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Hard photodisintegration of 3He into a pd pair
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The recent measurements of high energy photodisintegration of a 3He nucleus to a pd pair at 90◦ center of mass
demonstrated an energy scaling consistent with the quark counting rule with an unprecedentedly large exponent
of s−17. To understand the underlying mechanism of this process, we extended the theoretical formalism of the
hard rescattering mechanism (HRM) to calculate the γ 3He → pd reaction. In HRM the incoming high energy
photon strikes a quark from one of the nucleons in the target which subsequently undergoes hard rescattering
with the quarks from the other nucleons, generating a hard two-body system in the final state of the reaction.
Within the HRM we derived the parameter-free expression for the differential cross section of the reaction,
which is expressed through the 3He → pd transition spectral function, the cross section of hard pd → pd

scattering, and the effective charge of the quarks being interchanged during the hard rescattering process. The
numerical estimates of all these factors resulted in the magnitude of the cross section, which is surprisingly in
good agreement with the data.
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I. INTRODUCTION

The large momentum transfer photoproduction reactions
with two-body breakup of the nucleus represent one of the
testing grounds for nuclear quantum chromodynamics (QCD).
The striking characteristics of these processes is the enormous
value of invariant energy produced even at moderate incident
beam energy. The invariant energy of the photoproduction
reaction is s = m2

T + 2Eγ mT , which shows that it grows for
the nuclear target A times faster than that of the proton target,
where mT is the mass of the target and Eγ is the incident
photon energy. Considering large and fixed center-of-mass
(cm) angles in two-body breakup reactions allows us to
provide large momentum transfers t ∼ − s

2 (1 − cos θcm), thus
satisfying conditions for hard QCD scattering.

Hard nuclear scattering, in which the energy-momentum
transferred to the nucleus is much larger than the nucleon
masses, is one of the best processes to probe quark degrees
of freedom in the nucleus. In the hard scattering kinematic
regime, we expect that only the minimal Fock components
dominate in the wave function of the particles involved
in the scattering. This expectation results in the prediction
of the constituent (or quark) counting rule, according to which
the energy dependence of two-body hard reaction is defined
by the number of fundamental constituents participating in the
reaction [1,2].

If we consider a reaction of the type a + b → c + d,
according to constituent counting rule, the energy dependence
of the hard process should scale as

dσ (ab→cd)

dt
∼ 1

sna+nb+nc+nd−2
, (1)

where ni, i = a,b,c,d represent the numbers of the fundamen-
tal fields associated with respective particles involved in the
process. For example, if a is a proton, na will equal 3, and if it
is a photon, na would be 1.

Even though the energy dependencies (or scaling relations)
of Eq .(1) do not imply the onset of the perturbative QCD

regime, they indicate that the resolution of the probe is
such that it allows us to identify the constituents of the
hadrons that participate in the hard scattering. In 1976 it was
suggested [3] to use the concept of the quark-counting rule
to explore the QCD degrees of freedom in nuclei. One of the
best candidate reactions was hard photodisintegration of the
deuteron, γ + d → p + n, which, according to Eq. (1), should
scale as dσ/dt ∼ s−11. The first such experiments being
carried out at SLAC [4–6] and Jefferson Lab [7–11] revealed
s−11 scaling for photon energies already at Eγ � 1 GeV
and θcm = 90◦. It is worth mentioning that the calculations
based on a conventional mesonic picture of strong interaction
failed to explain the observed energy scaling, which can
be considered another indication that the quark degrees of
freedom need to be included for an adequate description of
the reaction. The deuteron two-body hard photodisintegration
reactions have been used also to measure the polarization
observables [12–15], which were in general agreement with
the quark-constituent picture of hard scattering.

To check the universality of the constituent counting rule
for other hard breakup reactions, the two-body reactions were
extended to a 3He target, in which case two fast outgoing
protons and a slow neutron were detected in the γ + 3He →
(pp) + n reaction [16]. The results of this experiment [17]
were consistent with the s−11 scaling in the two-proton hard
beakup channel, but at much larger photon energies (Eγ >
2 GeV) than in the case of pn breakup. Recently the hard two-
body breakup reaction was measured for the more complex
γ + 3He → p + d channel [18]. According to Eq. (1) such
a reaction in the hard scattering regime should scale as s−17,
and surprisingly the experiment observed a scaling consistent
with the exponent of 17, an unprecedented large number to be
observed in two-body hard processes.

In the present work, we extend the theoretical framework
referred to as the hard rescattering mechanism (HRM) to
calculate the cross section of the above mentioned γ 3He →
pd reaction. The HRM model was originally developed
for calculation of γ d → pn reactions [19]. The model was
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successful not only in verifying the s−11 dependence but also in
reproducing the absolute magnitude of the γ + d → pn cross
sections without free parameters at �1 GeV incoming photon
energies and large center-of-mass angles [19–21]. The HRM
model allowed also the calculation of polarization observables
for the γ d → pn reaction [22], and its prediction for the
large magnitude of transferred polarization was confirmed by
the experiment of Ref. [14]. Subsequently the HRM model
was applied to the γ + 3He → pp + n reactions [23], in
which two protons were produced in the hard breakup process
while the neutron was soft. The model described the scaling
properties and the cross section reasonably well and was able to
explain the observed smaller cross section as compared to the
deuteron breakup reaction. In Ref. [24] it was shown also that
HRM model can be extended to the hard breakup of the nucleus
to any two-baryonic state which can be produced from the
NN scattering through the quark-interchange interaction. In
the HRM model, a quark of the one nucleon knocked out by the
incoming photon rescatters with a quark of the other nucleon,
leading to a production of two nucleons with large relative
momentum. We assume in HRM that the quark interchange
is the dominant mechanism for the hard rescattering of two
outgoing energetic nucleons. The latter assumption is essential
for factorization of the hard scattering kernel from the soft
incalculable part of the scattering amplitude.

In the present work we apply a similar rescattering scenario
for the hard breakup of a 3He nucleus to a pd pair. Our
main goal is to check whether the HRM approach, which
explicitly accounts for the quark degrees of freedom, will allow
us to reproduce the energy and angular dependencies of the
measured cross sections. The article is organized as follows:
Sec. II describes the kinematics and the reference frame of
the two-body breakup reaction. In Sec. III we develop the
hard rescattering model for the γ + 3He → p + d reaction,
discussing in detail the nuclear amplitude which according to
HRM provides the main contribution to the hard breakup cross
section. In Sec. IV we complete the derivation by calculating
the cross section and considering the methods of estimation
of nuclear and pd → pd rescattering parts entering in the
cross section. Section IV presents numerical estimates and a
comparison with the results of the recent experiments at θcm =
90◦. It also gives predictions for the angular distribution of
the cross section as well as energy dependencies for other θcm.
Section V summarizes our results. In Appendix A, we present
the details of the derivation discussed in the Sec. III. The
discussion of the hard elastic pd → pd scattering is presented
in Appendix B. Appendix C discusses the relationship between
the light-front and nonrelativistic 3He to deuteron transition
wave functions.

II. KINEMATICS OF THE PROCESS AND THE
REFERENCE FRAME

We are considering the following two-body photodisinte-
gration reaction:

γ + 3He → p + d, (2)

where the proton and deuteron are produced at large angles
measured in the center-of-mass reference frame of the reaction.
The invariant energy s and momentum transfer t of the reaction
are defined as

s = (q + p3He)2 = m2
3He + 2q · p3He = m2

3He + 2Eγ m3He

= (
Ecm

γ + Ecm
3He

)2
,

(3)
t = (q − pp)2 = m2

p − 2q · pp

= m2
p − 2Ecm

γ

(
Ecm

p − pcm
p cos θcm

)
,

where mp and m3He are masses of the proton and 3He target,
respectively, and Eγ is the incoming photon energy in the
laboratory system. The four-vectors q, p3He, and pp define
the four-momenta of photon, 3He, and proton respectively.
In the righthand side of Eq. (3), we expressed s and t through
the center-of-mass energies, momenta, and scattering angles
of interacting particles, defined as

Ecm
γ = 1

2
√

s

(
s − m2

3He

)
, E3He = 1

2
√

s

(
s + m2

3He

)
,

Ecm
p = 1

2
√

s

(
s + m2

p − m2
d

)
, Ecm

d = 1

2
√

s

(
s + m2

d − m2
p

)
.

(4)

The one interesting property of Eq. (3), observed in
Ref. [25], is the possibility to generate large center-of-mass
energy s with moderate energy of photon beams. This is
due to the fact that, in the expression of s, photon energy is
multiplied by the mass of the target. For the case of reaction (2),
for example, the photon energy Eγ = 1 GeV will generate
s as large as that generated by a 6 GeV/c proton beam in
pp scattering. This property was one of the reasons why the
quark-counting scaling was observed in the γ d → pn reaction
for photon energies as low as 1.2 GeV at cm 90◦ breakup
kinematics [10,11].

Using Eq. (4) in the expression for t in Eq. (3), we obtain

t = m2
p − 1

2s

(
s − m2

3He

)[(
s + m2

p − m2
d

)

−
√{

s − (mp + md )2
}{

s − (mp − md )2
}

cos θcm
]
. (5)

It follows from the above relation that in the high energy
limit t ∼ − s

2 (1 − cos θcm), which indicates that at large and
fixed values of θcm one can achieve the hard scattering regime,
−t(−u) � m2

N , providing large values of s. For the latter, it
follows from the expression of s in Eq. (3) that the photon
energy Eγ is multiplied by 2m3He, because of which, even for
moderate value of Eγ , the high energy condition (s � m2

N ) is
easily achieved. This is seen in Fig. 1(a), where the invariant
momentum transfer −t is presented as a function of incoming
photon energy Eγ at large and fixed values of θcm. As the
figure shows, even at Eγ ∼ 1 GeV the invariant momentum
transfer −t ∼ 1 (GeV/c)2, which is sufficiently large for the
reaction to be considered hard.

That the reaction (2) at Eγ � 1 GeV and θcm ∼ 90◦ cannot
be considered a conventional nuclear process with knocked-out
nucleon and recoiled residual nuclear system follows from
Fig. 1(b), where the laboratory momenta of outgoing proton
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FIG. 1. (a) Photon energy dependence of invariant momentum transfer −t . (b) Laboratory momenta of outgoing proton and deuteron as a
function of photon energy. Solid lines denote proton, dashed lines denote deuteron. Calculations are done for θcm = 90◦ and 60◦.

and deuteron are given for large θcm. In this case, one observes
that starting at Eγ > 1 GeV/c the momenta of outgoing
proton and deuteron > 1 GeV/c. Such a large momentum
of the deuteron significantly exceeds the characteristic Fermi
momentum in the 3He nucleus, thus the deuteron cannot
be considered residual. The momenta of the deuteron are
also out of the kinematic range of eikonal, small-angle
rescattering [26–28], further diminishing the possibility of
describing reaction (2) within the framework of conventional
nuclear scattering.

