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Nonadiabatic quasiparticle approach for rotation-particle coupling in triaxial odd-A nuclei
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We discuss the formulation of a nonadiabatic approach to study the rotational states in triaxially deformed
odd-A nuclei. The rotation-particle coupling is treated microscopically by coupling the triaxial rotor states of the
even-even core with the states of the valence particle in order to obtain the matrix elements of the odd-A system.
We arrive at a nonadiabatic quasiparticle approach where the rotational states can have contributions from various
quasiparticle states near the Fermi level. We bring out the advantages of this approach over the conventional
particle rotor model with a fixed or variable moment of inertia. One clear evidence favoring our approach is the
rotation alignment phenomenon which is demonstrated in the case of 137Pm. We discuss our results for 136Nd and
137Pm, and justify that this approach is suitable also for studying nuclei away from stability.
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I. INTRODUCTION

With the emergence of new experimental facilities, exotic
nuclei are becoming more accessible in the laboratory. These
exotic nuclei posses several surprising features like the sponta-
neous emission of proton near the proton drip line [1–4], their
astrophysical implications [5–7], the neutron skins and the
halos in nuclei near the neutron drip line [8], changing magic
numbers [9,10], the island of inversion [11], etc. These features
cannot be explained by many of the conventional models. In
most cases, for exotic nuclei, the primary observable is the
spectrum of a few low-lying rotational states. Most of the
structure information is contained in the angular momentum
and parity of these rotational states. Experimentally it is a very
challenging task, to assign spin and parity by measuring a
few transitions only. On the other hand, theoretical spin-parity
assignments can be reliable only with a versatile and rigorous
formulation, which is capable to study nuclei far from the
stability also. With this motivation, we have developed a more
microscopic approach to study the low-lying excited states of
triaxially deformed odd-A nuclei.

The rotational spectrum of an odd-A nucleus is a manifesta-
tion of various possible angular momentum couplings between
the odd (valence) particle and the core (even-even nucleus).
In a simpler realization, one can treat the nucleus as a one
quasiparticle-plus-rotor system where the rotor could be a rigid
one. The conventional particle-rotor model (PRM) based on
this idea is widely used to explain the measured spectra [12,13].
While explaining such spectra, several parameters of the PRM
are adjusted to have a best fit, limiting the predictability of
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such an approach. In many realizations of PRM [14,15] the
relative energy differences between different band heads are
either ignored or unreliable due to changing parameters for
the different rotational bands. Consequently, ascertaining the
low-lying states is also unreliable. The PRM assumes either
fixed or variable moment of inertia (VMI). In most of the cases,
the rotor is not so rigid, and hence VMI looks reasonable.
However, the realization of VMI is not consistent in many
cases as we demonstrate in this work.

It is possible to carry out the rotation-particle coupling by
coupling the (experimental) core energies directly with the
particle states. We define this as a modified particle-rotor
model (MPRM) where the matrix elements (ME) of the
rotational Hamiltonian of an odd-A nucleus is written in terms
of the ME of the rotor states through angular momentum cou-
plings. Initially, such an approach was applied in the coupled
channel scattering theory [12] for axially deformed nuclei. The
predictive nature of this approach was utilized to study the
rotational states built on bound states and narrow resonances
in odd-A nuclei, and its application to proton emission [16].
This was further extended by considering nonadiabaticity and
applied to the calculation of structure and decay properties of
axially deformed odd-A nuclei [17]. Recently, this approach
has been extended to axially deformed odd-odd nuclei as well
[18]. For the triaxially deformed nuclei, similar calculations
are reported [19], and the extension to study exotic nuclei was
realized with adiabatic calculations [20].

In the case of axially deformed nuclei, the ME of the rotor
are diagonal and hence can be replaced by the experimental
(core) energies. This is not the case in triaxial nuclei and hence
to construct the MPRM, one needs to calculate the ME of the
rotor utilizing the experimental energies and the theoretical
wave functions. For a rigid core, it is reliable to consider the
moment of inertia and utilizing the VMI one can take care of
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the deviations from rigid behavior as well. In the following
section we discuss our theoretical framework comprising the
description of different VMI methods for the triaxial rotor,
followed by the rotation-particle coupling approaches. Then
we discuss our results for 136Nd (rotor) and 137Pm (particle-
plus-rotor), to justify our approach and highlight its suitability
for studying nuclei away from stability.

