(g.s.) transfer angular
distribution (b, predicted) both at 11.8-MeV deuteron energy. The
cross-section calculations from the best-fit parameterization are
shown in red (solid), and the 95% confidence bands in brown
(hatched); the black circles show the elastic-scattering and transfer
data.

Fig. 2. The elastic-scattering cross section, as a ratio to
the Rutherford cross section, is shown in Fig. 2(a), and the
transfer cross section (normalized to the data) is shown in
Fig. 2(b).

The best-fit parameterization, shown in red, passes through
most of the elastic-scattering data [Fig. 2(a)]; however,
at the forward angles where the reaction models should
be the most accurate, the best fit does not entirely describe
the experimental cross sections. The predicted transfer cross
section [Fig. 2(b)] has been normalized to the data, thus giving
an experimental spectroscopic factor, Sexp = 0.435+0.019

−0.017, but
the predicted angular distribution does not agree with the data
for θ > 30◦. The average width of the elastic-scattering band
is 1.2211 (as a ratio to the Rutherford cross section), and
the average width of the predicted transfer cross section band
is 0.75735 mb/sr. These values seem to be extremely small
and do not appear to capture the true uncertainties in the
parameters.

As mentioned in Sec. II B, there can be correlations
in our model that are not taken into account in the fit-
ting process. We can visualize these model correlations
by looking at the scatter of cross-section values at two
different angles. If these two angles are uncorrelated, the
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FIG. 3. Visual representation of model correlation for the elastic-
scattering data set for 12C(d,d)12C, for select angles. The blue
histograms show the frequency around the average value of the
cross-section values at the given angle. The scatter plots show the
correlation between each pair of angles.

scatter plot should be roughly circular; a more elliptical
scatter plot indicates more correlation between those two
angles.

In Fig. 3, this angular correlation is shown for a selected set
of angles for the d + 12C elastic scattering we are considering
here. The histograms on the diagonal give the frequency of
cross-section values at the given angle; the off-diagonal scatter
plots show the angular correlations. Angles near each other
are highly correlated—almost straight lines—regardless of
whether the angles are forward or backward, while there is
a much less localized scatter for angles farther away from one
another.

Because of the strong correlations, we reanalyze this case
with the χ2

C function of Eq. (12). The elastic-scattering
best-fit parameterization is shown in Table II (C). From the
differences in the parameterization, we can see that introducing
correlations in the model plays a significant role in the fitting
procedure, especially for the depths of the potentials. This is
discussed more in Sec. V.

The corresponding 2D χ2
C contour plots for one standard

deviation around the best-fit parameterization are shown in
Fig. 4. Because the contour plots are not entirely elliptical
within this region, parameters are drawn from the empirical
χ2

C distribution instead of the multivariate Gaussian. The 95%
confidence bands for the fitted elastic-scattering angular distri-
butions and predicted transfer angular distributions are shown
in Figs. 5(a) and 5(b), respectively. The elastic scattering
describes the data nearly perfectly at forward angles, and
even though the best-fit parameterization is above the data
at intermediate angles, there is still good agreement with the
overall trend as well as the magnitude at backward angles.
For the transfer calculation, the extracted spectroscopic factor,
Sexp = 0.352+0.223

−0.050, is smaller than for the uncorrelated case,
but the predicted angular distribution improves the description
of the data. The average width for the elastic-scattering
band is 16.606 (ratio to Rutherford cross section), and the
average width for the predicted transfer cross section band is
6.2968 mb/sr. These values better reflect the uncertainties of
the problem.

FIG. 4. Same as Fig. 1 for the correlated best-fit parameterization
of Table II.

B. Summary of results from all calculations

We now repeat this procedure for all of the reactions listed
in Table I. In this section, we summarize the results of these
calculations, including χ2 values for each of the fits and
average widths of the confidence bands. Table III gives this
summary for the uncorrelated and correlated fits.

V. DISCUSSION

In the following section, we discuss the results of our
calculations, first for the d + 12C reaction from the previous
section. We then make a few comments on the n + 54Fe and
d + 90Zr cases and summarize with general comments from
all of the cases studied.
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FIG. 5. Same as Fig. 2 for the correlated fit.