Finally, another important feature of the large center-of-
mass breakup kinematics is the early onset of QCD degrees
of freedom due to the large inelasticities (or large masses)
produced in the intermediate state of the reaction. As shown
in Ref. [29] for photodisinegration of the deuteron, already at
photon energies of 1 GeV one needs around 15 channels of
resonances in the intermediate state to describe the process
within the hadronic approach. This situation is similar in the
case of the 3He target, in which one estimates the produced
mass of the intermediate state as mR ≈ √

s − Md . From this
relation one observes that already at Eγ = 1 GeV, mR ≈
1.8 GeV, which is close to the deep inelastic threshold of
2 GeV, for which QCD degrees of freedom are more adequate.

Overall, the above kinematical discussion gives justification
for the theoretical description based on the QCD degrees of
freedom to be increasingly valid starting at photon energies
of ∼1 GeV.

To conclude the section, we define the reference frame
in which the reaction (2) will be considered. It is defined
from the condition for the “+” and transverse components of
incoming photon, q+ = q⊥ = 0, with the photon and target
nucleus having the following light-cone four-momenta:

qμ = (q+,q−,q⊥) = (
0,

√
s ′

3He,0
)
,

p
μ
3He = (p3He+,p3He−,p3He⊥) =

⎛
⎝√

s ′
3He,

m2
3He√
s ′

3He

,0

⎞
⎠, (6)

where s ′
3He = s − m2

3He. In the above expression the ± com-
ponents are defined as p± = E ± pz, where the direction of z

axis is opposite to the momentum of the incoming photon in
the laboratory frame.

III. HARD RESCATTERING MECHANISM

In the HRM model, the hard photodisintegration takes
place in two stages. First, the incoming photon knocks out
a quark from one of the nucleons. Then in the second step
the outgoing fast quark undergoes a high momentum transfer
hard scattering with the quark of the other nucleon, sharing
its large momentum among the constituents in the final state
of the reaction. Since HRM utilizes the small momentum part
of the target wave function, which has a large component of
the initial pd state, it is assumed that the energetic photon
is absorbed by any of the quarks belonging to the protons in
the nucleus, with the subsequent hard rescattering of struck
quarks off the quarks in the “initial” d system producing the
final pd state. Within such a scenario, the total scattering
amplitude can be expressed as a sum of the multitude of the
diagrams similar to that of Fig. 2, with all possibilities of
struck and rescattered quarks combining into a fast outgoing
pd system. Instead of summing all the possible diagrams, the
idea of HRM is to factorize the hard γ q scattering and sum
the remaining parts to the amplitude of hard elastic pd → pd
scattering. In this way the complexities related to the large
number of diagrams and nonperturbative quark wave function
of the nucleons are absorbed into the pd → pd amplitude,
which can be taken from experiment. To demonstrate the above
described concept of HRM, we consider the typical scattering
diagram of Fig. 2. Here, the incoming photon knocks out a
quark from one of the protons in the nucleus. The struck
quark that now carries almost the whole momentum of the
photon will share its momentum with a quark from the other
nucleons through the quark interchange. The resulting two
energetic quarks will recombine with the residual quark-gluon
systems to produce a proton and deuteron with large relative
momentum. Note that the assumption that the nuclear spectator
system is represented by intermediate deuteron state is justified
based on our previous studies of HRM [19,23], in which
it was found that the scattering amplitude is dominated by
small initial momenta of interacting nucleons. For the case of

024609-3



DHIRAJ MAHESWARI AND MISAK M. SARGSIAN PHYSICAL REVIEW C 95, 024609 (2017)

FIG. 2. Typical diagram of hard rescattering mechanism of the γ 3He → pd reaction.

reaction (2), because of the presence of the deuteron in the
final state, the small momentum of the initial proton in the
3He nucleus will originate predominantly from a two-body
pd state.

In Fig. 2, h, λ3He, λ1f , and λdf are the helicities of the
incoming photon, 3He nucleus, and outgoing proton and
deuteron respectively. Similarly, q, p3He, p1, p1f , pd , and
pdf are the momenta of the photon, 3He nucleus, initial and
outgoing protons, intermediate deuteron, and the final deuteron
respectively. The k’s define the momenta of the spectator
quark systems. The four-momenta defined in Fig. 2 satisfy

the following relations:

p3He = p1 + p2 + p3, p2 + p3 = pd = p′
2 + p′

3,

p2f + p′
3 = pdf , p3He + q = p1f + pdf ,

where p2, p3, p′
2, and p′

3 are four-momenta of the nucleons in
the intermediate state deuteron.

We now write the Feynman amplitude corresponding to the
diagram of Fig. 2, identifying terms corresponding to nuclear
and nucleonic parts as follows:

Mλdf ,λ1f ;λ3He,h =
∑
λ′

d

∫
χ

∗λ′
d

d (−i�†
DNN

)
i(/p2f + m)

p2
2f − m2

N + iε

i(/p′
3 + m)

p′2
3 − m2

N + iε

i(/p′
2 + m)

p′2
2 − m2

N + iε

A : i
�

DNN
χ

λd

d χ
∗λd

d

p2
d − m2

d
+ iε

(−i)�†
DNN

i(/p3 + m)

p2
3 − m2

N + iε

i(/p2 + m)

p2
2 − m2

N + iε

i(/p1 + m)

p2
1 − m2

N + iε
i�3He

χλ3He
3He

d4p′
2

(2π )4

d4p3

(2π )4

d4p′
3

(2π )4

N1 :
∫

χp1f
(−i)�†

N1

i(/p1f − /k1 + m)

(p1f − k1)2 − m2
q + iε

[
− igT β

c γμ

] iS(k1)

k2
1 − m2

s + iε

i(/p1 − /k1 + mq)

(p1 − k1)2 − m2
q + iε

i�n1
d4k1

(2π )4

N2 :
∫

(−i)�†
N

i(/p2f − /k2 + mq)

(p2f − k2)2 − m2
q + iε

iS(k2)

k2
2 − m2

s + iε

i(/p′
2 − /k2 + mq)

(p′
2 − k2)2 − m2

q + iε
i�n2′

d4k2

(2π )4

γ : −igT α
c γν

i(/p1 + /q − /k1 + mq)

(p1 − k1 + q)2 − m2
q + iε

[−ieγ με
μ
h

]

g :
idμνδαβ

q2
q

. (7)

Here the label A identifies the nuclear part of the scat-
tering amplitude characterized by the transition vertices
�3He (for the 3He → N1,N2,N3 transition) and �DNN (for
D → N2N3 transitions). The parts N1 and N2 identify the
transition of nucleons N1 and N2 to the quark-spectator
system (characterized by the vertex �N ) with recombination
to the final N1f and N2f nucleons. Here S(k1) and S(k2)
denote the propagators of the spectator quark-gluons system.
The label γ identifies the part in which the photon with
polarization ε

μ
h interacts with the (p1 − k1) four-momentum

quark followed by the struck quark propagation. The label
g represents the gluon propagator. Everywhere, χ ’s denote

the spin wave functions of the nuclei and nucleons, with
λ’s defining the helicities. The summation over λ′

d represents
the sum over the helicities of the intermediate deuteron. The
factor g is the QCD coupling constant with Tc being color
matrices.

The hard rescattering model, which allows us to calculate
the sum of the all diagrams similar to Fig. 2 is based on the
three following assumptions:

(1) The dominant contribution comes from the soft
3He → pd transition defined by small initial momen-
tum of the proton. As a result, this transition can be
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calculated using nonrelativistic wave functions of the
3He and deuteron.

(2) The high energy γ q scattering can be factorized from
the final state quark interchange rescattering.

(3) All quark-interchange rescatterings can be summed
into the elastic pd → pd amplitude.

We proceed with the calculation of the amplitude of
Eq. (7) by introducing light-cone momenta pμ = (p+,p−,p⊥)
and also using differentials d4p = 1

2dp+dp−d2p⊥. Further-
more, we perform integrations over the minus component
of the momenta. First, we integrate by dp′

d−, dp3−, and
dp′

3− through their pole values in the propagators of the

intermediate deuteron, nucleon 3, and nucleon 3′. This allows
us to introduce the pd component wave function of the
3He [Eq. (A4)] as well as the pn component deuteron wave
function in the intermediate and final states [Eq. (A9)] of the
reaction.

In the next step the dk1− and dk2− integrations are
performed. The dk1− integration allows us to introduce the
quark wave functions for nucleons 1 and 1f , while the
dk2− integration does the same for nucleons 2 and 2f .
The light-front quark wave function of the nucleon is defined
according to Eq. (A17).