II. THEORETICAL FRAMEWORK

It is convenient to follow the developments in the formalism
in three parts viz., (i) triaxial rotor, (ii) mean-field experienced
by the particle, and (iii) rotation-particle coupling which
couples the former two parts.

A. Triaxial rotor

The Hamiltonian for the triaxial rotor is given by

Hrot =
∑

k=1,2,3

h̄2

2Ik

R2
k , (1)

where Ik and Rk are the moments of inertia and angular
momenta, respectively, in the three directions. The rotor
energies are obtained using the relation

Hrot|RMRi〉 = ERi |RMRi〉 (2)

with the eigenfunctions [21]

|RMRi〉 =
∑
KR

cRi
KR

|RMRKR〉, (3)

where

|RMRKR〉 =
√

2R + 1

16π2
(
1 + δKR,0

)
× [

DR
MR,KR

(ω) + (−1)RDR
MR,−KR

(ω)
]
. (4)

Here, ω represents the orientation of the rotor in the laboratory
frame and R is the total angular momentum given by R2 =∑

k R2
k . The index MR and KR are the projections of R on the

third axes in the laboratory frame (the z axes) and intrinsic
frame of the rotor respectively. KR can have all non-negative
even integers from 0 to R, but for odd R, KR = 0 is not
allowed. The negative counterpart of KR is degenerate with the
positive one. i labels the different eigenstates for a given value
of R with cRi

KR
specifying the contribution of each KR . The

spectrum of a triaxial rigid rotor resembles that of an axially
deformed rotor with the positive parity (π = +1) states Rπ

i =
0+

1 ,2+
1 ,4+

1 , . . ., which is called ground band. The ground band
is not very sensitive to the triaxial deformation (represented
by the parameter γ ). The states Rπ

i = 2+
2 ,3+

1 ,4+
2 ,5+

1 , . . . make
a single band called γ band which is much sensitive to γ and
symmetric about γ = 30◦.

It is well known [22] that the moment of inertia increases
with angular momentum which is beyond a rigid-rotor descrip-
tion. In microscopic approaches based on generator coordinate
method [23,24] or large scale shell model [25], it is possible to
take into account the single-particle, vibrational, and rotational
degrees of freedom simultaneously. In such cases, all quantities
including the moments of inertia are determined consistently

with automatic dependence on angular momentum starting
with the given nucleon-nucleon effective interaction. In a
phenomenological VMI model, the rotor energies comprise
the potential energy 〈Vk〉 also, which depends on the angular
momentum [22]. For such a case, we can write the rotor
Hamiltonian as

Hrot =
∑

k=1,2,3

Vk + h̄2

2Ik

R2
k . (5)

In this regard several prescriptions can be found in literature.
Here we highlight four important methods.

1. Method 1

The potential energy of a rotor can be written as

Epot = 1
4C(I1 − I01)2 + 1

4C(I2 − I02)2 + 1
4C(I3 − I03)2.

(6)
Here, I01, I02, and I03 are the ground state moments of inertia
of the asymmetric rotor and the parameter C is the restoring
force constant. I0k and the deformation parameter γ satisfy
the relation

I0k = 4

3
I0 sin2

(
γ − 2πk

3

)
. (7)

Here, I0 is the VMI parameter. The parameter I0 is propor-
tional to the square of the quadrupole deformation [22,26].
Hence, the ground state moment of inertia I0k is a function
of triaxial (γ ) and quadrupole (β) deformations. The potential
energy term (6) takes into account the vibrational degrees of
freedom. The constants C and I0 are to be evaluated through
a fitting procedure of the experimental energies along with a
relation between C, I0, and Ik . To obtain such a relation, one
can utilize the equilibrium condition

δET

δIk

= 0 , (8)

where the total energy

ET =
∑

k=1,2,3

[
1

2
C(Ik − I0k)2 + 1

2Ik

〈
R2

k

〉]
,

ET =
∑

k=1,2,3

1

2
C(Ik − I0k)2 + 1

2

(
1

2I1
+ 1

2I2

)〈
R2 − R2

3

〉

+1

4

(
1

2I1
− 1

2I2

)
〈R2

+ + R2
−〉 + 1

2I3

〈
R2

3

〉
. (9)

Here, Ik are the moments of inertia in units of h̄2. In this
formalism, we obtain three separate equations for Ik from the
equilibrium condition (8), so we have to find zeros of each
equation at each point in the fitting procedure, rendering it to
be numerically intensive.