A. Comments on 12C(d,d)12C and 12C(d, p)13C

By looking at the comparison between the 12C(d,d)12C
best-fit elastic-scattering cross sections and the
12C(d,p)13C(g.s.) transfer predictions, we can better
understand the differences that arise when model correlations
are included in the calculation. Figure 6 shows this comparison
between the best-fit parameterizations of the uncorrelated
(black solid) and correlated (red dashed) angular distributions

TABLE III. Summary of the properties of all of the reactions
studied for this work. The first column gives the reaction, while
χ 2/M values for the uncorrelated (correlated) fits are given in column
2 (4), and the average widths (over all angles) of the uncorrelated
(correlated) 95% confidence bands are given in column 3 (5).

System χ 2
UC/M W UC χ 2

C/M W C

12C(d,d)12C 4.513 1.3577 0.283 18.181
12C(d,p)13C(g.s.) 0.77888 7.9226
90Zr(d,d)90Zr 1.421 0.086926 0.142 0.22664
90Zr(d,p)91Zr(g.s) 1.5235 2.2567
12C(n,n)12C 68.321 204.35 0.483 382.52
12C(n,n′)12C(2+

1 ) 17.212 51.253
48Ca(n,n)48Ca 22.344 134.21 2.142 380.91
48Ca(n,n′)48Ca(2+

1 ) 7.164 35.586
54Fe(n,n)54Fe 158.098 151.20 1.080 92.191
54Fe(n,n′)54Fe(2+

1 ) 1.4722 2.2338
208Pb(n,n)208Pb 3.678 86.105 1.731 697.13
208Pb(n,n′)208Pb(3−

1 ) 0.42104 0.87376

FIG. 6. Comparison of uncorrelated (black solid) and correlated
(red dashed) cross-section calculations using the best-fit parameter-
ization when elastic cross-section data were fit to predict transfer
cross sections for 12C(d,d)12C. Panel (a) shows the elastic-scattering
calculations, and panel (b) shows the predicted transfer calculations.

for elastic-scattering [Fig. 6(a)] and transfer [Fig. 6(b)] cross
sections. With the model correlations, the angular distributions
from the best-fit parameterization provide an overall more
consistent description of the angular distributions. For
the elastic scattering, this is true more so around grazing
angles, which is where we expect our model to be the most
accurate. Even at backward angles, however, the experimental
elastic-scattering angular distribution is better described by
the correlated angular distribution, which continues to rise
instead of flattening off, as in the uncorrelated calculation. At
central angles (around ∼ 90◦), the uncorrelated calculation is
in almost perfect agreement with the data, but the correlated
calculation still reproduces the overall trend.

Furthermore, χ2
C is lower than χ2

UC by a factor of about 8.
Correlated fitting also produces larger confidence bands for
both the elastic and transfer cross-section calculations, as can
be seen by comparing the third and fifth columns of Table III.

Table II shows significant differences between the cor-
related and uncorrelated parameterizations. The real and
imaginary potential depths for the correlated minimum are
extremely atypical, which could explain the small spectro-
scopic factor that is extracted from the calculation. The
uncorrelated spectroscopic factor still falls within the error
bands of the correlated calculation; within error bars, these
two parameterizations are consistent. If we instead fix the real
volume depth at the more physical value of 111.505 MeV and
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FIG. 7. Comparison of correlated and uncorrelated cross-section
calculations using the best-fit parameterization when elastic-
scattering data were fit to predict inelastic cross sections, for 54Fe -n
scattering. Panel (a) shows the elastic-scattering fits, and panel (b)
shows the inelastic-scattering predictions. Shown are uncorrelated
(black solid) and correlated (red dashed) fits and predictions.

vary the remaining five parameters to find a minimum, the
imaginary surface depth increases to keep a low χ2

C value, and
the extracted spectroscopic factor does not change.

There is an understanding that DWBA does not provide an
accurate description of this reaction (e.g., Ref. [38]) and that
an effective deuteron optical potential that does not explicitly
account for np breakup is unreliable [2]. The strong variation
of the minimum found between the uncorrelated and correlated
cases can be a symptom of the reaction model simplification.