After the “minus” component integrations and introduction
of nuclear and nucleon wave functions, Eq. (7) reduces to

Mλdf ,λ1f ;λ3He,h =
∑

(λ2f )(λ′
2,λ

′
3)(λd )

(λ1,λ2,λ3)
(η1,η

′
2)(η1f ,η2f )

∫
�

†λdf :λ′
3,λ2f

d (α2f /γd,p2⊥,α′
3/γd,p

′
3⊥)

1 − α′
3/γd

{
�

†λ2f ;η2f

n2f (xs2,p2f ⊥,k2⊥)

1 − xs2

× ūq(p2f − k2,η2f )
[−igT α

c γν

][ i(/p1 + /q − /k1 + mq)

(p1 − k1 + q)2 − m2
q + iε

]
[−ieεμγμ]uq(p1 − k1,η1)

× �
λ1;η1
n1 (x1,k1⊥,p1⊥)

1 − x1

}
1

{
�

†λ1f ;η1f

n1f (xs1,k1⊥,p1f ⊥)

1 − xs1
ūq(p1f − k1,η1f )

[−igT β
c γμ

]
uq(p′

2 − k2,η
′
2)

× �
λ′

2;η′
2

n2′ (x ′
2,p

′
2⊥,k2⊥)

1 − x ′
2

}
2

Gμν(r)
�

λd :λ′
2,λ

′
3

d (α′
3,pd⊥,p′

3⊥)

1 − α′
3

�†λd :λ2,λ3
d

(α3,p3⊥,pd⊥)

1 − α3

×
�

λ3He

3He
(β1,λ1,p1⊥ ,β2,p2⊥λ2,λ3)

β1

dβd

βd

d2pd⊥
2(2π )3

dβ3

β3

d2p3⊥
2(2π )3

dα′
3

α′
3

d2p′
3⊥

2(2π )3

dx1

x1

d2k1⊥
2(2π )3

dx ′
2

x ′
2

d2k2⊥
2(2π )3

, (8)

where βi = pi+
pA+

, with βd , β1, β2, and β3 representing the

fractions of the initial light-cone momentum of the 3He
nucleus carried by the deuteron and nucleons 1, 2, and 3
respectively. Similarly, αi = pi+

pd+
, with α3 and α2 representing

the momentum fractions of the intermediate deuteron carried
by the nucleons 3 and 2. The quantity γd = pdf +

pd+
is the

momentum fraction of the intermediate deuteron carried by
the final deuteron. The quantities x1 and x2 represent the
momentum fractions of the initial nucleons 1 and 2 carried
by the spectator quark system in the corresponding nucleon.
The xs1(s2) are the same for the final nucleons 1 (2). The
quantities pn⊥, p′

n⊥, and pnf ⊥ with n = 1,2,3,d represent the
transverse momenta of nucleons and the deuteron in the initial,
intermediate, and final states of the scattering. The quantities
k1⊥ and k2⊥ represent the transverse momenta of the spectator
quark system in nucleons 1 and 2 respectively. The scattering
process in Eq. (8) can be described in the following blocks:

(1) In the initial state, the 3He wave function describes the
transition of the 3He nucleus with helicity λ3He to the
three-nucleon intermediate state with helicities λ1, λ2,
and λ3. The nucleons “2” and “3” combine to form
an intermediate deuteron, which is described by the
deuteron wave function.

(2) The terms in {· · · }1 describe the knocking out of
a quark with helicity η1 from the proton “1” by
the photon, with helicity h. The struck quark then
interchanges with a quark from one of the nucleons
in the intermediate deuteron state recombining into the
nucleon with helicity λ2f . This nucleon then combines
with the nucleon with helicity λ3 and produces the final
λdf helicity deuteron.

(3) The terms in {· · · }2 describe the emergence of a
quark with helicity η′

2 from the λ′
2-helicity nucleon,

which then interacts with the knocked out quark by
exchanging a gluon and producing a quark with helicity
η1f . This quark then combines with the spectator
quarks and produces a final nucleon with helicity λ1f .

To proceed with the calculation of the amplitude in Eq. (8),
we first identify the pole in the denominator of the propagator
of the knock-out quark, as follows:

(p1 − k1 + q)2 − m2
q + iε = s ′

3He(1 − x1)(β1 − βs + iε),

where

βs = − 1

s ′
3He

(
m2

N + p2
1⊥ − m2

s + k2
1⊥

x1
−m2

q + (p1⊥−k1⊥)2

1 − x1

)
.

(9)
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From this point onward, our discussion is based on the fact
that the 3He wave function strongly peaks at β1 = βs = 1

3 .
This corresponds to the kinematic situation in which the
nucleons in 3He have small momentum and as a result they
share equal amounts of momentum fractions of the nucleus.

In the following calculations we will estimate the inte-
gral in Eq. (8) at the pole value of the propagator (9).
This justifies the use of the sum rule

∑
λ u(p,λ)ū(p,λ) =

/p + m for the numerator of the struck quark propagator,
resulting in

Mλdf ,λ1f ;λ3He,h =
∑

(λ2f )(λ′
2,λ

′
3)(λd )

(λ1,λ2,λ3)
(η1,ηq1)(η1f ,η2f )(η′

2)

∫
�

†λdf :λ′
3,λ2f

d (α2f /γd,p2⊥,α′
3/γd,p

′
3⊥)

1 − α′
3/γd

×
{

�
†λ2f ;η2f

n2f (xs2,p2f ⊥,k2⊥)

1 − xs2
ūq(p2f − k2,η2f )

[−igT α
c γν

][uq(p1 + q − k1,ηq1)ūq(p1 + q − k1,ηq1)

s ′(1 − x1)(β1 − βs + iε)

]

× [−ieεμγμ]uq(p1 − k1,η1)
�

λ1;η1
n1 (x1,k1⊥,p1⊥)

1 − x1

}
1

{
�

†λ1f ;η1f

n1f (xs1,k1⊥,p1f ⊥)

1 − xs1
ūq(p1f − k1,η1f )

× [−igT β
c γμ

]
uq(p′

2 − k2,η
′
2)

�
λ′

2;η′
2

n2′ (x ′
2,p

′
2⊥,k2⊥)

1 − x ′
2

}
2

Gμν(r)
�

λd :λ′
2,λ

′
3

d (α′
3,pd⊥,p′

3⊥)

1 − α′
3

× �†λd :λ2,λ3
d

(α3,p3⊥ ,p
d⊥)

1 − α3

�
λ3He

3He
(β1,λ1,p1⊥ ,β2,p2⊥λ2,λ3)

β1

dβd

βd

d2pd⊥
2(2π )3

dβ3

β3

d2p3⊥
2(2π )3

× dα′
3

α′
3

d2p′
3⊥

2(2π )3

dx1

x1

d2k1⊥
2(2π )3

dx ′
2

x ′
2

d2k2⊥
2(2π )3

. (10)

In Eq. (10), using the relations β1 + βd = 1 and dβd = dβ1, we perform integration by dβ1 estimating it at the pole, β1 = βs .
For this we express

1

β1 − βs + iε
= −iπδ(β1 − βs) + P.V.

∫
dβ1

β1 − βs

, (11)

and neglect the principal value (P.V.) part since its contribution is defined by the nuclear wave function at internal momenta of
∼√

s and is strongly suppressed (see, e.g., Refs. [8,9]). Restricting by the first term of Eq. (11) allows us to use the on-shell
approximation to calculate the matrix element of the photon-quark interaction. Using the relation, (p1 − k1)+ � k⊥,mq for the
matrix element, one obtains (for details see Appendix A)

ūq(p1 − k1 + q,ηq1)[ieε⊥γ ⊥]uq(p1 − k1,η1) = ieQi2
√

2E1E2(−h)δηq1hδη1h, (12)

where E1 =
√

s ′
3He

2 β1(1 − x1) and E2 =
√

s ′
3He

2 [1 − β1(1 − x1)] are the energies of the struck quark before and after the interaction
with the photon. The factor Qi is the charge of the struck quark in e units. The above result indicates that incoming the h-helicity
photon selects the quark with the same helicity (h = η1), conserving it during the interaction (h = ηq1 ). The above integration
sets β1 = βs and βd = 1 − βs . To proceed, using the fact that the 3He wave function peaks at βs = 1

3 , we apply the “peaking”
approximation in which the integrand of Eq. (10) is estimated at β1 = βs = 1

3 and βd = 2
3 . Moreover, as follows from Eq. (9),

the βs = 1/3 condition restricts x1 ∼ m2
s

s
. The latter condition allows us to simplify further the matrix element in Eq. (12),

approximating E1 ≈
√

s ′
6 and E2 ≈

√
s ′

3 . This results in

Mλdf ,λ1f ;λ3He,h = 3

4
(−h)

1√
s ′

3He

∑
i

eQi

∑
(λ2f )(λ′

2,λ
′
3)(λd )

(λ1,λ2,λ3)
(η1f ,η2f )(η′

2)

∫
�

†λdf :λ′
3,λ2f

d (α2f /γd,p2⊥,α′
3/γd,p

′
3⊥)

1 − α′
3/γd

×
{

�
†λ2f ;η2f

n2f (xs2,p2f ⊥,k2⊥)

1 − xs2
ūq(p2f − k2,η2f )

[−igT α
c γν

]
[uq(p1 + q − k1,h)]

× �
λ1;h
n1 (x1,k1⊥,p1⊥)

1 − x1

}
1

{
�

†λ1f ;η1f

n1f (xs1,k1⊥,p1f ⊥)

1 − xs1
ūq(p1f − k1,η1f )

[−igT β
c γμ

]
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× uq(p′
2 − k2,η

′
2)

�
λ′

2;η′
2

n2′ (x ′
2,p

′
2⊥,k2⊥)

1 − x ′
2

}
2

Gμν(r)
�

λd :λ′
2,λ

′
3

d (α′
3,pd⊥,p′

3⊥)

1 − α′
3

�†λd :λ2,λ3
d

(α3,p3⊥ ,p
d⊥)

1 − α3

×�
λ3He

3He
(β1 = 1/3,λ1,p1⊥ ,β2,p2⊥λ2,λ3)

d2pd⊥
(2π )2

dβ3

β3

d2p3⊥
2(2π )3

dα′
3

α′
3

d2p′
3⊥

2(2π )3

dx1

x1

d2k1⊥
2(2π )3

dx ′
2

x ′
2

d2k2⊥
2(2π )3

. (13)

The above expression corresponds to the amplitude of Fig. 2.
To be able to calculate the total amplitude of γ 3He → pd
scattering, one needs to sum the multitude of similar diagrams
representing all possible combinations of photon coupling to
quarks in one of the protons, followed by quark interchanges
or possible multigluon exchanges between outgoing nucleons,
producing the final pd system with large relative momentum.
The latter rescattering is inherently nonperturbative. The same
is true for the quark wave function of the nucleon, which is
largely unknown. The main idea of HRM is that, instead of
calculating all the amplitudes explicitly, we notice that the
hard kernel in Eq. (13), {· · · }1{· · · }2, together with the gluon
propagator is similar to that of the hard pd → pd scattering.
To illustrate this, in Appendix B we calculated the amplitude
of hard pd → pd scattering corresponding to the diagram
of Fig. 8. Using the notations similar to ones used in Fig. 2
and the derivation analogous to the above derivation in which
light-front wave functions of the deuteron and nucleons are
introduced, one arrives at Eq. (B5).

Equation (B5) is derived in the pd center of mass reference
frame, in which the final momenta p1f and pdf are chosen to
be the same as in reaction (2). Thus the pd → pd amplitude
is defined at the same s = (p1f + pdf )2 as in Eq. (3) but at
the different invariant momentum transfer defined as tpd =
(pdf − pd )2.

To be able to substitute Eq. (B5) into Eq. (13), we notice that
within the peaking approximation the momentum transfer tN
entering in the rescattering part of the amplitude in Eq. (13) is
approximately equal to tpd :

tN ≈ tpd = (pdf − pd )2, (14)

where pd is the deuteron four-momentum in the intermediate
state of the reaction (Fig. 2).