The value of the parameters C and I0 can be found by
minimizing χ2, which represents the error in the fit given by

χ2 = 1

N

N∑
ν=1

(Eexp(ν) − Ethe(ν))2

E2
exp(ν)

, (10)

where N is the number of available experimental energies
(Eexp) and Ethe is given by Eq. (9). To study the role of γ , we
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minimize χ2 with two parameters C and I0. For the best fit, γ
also is treated as a parameter.

2. Method 2

In an alternative way [27,28], the expression for the
moments of inertia can be written as

IkRi = 4

3
I0Ri sin2

(
γ − 2πk

3

)
, {k = 1,2,3}. (11)

The total energy is given by

ET Ri = 1

2
C(I0Ri − I0)2 + 1

2I0Ri

ηRi , (12)

where C and I0 are the same parameters as described in
method 1. I0Ri are moments of inertia in units of h̄2 and
ηRi = 2I0RiERi is a dimensionless quantity. Applying the
equilibrium condition for the total energy, ∂ET Ri/∂I0Ri = 0,
we have the desired constraint

I3
0Ri − I0I2

0Ri − 1

2C
ηRi = 0. (13)

The parameters I0 and C are evaluated by fitting the theoretical
energies ET Ri with the experimental energies.

3. Method 3

In this method [19], to obtain the constraint between the
constants, the expression for total energy of the triaxial rotor
is approximated by the axially deformed rotor’s energy [22],

ET R = 1

2
C(I0R − I0)2 + 1

2I0R

R(R + 1). (14)

Now minimizing this energy with respect to the moment of
inertia I0R (∂ET R/∂I0R = 0), we have

I3
0R − I0I2

0R − 1

2C
R(R + 1) = 0. (15)

The extension to asymmetric rotor can be achieved through
the relation

Ik = 4

3
I0R sin2

(
γ − 2πk

3

)
. (16)

The parameters I0 and C are evaluated by fitting the sum of
theoretical rotor energies ERi (2) and the potential energy term
given in Eq. (14), with the experimental energies.

4. Method 4

Another widely used VMI parametrization [14,15,29,30]
employs the following relation:

Ik = 4

3
I0(R) sin2

(
γ − 2πk

3

)
,

where I0(R) = I0

√
1 + bR(R + 1) . (17)

I0 is calculated using the expression 1
2I0

√
1+6b

= E2+
6 , where

E2+ is the experimental energy of the Rπ
i = 2+

1 state [26].
The rotor’s energy has the same form as in Eq. (2). The VMI
parameter b is determined by fitting with the experimental
energies.

Method 1 is constructed without losing any generality
whereas the other three methods are its simplifications.
Results from method 2 are quite closer to that of method
1, and numerically easier. Hence we follow method 2 in
our further calculations. It is obvious that method 3 is an
oversimplification. Method 4 is quite simpler and effective for
a rotor but has some severe drawbacks while employed in the
rotation-particle coupling as explained later.

B. Mean field of triaxial nuclei

The nucleons move in the mean field potential of the
system which can be considered as a sum of the Woods-Saxon
potential VWS(�r,θ,φ), the Coulomb potential VCoul(�r,θ,φ) and
the spin-orbit potential Vso(�r,θ,φ). Thus the total mean field
nuclear potential for the deformed nucleus is given by

V (�r,θ,φ) = VWS(�r,θ,φ) + VCoul(�r,θ,φ) + Vso(�r,θ,φ) (18)

with

VWS(�r,θ,φ) = − V0
[
1 ± κ

(
N−Z
N+Z

)]
1 + exp{dist[r(θ,φ),rs(θs,φs)]/a} , (19)

where V0 is the depth of the potential, κ represents the strength
of the isospin dependence, a represents the surface thickness of
the nuclear potential, + and − signs stand for the protons and
neutrons, respectively. dist[r(θ,φ),rs(θs,φs)] is the distance
between the point r(θ,φ) and the nearest point rs(θs,φs) on
the deformed nuclear surface. The deformed nuclear surface
is given by

R(θ,φ) = cR0

⎛
⎝λmax∑

λ=0

λ∑
μ=−λ

aλμYλμ(θ,φ)