B. Comments on other specific reactions

1. n + 54Fe elastic and inelastic scattering

Some of the reactions we studied show a greater difference
between the cross sections resulting from the uncorrelated and
correlated minima. Figure 7 shows the angular distributions

for elastic scattering (a) and inelastic scattering (b) compared
with data for n + 54Fe at 16.93 MeV. The correlated best-fit
calculations (red, dashed) better describe the trends of the
experimental angular distributions compared to the uncorre-
lated calculations (black, solid) for the elastic calculation. Our
results also show that the correlated best-fit prediction better
describes both the shape and the magnitude of the experimental
inelastic angular distributions.

The best-fit parameters for these uncorrelated and corre-
lated minima for n + 54Fe scattering are given in Table IV.
Despite the small radius for the real volume term, the
rest of the parameters for the correlated minimum take on
more physically meaningful values than the corresponding
parameters from the uncorrelated minimum; this is especially
evident for the depths of the potentials.

2. d + 90 Zr elastic scattering and transfer

The spectroscopic factors for 90Zr(d,p)91Zr(g.s.) are
0.720+0.097

−0.060 for the uncorrelated parameterization and
0.689+0.194

−0.079 for the correlated parameterization, which are
less than the values extracted in Ref. [25]. For this case,
the parameterizations between the uncorrelated and correlated
minima are significantly different, but this does not have much
of an effect on the resulting transfer angular distributions, as
evident by the similarities in the spectroscopic factors. Again,
the resulting 95% confidence band is larger for the correlated
calculation.

C. General comments

We now can discuss general properties for all of the
reactions that we studied. In all cases, the correlated minima
provide better descriptions of the data at forward angles, if
not everywhere. As shown in the preceding sections, this is
true for both fitted and predicted cross sections. When model
correlations are present, however, the best-fit calculations may
vary systematically from the data. Moreover, χ2

C is always
smaller than χ2

UC , because of the introduction of the model
covariance matrix.

In almost all cases, the average width of the confidence
bands from the correlated fit is larger than for the uncorrelated
case. Part of the reason for this is that the parameter covariance
matrix is larger for the correlated fits than for the uncorrelated
fits (because of the introduction of the model covariance
matrix)—and even though it is scaled by s2 as defined in
Eq. (7), there is still a wider range for the parameters to be
pulled from.

Although not shown, we can make two comments on the
correlations between the fitted parameters across all reactions
studied here. The first is that radii tend to decouple by 10–15%

TABLE IV. Best-fit parameters for 54Fe(n,n)54Fe elastic scattering. The second and fifth (third and sixth) rows give the uncorrelated
(correlated) minimum. Vo, ro, and ao are the real volume terms; WV, rw, and aw are the imaginary volume terms; and Ws, rs, and as are the
imaginary surface terms.

Vo (MeV) ro (fm) ao (fm) WV (MeV) rw (fm) aw (fm) Ws (MeV) rs (fm) as (fm)

UC 29.411 1.609 0.4439 7.432 1.078 0.5603 22.550 1.504 0.1246
C 47.371 0.9324 0.6001 2.292 1.161 0.1120 5.433 1.104 0.5852
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from the potential depth when going from uncorrelated to
correlated fitting. (These are generally the most correlated
pairs of parameters.) Second, the depths of the interactions
couple more strongly to one another by 30–40% when model
correlations are added. This coupling may influence the
wider confidence bands for the correlated case, depending on
whether the couplings are positively or negatively correlated.

These same conclusions also hold when starting from
other global optical model parameterizations and performing
an independent minimization. Even with different spin-orbit
potential parameters and different Coulomb radii, the general
comments of this section are valid.

We conclude that a large uncertainty can be introduced
from the variation in parameters. However, this comes from
assuming nearly nothing about constraints on the parameter
space; including more information about the model space
before the fit could decrease this uncertainty. Furthermore,
there are still large modeling errors that are not treated here;
these also need to be taken into account systematically.