Furthermore, due to q+ = 0, the spinor uq(p1 − k1 + q,h)
in Eq. (13) is defined at the same momentum fraction
1 − x1 and transverse momentum as the spinor uq(p1 − k1)
in Eq. (B5). The final step that allows us to replace the
quark-interchange part of Eq. (13) by the pd → pd amplitude
is the observation that, due to the condition of β1 = βs ≈ 1

3 , it
follows from Eq. (9) that the momentum fraction of the struck

quark 1 − x1 ∼ 1 − m2
s

s ′
3He

∼ 1. This justifies the additional

assumption according to which the helicity of the struck
quark is the same as the nucleon’s from which it originates,
i.e., η1 = λ1. With this assumption one can sum over η1 in
Eq. (B5), which allows us now to substitute it into Eq. (13),
yielding

Mλdf ,λ1f ;λ3He,h = 3

4

1√
s ′

3He

∑
i

eQi(h)
∑
λd

λ2,λ3

∫
Mλdf ,λ1f ;λd ,h

pd (s,tN )
�†λd :λ2,λ3

d
(α3,p3⊥ ,βd,pd⊥)

1 − α3

×�λ3He:h,λ2,λ3
3He

(β1 = 1/3,p1⊥ ,β2,p2⊥ )
d2pd⊥
(2π )2

dβ3

β3

d2p3⊥
2(2π )3

. (15)

We can further simplify this equation using the fact that
the momentum transfer in the pd → pd scattering amplitude
significantly exceeds the momenta of bound nucleons in the
nucleus. As a result, one can factorize the pd → pd amplitude
from the integral in Eq. (15) at tpd approximated as

tpd ≈ (pdf − md )2 = [p1f − (mN + q)]2, (16)

resulting in

Mλdf ,λ1f ;λ3He,h = 3

4

1√
s ′

3He

∑
i

∑
λd

eQi(h)Mλdf ,λ1f ;λd ,h

pd (s,tpd )

×
∫

�
λ3He:λ1,λd

3He/d (β1 = 1/3,p1⊥)
d2p1⊥
(2π )2

,

(17)

where we introduced the light-front nuclear transition wave
function as

�
λ3He:λ1,λd

3He/d (β1,p1⊥)

=
∑
λ2,λ3

∫
�†λd :λ2,λ3

d
(α3,p3⊥,βd,pd⊥)

2(1 − α3)

×�λ3He:λ1,λ2,λ3
3He

(β1,p1⊥,β2,p2⊥)
dβ3

β3

d2p3⊥
2(2π )3

. (18)

The above function defines the probability amplitude of the
3He nucleus transitioning to a proton and deuteron with
respective momenta p1 and pd and helicities λ1 and λd .

In Eq. (17) one sums over all the valence quarks in the
bound proton that interact with incoming photon. To calculate
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such a sum one needs an underlying model for hard nucleon
interaction based on the explicit quark degrees of freedom.
Such a model will allow us to simplify further the amplitude
of Eq. (17), representing it through the product of an effective
charge Qeff that the incoming photon probes in the reaction
and the hard pd → pd amplitude in the form

Mλdf ,λ1f ;λ3He,h = 3

4

eQeff(h)√
s ′

3He

∑
λd

Mλdf ,λ1f ;λd ,h

pd (s,tpd )

×
∫

�
λ3He:λ1,λd

3He/d (β1 = 1/3,p1⊥)
d2p1⊥
(2π )2

.

(19)

IV. THE DIFFERENTIAL CROSS SECTION

The differential cross section of reaction (2) can be
presented in the standard form

dσ

dt
= 1

16π

1

s ′2
3He

|M|2, (20)

where, for the case of unpolarized scattering,

|M|2 = 1

2

1

2

∑
λ3He,h

∑
λdf ,λ1f

∣∣Mλdf ,λ1f ;λ3He,h
∣∣2

. (21)

Here squared amplitude is summed by the final helicities and
averaged by the helicities of 3He and the incoming photon. The
factorization approximation of Eq. (19) allows to us express
Eq. (21) through the convolution of the averaged square of
pd → pd amplitude, Mpd , in the form

|M|2 = 9

16

e2Q2
eff

s ′
3He

1

2
|Mpd |2S3He/d (β1 = 1/3), (22)

where

|Mpd |2 = 1

3

1

2

∑
λdf ,λ1f ;λd ,λ1

∣∣Mλdf ,λ1f ;λd ,λ1

pd (s,tpd )
∣∣2

, (23)

and the nuclear light-front transition spectral function is
defined as

S3He/d (β1) = 1

2

∑
λ3He;λ1,λd

∣∣∣∣
∫

�
λ3He:λ1,λd

3He/d (β1,p1⊥)
d2p1⊥
(2π )2

∣∣∣∣
2

.

(24)

Substituting Eq. (22) into (20), one can express the differential
cross section through the differential cross section of elastic
pd → pd scattering in the form

dσ

dt
= 9

32

e2Q2
eff

s ′
3He

(
s ′
N

s ′
3He

)
dσpd

dt
(s,tpd )S3He/d (β1 = 1/3),

(25)

where s ′
N = s − m2

N .

A. Numerical estimates of the cross section

1. Calculation of the light-front transition spectral function

For calculation of the light-front transition spectral function
of Eq. (24) we observe, that within the applied peaking
approximation which maximizes the nuclear wave function’s
contribution to the scattering amplitude, β1 = 1

3 and βd ≈ 2
3 .

These values of light-cone momentum fractions correspond
to a small internal momenta of the nucleons in the nucleus.
Additionally since the deuteron wave function strongly peaks
at small relative momenta between two spectator (“2” and “3”
in Fig. 2) nucleons, the integral in Eq. (18) is dominated at
β3 ≈ 1

3 and α3 ≈ 1
2 . This justifies the application of nonrel-

ativistic approximation in the calculation of the transition
spectral function of Eq. (24).

In nonrelativistic limit, using the boost invariance of the
momentum fractions βi (i = 1,2,3), one relates them to the
three-momenta of the constituent nucleons in the laboratory
frame of the nucleus as follows:

βi = pi+
p3He+

≈ 1

3
+ plab

i,z

3mN

. (26)

Using above relations one approximates dβ3

β3
≈ dplab

3z

mN
and

α3 ≈ 1
2 + p2,z

2mN
in Eq. (18). Introducing also the relative three-

momentum in the 2,3 nucleon system as

�prel = 1
2

( �p lab
3 − �p lab

2

)
, (27)

and using the relation between light-front and nonrelativisitc
nuclear wave functions in the small-momentum limit (see
Appendix C),

�LC
A (β,p⊥) = 1√

A
[mN2(2π )3]

A−1
2 �NR

A ( �p), (28)

one can express the light-cone nuclear transition wave function
of Eq. (18) through the nonrelativistic 3He to d transition wave
function as follows:

�
λ3He :λ1,λd
3He/d (β1,p1⊥) =

√
1

6

√
mN2(2π )3 · �

λ3He :λ1,λd
3He/d,NR

( �p1),

(29)

where the nonrelativistic transition wave function is defined as

�
λ3He:λ1,λd

3He/d,NR
( �p1) =

∑
λ2,λ3

∫
�

†λd :λ2,λ3

d ,NR (prel)

×�
λ3He:λ1,λ2,λ3

3He,NR (p1,prel)d
3prel. (30)

Using Eq. (29), we express the light-front spectral function
through the nonrelativistic counterpart in the form

S3He/d (β1) = mN2(2π )3

6
Npd SNR

3He/d

(
plab

1z

)
, (31)

where β1 and plab
1z are related according to Eq. (26) and Npd =

2 is the number of the effective pd pairs. The nonrelativistic
spectral function is defined as

SNR
3He/d (p1z) = 1

2

∑
λ3He;λ1,λd

∣∣∣∣
∫

�
λ3He:λ1,λd

3He/d,NR
(p1z,p1⊥)

d2p1⊥
(2π )2

∣∣∣∣
2

,

(32)
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FIG. 3. Effective center of mass angle vs the incident photon
energy.

where both 3He and d wave functions are renormalized to
unity. In the above expressions all the momenta entering in the
nonrelativisitic wave functions are considered in the laboratory
frame of the 3He nucleus.

2. Hard elastic pd → pd scattering cross section

The hard pd → pd elastic scattering cross section entering
in Eq. (25) is defined at the same invariant energy s as the
reaction (2) but at different [from Eq. (3)] invariant momentum
transfer, tpd , defined in Eq. (16). Comparing Eqs. (16) and (3),
one can relate the tpd to t in the following form:

tpd = 1
3m2

d − 2
9m2

3He + 2
3 t. (33)

It follows from the above equation, for large momentum
transfer, that; therefore for the same s, the pd → pd scattering
will take place at smaller angles in the pd center-of-mass
reference frame. To evaluate this difference we introduce θ∗

cm,
which represents the center-of-mass scattering angle for the
pd → pd reaction in the form

tpd = (pdf − pdi)
2 = 2

(
m2

d − E2
d,cm

)
(1 − cos θ∗

cm), (34)

where Ed,cm = s+m2
d−m2

N

2
√

s
. Then, comparing this equation with

Eq. (5) in the asymptotic limit of high energies, one finds
that for θcm = 90◦ in reaction (2) the asymptotic limit of
the effective center-ofmass scattering angle of pd → pd
scattering is θ∗

cm = 70.53◦. The dependence of θ∗
cm at finite

energies on the incoming photon is shown in Fig. 3. The figure
indicates that, for realistic comparison of HRM prediction with
the data, one needs the pd → pd cross section for the range
of center-of-mass scattering angles.

To achieve this, we parametrized the existing experimental
data on elastic pd → pd scattering [32–36] which covers

the invariant energy range s ∼ 9.5−17.3 GeV2. The following
parametric form is used to fit the pd → pd cross section data:

dσpd

dt
(s, cos θ∗

cm) = 1

(s/10)16

A(s)eB(cos θ∗
cm)

(1 − cos2 θ∗
cm)3

, (35)

where A(s) = Ce(a1s+a2s
2) and B(x) = bx + cx2, with the fit

parameters given in Table I. The samples of fits obtained for
the elastic pd → pd hard scattering are presented in Fig. 4.