⎞
⎠ , (20)

where aλμ are the deformation parameters and c is the volume
conservation constant. In our calculations, we consider even
values of λ and μ with λmax = 4. This translates to the three
deformation parameters β2, β4 and γ . The Coulomb and spin-
orbit potential can be written as

VCoul(�r,θ,φ) = e

∫
V

ρ(�r ′)
|�r − �r ′|d�r ′ , (21)

Vso(�r,θ,φ) = − λso h̄2

4M2c2

1

r
∇

×
{

V0
[
1 ± κ

(
N−Z
N+Z

)]
1 + exp{dist[r(θ,φ),rs(θs,φs)]/a}

}

× [�σ · [�r × �p]μ], (22)

where ρ(�r ′) represents the nuclear charge density with uniform
charge distribution. λso and �σ are the strength of the spin-orbit
interaction and Pauli spin matrices, respectively. M is the mass
of nucleon and �p is the linear momentum operator. We utilize
the universal set of parameters [31] for the mean field potential.

C. Rotation-particle coupling

1. Particle rotor model (PRM)

In a conventional approach to explain the rotational spectra
through the rotation-particle coupling, the PRM is widely
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used. Most of such formulations assume a constant moment
of inertia so that the Hamiltonian can be expanded into
different parts which have certain physical meaning like the
Coriolis term. This often requires lengthy derivation of matrix
elements [32,33], especially in the case of triaxial or odd-odd
nuclei. While extending such approaches with the VMI (which
depends on the rotor’s angular momentum R), to simplify the
calculations, instead of I(R) one calculates I(I ), where the
total angular momentum of the nucleus, �I = �R + �j and j is
the angular momentum of the particle. For example in the
VMI as given by Eq. (17), one directly replaces R with I .
This is a practical way because R never appears in the basis of
PRM calculations. However, it is obvious that this can lead to
spurious R dependence of VMI when j is large.

This problem is circumvented in some of the formulations
of PRM [34,35] for the axially deformed odd-A nucleus, as
outlined below. The total Hamiltonian of the particle-plus-rotor
system is

H = Hpart + Hrot , (23)

where Hpart and Hrot are the Hamiltonian corresponding to
single-particle and the axially symmetric rotor [deduced from
Eq. (5)], respectively. For obtaining the expression of VMI,
the rotational energy is approximated as the diagonal part of
Hrot such that

〈H 〉 = ET = 〈Hpart〉 + 1

2
C(IIK − I0K )2 + 1

2IIK

[I (I + 1)

+〈j 2〉 − 2K2 + δK,1/2a(−1)I+1/2(I + 1/2)], (24)

where K is the projection of I on the symmetry axis and j is
the angular momentum of the valence particle. The decoupling
parameter a and 〈j 2〉 are given by

a = −
∑

j

(−1)j+1/2(j + 1/2)B2
j,1/2 and

〈K|j 2|K〉 =
∑

j

B2
jKj (j + 1),

where BjK are the expansion coefficients of single-particle
states in the spherical basis. Applying the equilibrium con-
dition for the energy, ∂ET /∂IIK = 0, we have the equation
for VMI,

IIK =
{

1

2C
[I (I + 1) + 〈j 2〉

− 2K2 + δK,1/2a(−1)I+1/2(I + 1/2)]

}1/3

. (25)

Here, C is treated as free parameter and the angular momentum
dependence of I is accurate as long as the approximation for
ET is valid.

In most of the PRM calculations, the aim is to fit the
observed rotational spectra and hence all the parameters are
adjusted to have the best fit [14,15,35], without any emphasis
on the physical significance of those parameters. In such cases
the resulting VMI may not explain the rotor spectrum. Beyond
this drawback, for a model to be more predictive and reliable,
there should not be dependency on the parameters determined

entirely by fitting the given spectrum of the particle-plus-
rotor system only. In the following section we discuss a
more appropriate approach for the rotation-particle coupling
wherein the parameters are determined unambiguously in a
step-wise procedure utilizing the spectrum of the rotor.