VI. CONCLUSIONS AND FUTURE WORK

We have used a statistical model to construct 95% con-
fidence bands for six reactions in the range A = 12–208 at
energies below 30 MeV/u in order to study uncertainties
coming from the parameterization of the optical potentials.
These parameters were allowed to vary in order to fit elastic
cross sections to elastic-scattering data and were then used
to predict cross sections for inelastic scattering and transfer
reactions. A correlated χ2 function was introduced to take
into account some of the correlations present in the reaction
model. One case, fitting 12C(d,d)12C elastic scattering to
predict 12C(d,p)13C cross sections, was discussed in detail.

In general, we find that the χ2
C function provides a more

physical description of the cross section, in terms of parameter
values in the optical potentials and the shape of the calculated
angular distributions with respect to the experimental ones.
The χ2

C values are lower than the χ2
UC values. However, the

95% confidence bands constructed from the correlated fits
are larger than the bands constructed from the uncorrelated
fits. Although the optical potential parameters are all highly
coupled, in the correlated calculations, the potential depths

and corresponding radii decouple slightly from one another,
but the potential depths couple more strongly to one another.

The incoming elastic channel is only one part of the
optical potential that must be specified. For the transfer cases,
ambiguity in the outgoing channels also leads to uncertainties
in reaction observables, which could be systematically studied
if elastic-scattering data for both the incoming and outgoing
channels were available. Having elastic, inelastic, and transfer
data for various isotopes across an isotopic chain at several
energies would allow us to study systematic trends of these
confidence bands in order to better understand how our
predictive power changes toward the edges of stability and
towards the edges of the known nuclear chart.

A better description of the uncertainties coming from the
parameter variations is only half of the story. Uncertainties
coming from the approximations within the theory framework
must also be quantified, and these effects will likely be
dependent on the specific reaction being studied. Couplings
to higher lying excited states in the target nucleus of transfer
reactions can change the magnitude of the cross section at the
peak by up to 15% [38,39]. Inclusion of deuteron breakup is
another important effect, and even when using the adiabatic
wave approximation, differences between results from those
calculations and full three-body Faddeev calculations can be
around 20% [40]. For these reasons, depending on the reaction
model used, one will obtain differing spectroscopic factors
extracted from the same transfer data [41]. However, by
including more degrees of freedom into the reaction model
than what we have done in the present work, error bands
will potentially decrease as more reaction channels can be
described and therefore more constraints can be added to the
fitting procedure. Investigations into model uncertainties are
underway.

ACKNOWLEDGMENTS

This work was supported by the Stewardship Science Grad-
uate Fellowship program under Grant No. DE-NA0002135.
This work was also supported by the National Science Foun-
dation under Grants No. PHY-1403906 and No. PHY-1520929,
under the auspices of the Department of Energy under Contract
No. DE-FG52-08NA28552, and by the US Department of
Energy, Office of Science, Advanced Scientific Computing
Research, under Contract No. DE-AC02-06CH11357.

[1] A. E. Lovell and F. M. Nunes, J. Phys. G: Nucl. Part. Phys. 42,
034014 (2015).

[2] F. M. Nunes and A. Deltuva, Phys. Rev. C 84, 034607 (2011).
[3] A. Deltuva, A. M. Moro, E. Cravo, F. M. Nunes, and A. C.

Fonseca, Phys. Rev. C 76, 064602 (2007).
[4] P. Capel, H. Esbensen, and F. M. Nunes, Phys. Rev. C 85, 044604

(2012).
[5] S. Wesolowski, N. Klco, R. J. Furnstahl, D. R. Phillips, and

A. Thapaliya, J. Phys. G: Nucl. Part. Phys. 43, 074001 (2016).
[6] M. Schindler and D. Phillips, Ann. Phys. 324, 2051 (2009).
[7] A. Koning, Nucl. Data Sheets 123, 207 (2015).

[8] E. A. Coello Perez and T. Papenbrock, Phys. Rev. C 92, 064309
(2015).

[9] R. J. Furnstahl, N. Klco, D. R. Phillips, and S. Wesolowski,
Phys. Rev. C 92, 024005 (2015).

[10] R. Navaro Perez, J. E. Amaro, and E. Ruiz Arnola, Int. J. Mod.
Phys. E25, 1641009 (2016).

[11] B. D. Carlsson, A. Ekström, C. Forssén, D. F. Strömberg, G. R.
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