The errors quoted in the table for the fitting parameters
result in a overall error in the pd → pd cross section on the
level of 22–37%. Note that the form of the ansatz used in
Eq. (35) is in agreement with the energy and angular depen-
dence following from the quark interchange mechanism of
the pd elastic scattering. As a result the ansatz is strictly valid
for large center-of-mass angles | cos(θ∗

cm)| � 0.6. However, we
extended the fitting procedure beyond this angular range by
introducing an additional function eB(cos θ∗

cm).

3. Estimation of the effective charge Qeff .

To calculate the effective quark charge associated with the
hard rescattering amplitude, we notice that from Eq. (15) it
follows that Qeff should satisfy the following relation:

∑
i∈p

Qi〈d ′p′|Mpd,i |dp〉 = Qeff〈d ′p′|Mpd |dp〉, (36)

where by i we sum by the quarks in the proton that were struck
by incoming photon. To use the above equation one needs a
specific model for pd elastic scattering which explicitly uses
underlying quark degrees of the freedom in pd scattering.
For such a model we use the quark-interchange mechanism
(QIM). The consideration of a quark-interchange mechanism
is justified if one works in the regime in which the pd elastic
scattering exhibits scaling in agreement with quark counting
rule, i.e., s−16.

Similar to Refs. [19,23,24], within the QIM Qeff can be
estimated using the relation

Qeff = Nuu(Qu) + Ndd (Qd ) + Nud (Qu + Qd )

Nuu + Ndd + Nud

, (37)

where Qi is the charge of the u and d valence quarks in the
proton p and Nii represents the number of quark interchanges
for u and d flavors necessary to produce a given helicity
pd amplitude. Note that for the particular case of elastic pd
scattering Nud = 0, and one obtains Qeff = 1

3 .

4. Final expression for the differential cross section

Substituting Eq. (31) into Eq.(25) and taking into account
the above estimation of Qeff , we arrive at the final expression
for the differential cross section which will be used for the

TABLE I. Fit parameters.

C (μb GeV30) a1 (GeV−2) a2 (GeV−4) b c

(9.72 ± 1.33) × 104 −0.98 ± 0.05 0.04 ± 0.001 3.45 ± 0.02 −0.83 ± 0.05
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FIG. 4. Fits of elastic pd → pd scattering cross section. The data in (a) are from [35] and in (b),(c) and (d) are from [36]. The curves are
the fits to the data obtained using Eq.(35) with fit parameters from Table I.

numerical estimates:

dσ

dt
(s,t) = 2π4α

3s ′
3He

(
s ′
N

s ′
3He

)
dσpd

dt
(s,tpd ) · mNSNR

3He/d (p1z = 0),

(38)
where α = e2

4π
is the fine structure constant. For the evaluation

of the transition spectral function SNR
3He/d , we use the realistic

3He [37] and deuteron [38] wave functions based on the
V18 potential [38] of the NN interaction. This yields [39]
SNR

3He/d (p1z = 0) = 4.1 × 10−4 GeV. For the differential cross
section of the large center-of-mass elastic pd → pd scatter-
ing, dσpd

dt
(s,tpd ), we use Eq. (35) which covers the invariant

energy range of up to s = 17.3 GeV2, corresponding to
Eγ = 1.67 GeV for the reaction (2). In Fig. 5 we present the
comparison of our calculation of the energy dependence of the
s17 scaled differential cross section at θcm = 90◦ with the data
of Ref. [18]. The shaded area represents the error due to the
above discussed fitting of the elastic pd → pd cross sections.

As the comparison shows, Eq. (38) describes surprisingly
well the Jefferson Lab data, considering the fact that the cross
section between Eγ = 0.4 GeV and Eγ = 1.3 GeV drops by a
factor of ∼4000. It is interesting that the HRM model describes
data reasonably well even for the range of Eγ < 1 GeV for
which the general conditions for the onset of QCD degrees

of freedom is not satisfied (see the discussion in Sec. II). This
situation is specific to the HRM model in which there is another
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FIG. 5. Energy dependence of the differential cross section
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Refs. [18,30,31]. See also the discussion in Ref. [18] on disagreement
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FIG. 6. The angular dependence of s17 scaled differential cross
section for incoming photon energies of 1.3, 1.4, and 1.5 GeV.

scale tpd , the invariant momentum transfer in the hard rescat-
tering amplitude. The −tpd > 1 GeV2 condition is necessary
for the factorization of the hard scattering kernels from the soft
nuclear parts. It follows from Eq. (33) that such a threshold for
tpd is reached already for incoming photon energies of 0.7 GeV.
Considering the photon energies below 0.7 GeV, the qualitative
agreement of the HRM model with the data is an indication of
the smooth transition from the hard to the soft regime of the
interaction.

The HRM model allows us to also calculate the angular
distribution of the differential cross section for fixed values of
s. In Fig. 6 we present predictions for angular distribution of
the energy scaled differential cross section at largest photon
energies for which there are available data [40].

The interesting feature of the HRM prediction is that, due
to the fact that the magnitude of invariant momentum transfer
of the reaction (2), t , is larger than that of the pd → pd
scattering, tpd [Eq. (33)], the effective center-of-mass angle, in
the latter case, θ∗

cm < θcm (see Fig. 3); as a result HRM predicts
angular distributions that are monotonically decreasing with
an increase of θcm for up to θcm ≈ 120◦.

Finally in Fig. 7 we present the calculation of the s17 scaled
differential cross section as a function of incoming photon
energy for different fixed and large center-of-mass angles θcm.
Note that in both Figs. 6 and 7 the accuracy of the theoretical
predictions is similar to that of the energy dependence at θcm =
90◦ presented in Fig. 5.

The possibility of comparin these calculations with the
experimental data will allow us to ascertain the range of
validity of the HRM mechanism. These comparisons will
allow us to identify the minimal momentum transfer in these
nuclear reactions for which one observes the onset of QCD
degrees of freedom.

V. SUMMARY AND OUTLOOK

We extended the consideration of the hard rescattering
mechanism of two-body breakup reactions to the high energy
photodisintegration of the 3He target to the (p,d) pair at large
center-of-mass angles. The obtained expression for the cross
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FIG. 7. Energy dependence of the s17 scaled differential cross
section for different values of θcm. The upper curve corresponds to
θcm = 60◦, with the following curves corresponding to increments of
the center-of-mass angle by 10◦.

section does not contain free parameters and is expressed
through the effective charge of the constituent quarks being
struck by the incoming photon and interchanged in the
final state of the process, the 3He → pd transition spectral
function, and the hard elastic pd → pd scattering differential
cross section.

For numerical results we estimated the effective quark
charge based on the quark-interchange model of pd → pd
scattering. The transition spectral function is calculated using
realistic wave functions of 3He and the deuteron and the
pd → pd cross section is taken from the experiment. The
calculated differential cross section of reaction (2) at θcm = 90◦
is compared with the recent experimental data from Jefferson
Lab. The comparison shows a rather good agreement with the
data for the range of photon energies Eγ � 0.7 GeV. We also
give predictions for angular distribution of the cross section,
which reflects the special property of HRM in which the
magnitude of the invariant momentum transfer entering in the
reaction (2) exceeds the one entering in the hard amplitude of
pd → pd scattering. The possibility of comparing the energy
dependence of the cross section for different θcm of the pd
breakup will allow us to establish the kinematic boundaries
in which QCD degrees of freedom are important for the
quantitative description of the hard pd breakup reactions.
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APPENDIX A

1. Nuclear and nucleonic wave functions

In this Appendix, the details on derivation of the wave
functions of the 3He nucleus and deuteron are discussed. We
begin with considering the part A in Eq. (7) related to the
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3He → d nuclear transition

A1 =
∫

(−i)
χ∗λd

d �†
DNN

p2
d − m2

d
+ iε

i(/p3 + m)

p2
3 − m2

N + iε

i(/p2 + m)

p2
2 − m2

N + iε

i(/p1 + m)

p2
1 − m2

N + iε

× i�3He
χλ3He

3He

1

2

dp2+dp2−d2p2⊥

(2π )4

1

2

dp3+dp3−d2p3⊥

(2π )4
, (A1)

where the d4p differentials are expressed in terms of the light cone momenta. The denominators of the propagators in this
expression can be expanded as follows:

p2 − m2
N + iε = p+

(
p− − m2

N + p2
⊥

p+
+ iε′

)
, (A2)

in which using the relations p1− = p3He− − pd− and pd− = m2
d+p2

d⊥
pd+

one obtains

p2
1 − m2

N + iε = 1

p3He+

(
m2

3He
− m2

d
+ p2

d⊥

βd

− m2
N + p2

1⊥

β1

)
, (A3)

where β1 = p1+
p3He+

, βd = p
d+

p3He+
, and β1 + βd = 1. Using the sum rule relation, (/p + m) = ∑

λ u(p,λ)ū(p,λ), one introduces the

light-front wave function of 3He (see, e.g., [41–43]) as follows:

�
λ3He

3He
(β1,λ1,p1⊥ ,β2,p2⊥λ2,λ3) = ū(p3,λ3)ū(p2,λ2)ū(p1,λ1)(

m2
3He

− m2
d
+p2

d⊥
βd

− m2
N+p2

1⊥
β1

)�3He
χλ3He

3He
. (A4)

This wave function gives the probability amplitude of finding the 3He nucleus with helicity λ3He consisting of nucleons with
momenta pi and helicities λi , i = 1,2,3. Using the above definition of the 3He wave function and Eq. (A3) in Eq. (A1), one
obtains

A1 = −i
∑

λd ,λ3,λ2,λ1

∫
χ∗λd

d �†
DNN

p2
d − m2

d
+ iε

u(p3,λ3)u(p2,λ2)u(p1,λ1)
1

p2+
(
p2− − m2

N +p2
2⊥

p2+

)

×
�

λ3He

3He
(β1,λ1,p1⊥ ,β2,p2⊥λ2,λ3)

β1

1

2

dp2−dp2+d2p2⊥

(2π )4

1

2

dβ3

β3

d2p3⊥

(2π )3
, (A5)

where β3 = p3+
p3He+

and the integral over p3− is performed at its pole value:

∫
dp−

p− − m2
N+p2

⊥
p+

+ iε
= −2πi

∣∣∣
p−= m2

N
+p2⊥

p+
. (A6)

Since p2 + p3 = pd , the differentials with respect to p2 can be written as

dp2−dp2+dp2⊥

(2π )4
= dp

d−dp
d+dp

d⊥

(2π )4
. (A7)

Also, the quantity p2+(p2− − m2
N+p2

2⊥
p2+

) in Eq. (A5) can be represented as

p2+

(
p2− − p2

2⊥ + m2
N

p2+

)
= (1 − α3)