2. Modified particle-rotor model (MPRM)

For an odd-A nucleus, the total wave function for a given
spin (I,M), position �r of the particle, and orientation ω of the
rotor, can be written in the laboratory system as

�IM (�r,ω) =
∑
ljRτ

φI
ljRτ (r)

r
|ljRτ,IM〉, (26)

where φI
ljRτ (r)/r and |ljRτ,IM〉 are the radial and angular

parts, respectively, in the R representation. The quantum
numbers l and j are the orbital and total angular momenta
of the particle, respectively, R and τ are rotational quantum
numbers of the rotor. The angular part of the total wave
function can be written in the uncoupled representation as

|ljRτ,IM〉 =
∑

mp,MR

〈jmpRMR|IM〉|RτMR〉|ljmp〉, (27)

where |ljmp〉 are the particle wave functions in the laboratory
frame and mp is the projection of j . It is useful to transform
the wave function from the R representation to the K
representation, where the coupling of wave function is easier.
In the K representation, the quantum number τ is identified
with the projection KR of R on the rotor’s three-axis [20].
The wave functions of the particle and the rotor [first part of
Eq. (4)] can be written as

|ljmp〉 =
∑
�p

D
j
mp,�p

|lj�p〉, (28)

〈ω|RτMR〉 = 〈ω|RKRMR〉 =
√

2R + 1

8π2
DR

MR,KR
(ω), (29)

where |lj�p〉 are the particle wave functions in the intrinsic
frame generated using the mean field potential (18) and �p is
the projection of j .

Substituting Eqs. (28) and (29) in Eq. (27), and using the
Clebsch-Gordan series ((4.25) of [36])

|ljRKR,IM〉 =
√

2R + 1

2I + 1

∑
K,�p

′〈j�pRKR|IK〉

×
(√

2I + 1

8π2
DI

M,K |lj�p〉
)

. (30)

The prime in the summation in Eq. (30) stands for the
constraint that K − �p must be an even integer (0,±2,±4, . . .)
as per the symmetries of the wave function. Demanding that
the wave function should not change due to a rotation of an
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angle π about the second intrinsic axis, we shall write Eq. (30)
as

|ljRKR,IM〉 =
√

2R + 1

2I + 1

∑
K,�p

′〈j�pRKR|IK〉√1 + δKR,0

×
(√

2I + 1

16π2

[
DI

M,K |lj�p〉

+ (−1)(I−j )DI
M,−K |lj − �p〉]

)
. (31)

The term within the parenthesis in above equation can be
identified as the wave function of the particle-plus-rotor system
in the K representation which can be written as

|lj�pK,IM〉 =
√

2I + 1

16π2

[
DI

M,K |lj�p〉

+ (−1)(I−j )DI
M,−K |lj −�p〉]. (32)

Thus we can derive a transformation between the K and R
representations as

|ljRKR,IM〉 =
∑
K,�p

′
AIK

j�p,RKR
|lj�pK,IM〉 (33)

with the amplitude

AIK
j�p,RKR

=
√

2R + 1

2I + 1
〈j�pRKR|IK〉√1 + δKR,0. (34)

It can be shown that these amplitudes form an orthonormal
transformation between the K and the R representations as
given by ∑

K,�p

′
AIK

j�p,RKR
AIK

j�P R′KR′ = δRR′δKRKR′ ,

∑
R,KR

AIK
j�p,RKR

AIK ′
j�p′ ,RKR

= δ�p�p′ δKK ′ . (35)

With this property, an inverse transformation can be obtained
as

|lj�pK,IM〉 =
∑
R,KR

AIK
j�p,RKR

|ljRKR,IM〉. (36)

This allows us to write the matrix elements as

〈lj�p′K ′,IM|Hrot|lj�pK,IM〉
=

∑
R,KR,KR′

AIK ′
j�p′ ,RKR′ 〈ljRKR′ ,IM|Hrot|ljRKR,IM〉

×AIK
j�p,RKR

. (37)

Here, Hrot includes both the potential and the rotational
energies of the rotor (5). In case of axial symmetry, R is
even, KR = 0 and K = �p, hence the above equation reduces
to the form given in [16]. In such a case, the matrix elements
on the right-hand side correspond to the core spectrum and
it is straightforward to obtain the matrix elements of the
particle-plus-rotor system. For a triaxial rotor, Hrot is not
diagonal in the basis |RKR,IM〉 because KR is not a good
quantum number. But the eigenvectors can be written in terms

of these basis states, as given by Eq. (3) and hence we can
write Eq. (37) as

〈lj�p′K ′,IM|Hrot|lj�pK,IM〉
=

∑
R,KR,KR′

AIK ′
j�p′ ,RKR′

∑
i

cRi
KR′ ET Ric

Ri
KR

AIK
j�p,RKR

= WK ′K
j�p′�p

, (38)

where the matrix element WK ′K
j�p′�p

is termed as the coupling
matrix and the PRM realized through this matrix is termed
as modified PRM (MPRM). The relation for coupling matrix
does not involve any classical approximation and hence can
be regarded as a microscopic approach. ET Ri is taken from
the experimental data. Alternatively, ET Ri can be calculated
(12) with the parameters C and I0 obtained through the
experimental data for the core. In most of the cases the fit
for ground band is almost exact. However, one cannot use
the experimental core energies alone because they are limited
and assuming zero or infinite energy for the unavailable states
will lead to spurious matrix elements. The coefficients cRi