(
m2

d
+ p2

d⊥ − m2
N + p2

3⊥

α3
− m2

N + p2
2⊥

1 − α3

)
, (A8)

where we define α3 = p3+
p

d+
≡ β3

βd
and 1 − α3 ≡ α2 = p2+

p
d+

= β2

βd
with βd = pd+

p3He+
and β2 = p2+

p3He+
. The quantities α3 and α2 represent

the fractions of the momentum of the intermediate deuteron carried by the nucleons 3 and 2 respectively. Note that α3 + α2 = 1.
Similar to Eq. (A4), we introduce light-front wave function of the deuteron [41–43]:

�λd

d
(α3,p3⊥ ,p

d⊥) = ū(p2,λ2)ū(p3,λ3)(
m2

d
+ p2

d⊥ − m2
N+p2

3⊥
α3

− m2
N +p2

2⊥
1−α3

)�
DNN

χ
λd

d
, (A9)
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which describes the probability amplitude of finding in the λd -helicity deuteron two nucleons with momenta pi and helicities λi ,
i = 1,2. Using Eqs. (A8) and (A9) for Eq. (A5) we obtain

A1 = −i
∑

λd ,λ3,λ2,λ1

∫
�†λd :λ2,λ3

d
(α3,p3⊥ ,p

d⊥)

1 − α3
u(p1,λ1)

�
λ3He

3He
(β1,λ1,p1⊥ ,β2,p2⊥λ2,λ3)

β1

1

2

dβ
d
d2p

d⊥

βd (2π )3

1

2

dβ3

β3

d2p3⊥

(2π )3
, (A10)

where the p2− integration is performed similarly to that of p3− according to Eq. (A6).
Next, we consider the second part of the expression A in Eq. (7) related to the transition of the deuteron from the intermediate

to the final state:

A2 = −
∫

χ
∗λd

d (�†
DNN

)
i(/p2f + m)

p2
2f − m2

N + iε

i(/p′
3 + m)

p′2
3 − m2

N + iε

i(/p′
2 + m)

p′2
2 − m2

N + iε
i�

DNN
χ

λd

d

d4p′
3

(2π )4

= −
∑
λ2f

λ′
2,λ

′
3

∫
χ

∗λd

d �†
DNN

u(p2f ,λ2f )ū(p2f ,λ2f )

p2
2f − m2

N + iε

u(p′
2,λ

′
2)ū(p′

2,λ
′
2)

p′
2+

(
p′

2− − m2
N +p′2

2⊥
p′

2+
+ iε

)u(p′
3,λ

′
3)ū(p′

3,λ
′
3)i�

DNN
χ

λd

d

1

2

dp′
3+

p′
3+

d2p′
3⊥

(2π )3
, (A11)

where the dp′
3− is integrated according to Eq. (A6). To estimate the denominator p2

2f − m2
N + iε we use the relation p2f =

pdf − p′
3, which allows us to express

p2
2f − m2

N + iε = p2f +

p
df +

(
m2

d + p2
df ⊥ − m2

N + p′2
3⊥

p′
3+/p

df +
−

m2
N + p2

2f ⊥

p2f +/p
df +

+ iε

)
. (A12)

Defining
p′

3+
p

df +
= p′

3+ /p
d+

p
df + /p

d+
= α′

3
γd

and
p2f +
p

df +
= 1 − p′

3+
p

df +
= 1 − α′

3
γd

, the above equation reduces to

p2
2f − m2

N + iε =
(

1 − α′
3

γd

)(
m2

d + p2
df ⊥ − m2

N + p′2
3⊥

α′
3/γd

−
m2

N + p2
2f ⊥

1 − α′
3/γd

+ iε

)
, (A13)

where the quantity γd = p
df +

p
d+

is the fraction of the momentum of the intermediate deuteron carried by the final deuteron. Using

Eqs. (A9) and (A13), we rewrite Eq. (A11) as follows:

A2 =
∑

λdf ,λ2f

λ′
2,λ

′
3

∫
�

†λdf :λ′
3,λ2f

d (α2f /γd,p2⊥,α′
3/γd,p

′
3⊥)

1 − α′
3/γd

ū(p2f ,λ2f )u(p′
2,λ

′
2)

�
λd :λ′

2,λ
′
3

d (α′
3,pd⊥,p′

3⊥)

1 − α′
3

1

2

dα′
3

α′
3

d2p′
3⊥

(2π )3
. (A14)

Now we consider the N1 part of the amplitude in Eq. (7), which describes the transition of the nucleon with momentum p1

to the final nucleon with momentum p1f . Using on-shell sum-rule relations for the numerators of the quark propagators for the
N1 part, one has

N1 =
∑
λ1

η1f ,η1

∫
ū(p1f ,λ1f )(−i)�†

n1f

uq(p1f − k1,η1f )ūq(p1f − k1,η1f )

(p1f − k1)2 − m2
q + iε

[−igT β
c γμ

]

× �s(k1)�̄s(k1)

k2
1 − m2

s + iε

uq(p1 − k1,η1)ūq(p1 − k1,η1)

(p1 − k1)2 − m2
q + iε

i�n1u(p1,λ1)
1

2

dk1+dk1−d2k1⊥
(2π )4

, (A15)

where we sum over the initial helicity (η1) of the quark before being struck by the incoming photon and the final helicity (η1f )
of the quark that recombines to form the final state proton. In Eq. (A15), we can expand the denominators of the propagators as
follows:

(p1f − k1)2 − m2
q + iε = (1 − xs1)

(
m2

N + p2
1f ⊥ − m2

s + k2
1⊥

xs1
− m2

q + (p1f − k1)2
⊥

1 − xs1
+ iε

)
,

(p1 − k1)2 − m2
q + iε = (1 − x1)

(
m2

N + p2
1⊥ − m2

s + k2
1⊥

x1
− m2

q + (p1 − k1)2
⊥

1 − x1
+ iε

)
,

(A16)

where xs1 = k1+
p1f +

and x1 = k1+
p1+

along with k1− = m2
s +k2

1⊥
k1+

and p1f − = m2
N+p2

1f ⊥
p1f +

. Here x1(xs1) is interpreted as the momentum
fraction of the initial (final) nucleon “1” carried by the spectator quark system. Performing the dk1− integration at the k1− pole
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value of the spectator system allows us to introduce a single quark wave function of the nucleon in the form

�λ;η
n (X,k⊥,p⊥) = ūq(p − k,η)�̄s(k)

m2
N + p2

⊥ − m2
s +k2

⊥
X

− m2
q+(p−k)2

⊥
1−X

�nu(p,λ), (A17)

which describes the probability amplitude of finding a quark with helicity η and momentum fraction 1 − x in the λ-helicity
nucleon with momentum p. With this definition of quark wave function of the nucleon one obtains for the N1 part

N1 = i
∑
λ1

η1f ,η1

∫
�

†λ1f ;η1f

n1f (xs1,k1⊥,p1f ⊥)

1 − xs1
ūq(p1f − k1,η1f )uq(p1 − k1,η1)

[−igT β
c γμ

]�
λ1;η1
n1 (x1,k1⊥,p1⊥)

1 − x1

1

2

dx1

x1

d2k1⊥
(2π )3

. (A18)

Performing very similar calculations for the N2 part of Eq. (7), one obtains

N2 = −
∑

λ2f ,λ′
2

η2f ,η′
2

∫
�

†λ2f ;η2f

n2f (xs2,k2⊥,p2f ⊥)

1 − xs2
ūq(p2f − k2,η2f )uq(p′

2 − k2,η
′
2)

�
λ′

2;η′
2

n2′ (x ′
2,k2⊥,p′

2⊥)

1 − x ′
2

1

2

dx ′
2

x ′
2

d2k2⊥
(2π )3

, (A19)

where xs2 = k2+
p2f +

and x ′
2 = k2+

p′
2+

.
Substituting now Eqs. (A10), (A14), (A18), and (A19) into Eq. (7), one obtains

Mλdf ,λ1f ;λ3He,h =
∑

(λ2f )(λ′
2,λ

′
3)(λd )

(λ1,λ2,λ3)
(η1f ,η2f )(η1,η

′
2)

∫
�

†λdf :λ′
3,λ2f

d (α2f /γd,p2⊥,α′
3/γd,p

′
3⊥)

1 − α′
3/γd

{
�

†λ2f ;η2f

n2f (xs2,k2⊥,p2f ⊥)

1 − xs2

× ūq(p2f − k2,η2f )
[−igT α

c γν

][ i(/p1 + /q − /p1 + mq)

(p1 − k1 + q)2 − m2
q + iε

]
[−ieεμγμ]uq(p1 − k1,η1)

× �
λ1;η1
n1 (x1,k1⊥,p1⊥)

1 − x1

}
1

{
�

†λ1f ;η1f

n1f (xs1,k1⊥,p1f ⊥)

1 − xs1
ūq(p1f − k1,η1f )

[−igT β
c γμ

]
uq(p′

2 − k2,η
′
2)

× �
λ′

2;η′
2

n2′ (x ′
2,k2⊥,p′

2⊥)

1 − x ′
2

}
2

Gμν(r)
�

λd :λ′
2,λ

′
3

d (α′
3,pd⊥,p′

3⊥)

1 − α′
3

�†λd :λ2,λ3
d

(α3,p3⊥ ,p
d⊥)

(1 − α3)

×
�

λ3He

3He
(β1,λ1,p1⊥ ,β2,p2⊥λ2,λ3)

β1

dβd

βd

d2pd⊥
2(2π )3

dβ3

β3

d2p3⊥
2(2π )3

dα′
3

α′
3

d2p′
3⊥

2(2π )3

dx1

x1

d2k1⊥
2(2π )3

dx ′
2

x ′
2

d2k2⊥
2(2π )3

. (A20)

2. Hard scattering kernel

In Eq. (A20), the expression in {}1{}2G
μν(r) describes the hard photon-quark interaction followed by a quark interchange

through the gluon exchange.

a. Propagator of the struck quark

We analyze first the propagator of the struck quark, i(/p1+/q−/k1+mq )
(p1−k1+q)2−m2

q+iε
.

Using the definition of the reference frame from Eq. (6) and momentum fraction definitions β1 = p1+
p3He+

= p1+√
s ′

3He

and x1 = k1+
p1+

,

one can isolate the pole term in the denominator of the struck quark propagator as follows:

(p1 − k1 + q)2 − m2
q + iε = (p1+ − p1+x1)(p1− − k1− + q−) − (p1⊥ − k1⊥)2 − m2

q + iε

= s ′
3He(1 − x1)

(
m2

N + p2
1⊥

s ′
3He

− m2
s + k2

1⊥
x1s

′
3He

+ β1 − m2
q + (p1⊥ − k1⊥)2

s ′
3He(1 − x1)

)
+ iε

= s ′
3He(1 − x1)(β1 − βs + iε), (A21)
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where βs = − 1
s ′

3He

(m2
N + p2

1⊥ − m2
s +k2

1⊥
x1

− m2
q+(p1⊥−k1⊥)2

1−x1
). Using the sum rule relation [/p + m = ∑

λ u(p,λ)ū(p,λ)] for the

numerator of the struck quark propagator together with Eq. (A21), one can rewrite Eq. (A20) as follows:

Mλdf ,λ1f ;λ3He,h =
∑

(λ2f )(λ′
2,λ

′
3)(λd )

(λ1,λ2,λ3)
(η1f ,η2f )(η1,η

′
2)(ηq1)

∫
�

†λdf :λ′
3,λ2f

d (α2f /γd,p2⊥,α′
3/γd,p

′
3⊥)

1 − α′
3/γd

×
{

�
†λ2f ;η2f

n2f (xs2,k2⊥,p2f ⊥)

1 − xs2
ūq(p2f − k2,η2f )

[−igT α
c γν

][uq(p1 + q − k1,ηq1)ūq(p1 + q − k1,ηq1)

s ′
3He(1 − x1)(β1 − βs + iε)

]

× [−ieεμγμ]uq(p1 − k1,η1)
�

λ1;η1
n1 (x1,k1⊥,p1⊥)

1 − x1

}
1

{
�

†λ1f ;η1f

n1f (xs1,k1⊥,p1f ⊥)

1 − xs1
ūq(p1f − k1,η1f )

× [−igT β
c γμ

]
uq(p′

2 − k2,η
′
2)

�
λ′

2;η′
2

n2′ (x ′
2,k2⊥,p′

2⊥)

1 − x ′
2

}
2

Gμν(r)
�

λd :λ′
2,λ

′
3

d (α′
3,pd⊥,p′

3⊥)

1 − α′
3

× �†λd :λ2,λ3
d

(α3,p3⊥ ,p
d⊥)

(1 − α3)

�
λ3He

3He
(β1,λ1,p1⊥ ,β2,p2⊥λ2,λ3)

β1

dβd

βd

d2pd⊥
2(2π )3

dβ3

β3

d2p3⊥
2(2π )3

dα′
3

α′
3

d2p′
3⊥

2(2π )3

× dx1

x1

d2k1⊥
2(2π )3

dx ′
2

x ′
2

d2k2⊥
2(2π )3

. (A22)

Note that the above used sum rule for the numerator of the struck quark propagator is valid for on-shell spinors only. Our use of
this sum rule is justified based on the use of the peaking approximation in evaluating Eq. (A22), in which the denominator of the
struck quark is estimated at its pole value.

b. Photon quark interaction

We now consider the term

ūq(p1 − k1 + q,ηq1)
[−ieε

μ
h γ μ

]
uq(p1 − k1,η1), (A23)

where the incoming photon with helicity h is described by polarization vectors εR/L = ∓
√

1
2 (ε1 ± iε2) for h = 1/(−1)

respectively. Here ε1 ≡ (1,0,0) and ε2 ≡ (0,1,0). Using these definitions we express

−ε
μ
h γ μ = ε⊥γ ⊥ = −εRγL + εLγR, (A24)

where γR/L = γx±iγy√
2

. We also resolve the spinor of the quark with spin α to the ± helicity states as follows:

u(p,α) = u+(p,α) + u−(p,α) = 1
2 (1 + γ 5)u(p,α) + 1

2 (1 − γ 5)u(p,α). (A25)

Finally, in the reference frame of Eq. (6) the light-cone four-momenta (p+,p−,p⊥) of the initial and final quarks in Eq. (A23),
in the massless limit, are

Initial momentum: p1 − k1 = (β1(1 − x1)
√

s ′
3He,0,0),

Final momentum: p1 − k1 + q = (β1(1 − x1)
√

s ′
3He,

√
s ′

3He,0),
(A26)

where we use the the relations q+ = 0, p1+ = β1p3He+, and k1+ = x1p1+. Because of the finite β1 ∼ 1
3 and small x1 � 1 entering

in the amplitude (see Appendix A 3) one also neglects the “−” component of the initial quark: (p1 − k1)− ≈ (p1−k1)2
⊥+m2

q

β1(1−x1)
√

s ′
3He

∼ 0.

Using Eq. (A26) and the above definitions of photon polarization, γ matrices, and quark helicity states, one obtains that in
the quark massless limit the only nonvanishing matrix elements of ūγ±u are

ū−
q

(
p1 − k1 + q, − 1

2

)
γ+u−

q

(
p1 − k1,− 1

2

) = −2
√

2E1E2

ū+
q

(
p1 − k1 + q, 1

2

)
γ−u+

q

(
p1 − k1,

1
2

) = 2
√

2E1E2,
(A27)

where E1 = β1(1 − x1)
√

s ′
3He

2 and E2 = [1 − β1(1 − x1)]
√

s ′
3He

2 are the initial and final energies of the struck quark respectively.
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Using the above relations for Eq. (A23) one obtains

ūq(p1 − k1 + q,ηq1)[ieε⊥
h γ ⊥]uq(p1 − k1,η1) = ieQi2

√
2E1E2(−h)δηq1hδη1h, (A28)

where Qi is the charge of the struck quark in units of e. The above result indicates that incoming h-helicity photon selects the
quark with the same helicity (h = η1) conserving it during the interaction (h = ηq1 ).

3. Peaking approximation

We now consider the dβd integration in Eq. (A22), noticing that dβd = dβ1 and separating the pole and principal value parts
in the propagator of the struck quark as follows:

1

β1 − βs + iε
= −iπδ(β1 − βs) + P.V.

∫
dβ1

β1 − βs

. (A29)

Furthermore, we neglect by P.V. part of the propagator since its contribution comes from the high momentum part of the nuclear

wave function, p1 ∼
√

s ′
3He, which is strongly suppressed [19]. The integration with the pole part of the propagator will fix

the value of β1 = βs , and the latter in the massless quark limit and negligible transverse component of �p1 can be expressed as
follows:

βs = 1

s ′
3He

[
m2

s (1 − x1) + k2
1⊥

x1(1 − x1)
− m2

N

]
. (A30)

Now, using the fact that 3He wave function strongly peaks at β1 = 1
3 , one can estimate the “peaking” value of the amplitude

in Eq. (A22) taking βs = 1
3 . The latter condition results in x1 → 3(m2

s +k2
1⊥)

s ′
3He

∼ 0, since s ′
3He is very large in comparison with the

transverse momentum k1⊥ of the spectator system. This allows us to approximate (1 − x1) ≈ 1. With these approximations, one
finds that

E1 = β1(1 − x1)

√
s ′

3He

2
= 1

3

√
s ′

3He

2
, E2 = [1 − β1(1 − x1)]

√
s ′

3He

2
= 2

3

√
s ′

3He

2
. (A31)

Using Eq. (A31) in Eq. (A28) and setting β1 = 1/3 everywhere for Eq. (A22), one obtains

Mλdf ,λ1f ;λ3He,h = 3

4
(−h)

1√
s ′

3He

∑
i

eQi

∑
(λ2f )(λ′

2,λ
′
3)(λd )

(λ1,λ2,λ3)
(η1f ,η2f )(η′

2)

∫
�

†λdf :λ′
3,λ2f

d (α2f /γd,p2⊥,α′
3/γd,p

′
3⊥)

1 − α′
3/γd

×
{

�
†λ2f ;η2f

n2f (xs2,p2f ⊥,k2⊥)

1 − xs2
ūq(p2f − k2,η2f )

[−igT α
c γν

]
[uq(p1 + q − k1,h)]

× �
λ1;h
n1 (x1,k1⊥,p1⊥)

1 − x1

}
1

{
�

†λ1f ;η1f

n1f (xs1,k1⊥,p1f ⊥)

1 − xs1
ūq(p1f − k1,η1f )

[−igT β
c γμ

]
uq(p′

2 − k2,η
′
2)

× �
λ′

2;η′
2

n2′ (x ′
2,p

′
2⊥,k2⊥)

1 − x ′
2

}
2

Gμν(r)
�

λd :λ′
2,λ

′
3

d (α′
3,pd⊥,p′

3⊥)

1 − α′
3

�†λd :λ2,λ3
d

(α3,p3⊥ ,p
d⊥)

1 − α3

×�
λ3He

3He
(β1 = 1/3,λ1,p1⊥ ,β2,p2⊥λ2,λ3)

d2pd⊥
(2π )2

dβ3

β3

d2p3⊥
2(2π )3

dα′
3

α′
3

d2p′
3⊥

2(2π )3

dx1

x1

d2k1⊥
2(2π )3

dx ′
2

x ′
2

d2k2⊥
2(2π )3

. (A32)

APPENDIX B: HIGH MOMENTUM TRANSFER pd → pd SCATTERING

In this section, we study the high momentum transfer elastic proton-deuteron scattering based on the quark-interchange
mechanism. A characteristic diagram of such scattering is shown in Fig. 8. The notations in this figure are chosen to be similar
to the pd → pd rescattering part of the γ 3He → pd amplitude in Eq. (A32). Here the helicities in the initial and final states
of the proton are h and λ1f and for the deuteron they are λd and λdf . The momenta defined in Fig. 8 satisfy the following
four-momentum conservation relations:

p1 + pd = p1f + pdf , pd = p′
2 + p′

3. (B1)
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FIG. 8. Typical quark-interchange mechanism of hard pd → pd scattering.

The Feynman amplitude for this pd → pd scattering can be written as follows:

Mpd =

N1 :
∫

ū(p1f ,λ1f )(−i)�†
n1

i(/p1f − /k1 + mq)

(p1f − k1)2 − m2
q + iε

iS(k1)

k2
1 − m2

s + iε

[−igT β
c γμ

] i(/p1 − /k1 + mq)

(p1 − k1)2 − m2
q + iε

i�n1u(p1,λ1)
d4k1

(2π )4

D − N2 :
∫

χ
†
df (−i)�†

DNN

i(/p2f + m)

p2
2f − m2

N + iε
ū(p2f ,λ2f )(−i)�†

n2f

i(/p2f − /k2 + mq)

(p2f − k2)2 − m2
q + iε

i(/p3
′ + m)

p′2
3 − m2

N + iε

iS(k2)

k2
2 − m2

s + iε

× [−igT α
c γν

] i(/p2
′ − /k2 + mq)

(p′
2 − k2)2 − m2

q + iε
i�n2′u(p′

2,λ
′
2)

i(/p′
2 + m)

p′2
2 − m2

N + iε
i�DNNχd

d4k2

(2π )4

d4p′
3

(2π )4

g :
idμνδαβ

q2
q

. (B2)

The following derivations are analogous to that of Eq. (7), where we identify the parts associated with the deuteron wave function
as well as with the quark wave functions of nucleons, and perform integrations corresponding to the on-shell conditions for the
spectator nucleon in the deuteron and spectator quark-gluon states in the nucleons. We first consider the expression for N1, for
which, performing derivations similar to those for the N1 term in Eq. (7) and using the definition of the quark wave function of
the nucleon according to Eq. (A17), one obtains

N1 =
∑
λ1

η1,η1f

−i

∫
�

†λ1f ;η1f

n1f (xs1,k1⊥,p1f ⊥)

1 − xs1
ūq(p1f − k1,η1f )uq(p1 − k1,η1)

[−igT β
c γμ

]�
λ1;η1
n1 (x1,k1⊥,p1⊥)

1 − x1

1

2

dx1

x1

d2k1⊥
(2π )3

. (B3)

With similar derivations in the D − N2 part and using, in addition to the quark wave function of nucleon, the deuteron light-front
wave function defined in Eq. (A9) one obtains

D − N2 =
∑

λd ,λ2f ,λ′
2,λ

′
3

η′
2,η2f

−i

∫
�

†λdf :λ′
3,λ2f

df (α′
3/γd,pdf ⊥,p′

3⊥)

1 − α′
3/γd

ūq(p2f − k2,η2f )
�

†λ2f ;η2f

n2f (xs2,k2⊥,p2f ⊥)

1 − xs2

[−igT α
c γν

]

× �
λd :λ′

2,λ
′
3

d (α′
3,pd⊥,p′

3⊥)

1 − α′
3

uq(p′
2 − k2,η

′
2)

�
λ′

2;η′
2

n2′ (x ′
2,k2⊥,p′

2⊥)

1 − x ′
2

1

2

dx ′
2

x ′
2

d2k2⊥
(2π )3

dα′
3

α′
3

d2p′
3⊥

2(2π )3
. (B4)

Combining Eqs. (B3) and (B4) for the amplitude of pd → pd scattering, one arrives at

Mλdf ,λ1f ;λd ,λ1

pd =
∑

(λ2f )(λ1,λd )(λ′
2,λ

′
3)

(η1f ,η2f )(η1,η
′
2)

∫
�

†λdf :λ′
3,λ2f

df (α′
3/γd,pdf ⊥,p′

3⊥)

1 − α′
3/γd

{
�

†λ2f ;η2f

n2f (xs2,k2⊥,p2f ⊥)

1 − xs2

× ūq(p2f − k2,η2f )
[−igT α

c γν

]
uq(p1 − k1,η1)

�
λ1;η1
n1 (x1,k1⊥,p1⊥)

1 − x1

}
1

Gμν(r)
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×
{

�
†λ1f ;η1f

n1f (xs1,k1⊥,p1f ⊥)

1 − xs1
ūq(p1f − k1,η1f )

[−igT β
c γμ

]
uq(p′

2 − k2,η
′
2)

�
λ′

2;η′
2

n2′ (x ′
2,k2⊥,p′

2⊥)

1 − x ′
2

}
2

× �
λd :λ′

2,λ
′
3

d (α′
3,pd⊥,p′

3⊥)

1 − α′
3

1

2

dx1

x1

d2k1⊥
(2π )3

1

2

dx ′
2

x ′
2

d2k2⊥
(2π )3

dα′
3

α′
3

d2p′
3⊥

2(3π )3
. (B5)

APPENDIX C: RELATING THE LIGHT-FRONT AND NONRELATIVISTIC WAVE FUNCTIONS

To obtain the relation between light-front and nonrelativistic nuclear wave functions in the small-momentum limit, we consider
the fact that the light-front nuclear wave function is normalized based on baryonic number conservation (see, e.g., Refs. [44–46]),
while the nonrelativistic (Schroedinger) wave function is normalized as

∫ |�A(p)|2d3p = 1.
To obtain the normalization condition based on baryonic number conservation, we consider a h + A → h + A scattering in

forward direction in which h probes the constituent baryons in the nucleus A (see Fig. 9). In the figure we assign pi to be the
four-momentum of the nucleus while p1,p2, . . . ,pA are four-momenta of constituent nucleons such that p1 + p2 + · · · + pA =
pi . For the diagram of Fig. 9, applying the Feynman rules one obtains

MhA =
∑
N

∫
χ
†
A�

†
A

/p1 + m

p2
1 − m2

N + iε
M̂hN

/pA + m

p2
A − m2

N + iε
· · · /p2 + m

p2
2 − m2

N + iε

/p1 + m

p2
1 − m2

N + iε
�AχA

d4p2

(2π )4

d4p3

(2π )4
· · · d4pA

(2π )4
, (C1)

where we sum over all the possible nucleons that can be probed, and M̂hN represents the effective vertex of the hadron-nucleon
interaction. We use the sum rule for the spinors and also integrate by the minus component of the momenta using the scheme
given in Eq. (A6), to obtain

MhA =
∑
N

∑
λ1,λ2,···λA

∫
χ
†
A�

†
X

u(p1,λ1)ū(p1,λ1)

p1+
(
p1− − m2

N +p2
1⊥

p1+

)M̂hNu(pA,λA)ū(pA,λA) · · · u(p3,λ3)ū(p3,λ3)u(p2,λ2)ū(p2,λ2)

× u(p1,λ1)ū(p1,λ1)

p1+
(
p1− − m2

N+p2
1⊥

p1+

)�AχA

dp2+
p2+

d2p2⊥
2(2π )3

dp3+
p3+

d2p3⊥
2(2π )3

· · · dpA+
pA+

d2pA⊥
2(2π )3

, (C2)

where the λj denote the helicities of the nucleon with momentum pj . Considering the transverse momentum of the nucleus A to
be zero, we note that

p1− − m2
N + p2

1⊥
p1+

= pi− − p2− − p3− − · · · − pA− − m2
N + p2

1⊥
p1+

= 1

pi+

[
m2

N − m2
N + p2

2⊥
β2

− m2
N + p2

3⊥
β3

− · · · − m2
N + p2

A⊥
βA

− m2
N + p2

1⊥
β1

]
, (C3)

where βj = pj+
pi+

are the light-front momentum fractions of the nucleus A carried by the nucleons j (j = 1, . . . ,A). Introducing

the Feynman amplitude for h + N → hN as MhN = ū(p1,λ1)M̂hNu(p1,λ1) for Eq. (C3) one obtains

MhA =
∑
N

∑
λ1,λ2,...,λA

∫
χ
†
A�

†
A

u(p1,λ1)u(p2,λ2)u(p3,λ3) · · · u(pA,λA)
p1+
pi+

[
m2

N − m2
N+p2

2⊥
β2

− m2
N+p2

3⊥
β3

− · · · − m2
N+p2

A⊥
βA

]MhN

× ū(p1,λ1)ū(p2,λ2)ū(pA,λA)
p1+
pi+

[
m2

N − m2
N +p2

2⊥
β2

− m2
N+p2

3⊥
β3

− · · · − m2
N +p2

A⊥
βA

]�AχA

A∏
k=2

dβk

βk

d2pk⊥
2(2π )3

. (C4)

FIG. 9. Hadronic probe to see baryons in a nucleus.
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Using the generalization of Eqs. (A4) and (A9) for light-front nuclear wave function of nucleus A, the above equation reduces to

MhA =
∑
N

∑
λ1,λ2,...,λA

∫
�

LC†
A (β2,β3, . . . ,βA,p2⊥,p3⊥, . . . ,pA⊥,λ2,λ3, . . . ,λA)

β1
MhN

× �LC
A (β2,β3, . . . ,βA,p2⊥,p3⊥, . . . ,pA⊥,λ2,λ3, . . . ,λA)

β1

A∏
k=2

dβk

βk

d2pk⊥
2(2π )3

. (C5)

We now make use of the optical theorem, according to which

ImMhA = shAσhA and ImMhN = shNσhN, (C6)

where shA = (ph + pi)2 and σhA is the total cross section of hA scattering. Similarly, shN and σhN are invariant energy and total
cross section for hN scattering. The conservation of baryon number allows us to relate σhA = AσhN . Using this relation together
with Eq. (C6) in Eq. (C5), one obtains

∫ ∣∣�LC
A (β2,β3, . . . ,βA,p2⊥,p3⊥, . . . ,pA⊥,λ2,λ3,, . . . ,λA)

∣∣2

β2
1

shN

shA

A∏
k=2

dβk

βk

d2pk⊥
2(2π )3

= 1. (C7)

To obtain the relation of light-front wave function to the nonrelativistic wave function in the small-momentum limit, we note that
in such limit βk = Ek+pz

k

pi+
≈ 1 + pz

k

mN
thus dβk

βk
= dpz

k

mN
. Furthermore, in the high energy limit of the hadronic probe in which large

momentum of the hadrons points in the −ẑ direction, shA ≈ ph−pA+ and shN ≈ ph−pN+, resulting in

shN

shA

= pN+
pA+

= β1

A
. (C8)

Applying all these approximations in Eq. (C7) one obtains

∫ ∣∣�LC
A (β2,β3, . . . ,βA,p2⊥,p3⊥, . . . ,pA⊥,λ2,λ3,, . . . ,λA)

∣∣2

1/A

1

mA−1
N [2(2π )3]A−1

A∏
k=2

d3pk = 1. (C9)

Next we compare the above expression with the normalization condition for the nonrelativistic Schroedinger wave function:

∫ ∣∣�NR
A ( �p1, �p2, . . . , �pA)

∣∣2
A∏

k=2

d3pk = 1, (C10)

where �p1 = �pi − �p2 − · · · − �pA. This comparison allows us to relate the light-front nuclear wave function and the Schroedinger
wave function in the following form:

�LC
X (β1,β2, . . . ,p1⊥,p2⊥, . . . ) = 1√

A
[mN2(2π )3]

A−1
2 �NR

X ( �p1, �p2, . . . ). (C11)
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