KR
are

obtained by diagonalizing Hrot in the R representation. For
calculating the matrix elements of Hrot in the R representation
one needs the moment of inertia. Here it is easy and appropriate
to consider VMI because R is defined for the basis states.
The input from a phenomenological VMI model enters the
coupling matrix through cRi

KR
and the higher states of ET Ri for

which the data are unavailable. The total Hamiltonian for the
particle-plus-rotor system can be written as sum of the intrinsic
energy of the valence nucleon Hav in the deformed mean field,
the pairing interaction given by Hpair and Hrot. Thus

H = Hav + Hpair + Hrot (39)

with the matrix elements given by

〈q ′K ′,IM|H |qK,IM〉
= εq δKK ′δqq ′ +

∑
lj�p�p′

WKK ′
j�p�p′

×
∫

dr fuv φIK ′∗
lj�p′ (r) φIK

lj�p
(r) , (40)

where q specifies the single-particle state. εq are the quasi-
particle energies which are calculated from the single-particle
energies eq , using the Bogoliubov transformation, leading to
the relation εq = √

�2 + (eq − λ)2, where � is the pairing
gap and λ is the BCS chemical potential of the nucleus. We
follow the frozen gap approximation with � = 12/

√
A MeV

which is simpler to extend for exotic nuclei. Calculating �
with a constant pairing force strength is more appropriate
but it relies on the availability of data of neighboring nuclei.
φIK

lj�p
(r) is the single-particle wave function in the intrinsic

frame. The BCS occupation probability is given by V 2
q =

1
2 [1 − (eq − λ)/εq] and the probability of unoccupation is
defined by the relation V 2

q + U 2
q = 1. The matrix elements

between the particle states are transformed to the matrix
elements between the quasiparticle states, through the factor
fuv = (UqUq ′ + VqVq ′ ). The single-particle energies and the
wave functions for the valence particle states are obtained by
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diagonalizing Hav with the mean field potential (18) in the
basis |lj�p〉. For consistency, in the PRM calculations we
define Hpart = Hav + Hpair and consider same mean field with
quasiparticles.

III. RESULTS AND DISCUSSIONS

A. Analysis of the parameters of VMI

The parameter I0 is related to the ground state moment
of inertia and proportional to the square of the quadrupole
deformation (β2) [22,26]. However, β does not appear explic-
itly in our equations because this information is in the energy
levels used for the fitting. In a simple rotor case, I0 can be
directly related to E2+ like the case of method 4. The three
components of moment of inertia follow the hydrodynamical
relation defined through γ [Eqs. (7),(11),(16),(17)]. In method
1, the potential energy part has three ground state moments
of inertia (I0i) obtained through I0 and γ [Eq. (7)] and the
moments of inertia entering in the kinetic energy part (Ik)
are obtained through the equilibrium condition [Eq. (8)]. In the
other methods, the ground state moment of inertia has only one
value (I0) and Ik are evaluated through the hydrodynamical
relation [Eqs. (11),(16),(17)]. In all the methods only I0 and
C are fitted with experimental energies. The parameter C
is related to the stiffness of the nucleus against vibrational
degrees of freedom. Conventionally [22,27], one defines a
softness parameter σ = 1

2CI3
0
. At the limit C → ∞ (b = 0 for

method 4), all the methods reduce to the rigid rotor form. The
difference between methods 1 to 3 vanishes at γ = 0 and hence
these methods yield exactly same C and I0. These numbers
match with those presented in Ref. [22] wherein a wider
systematic analysis of these VMI parameters were carried out
for the axially deformed nuclei. The reported values of I0

are in the range 0 to 80 MeV−1. The reported values of σ are
typically smaller than unity with exceptionally large values for
certain nuclei where the spectra deviate significantly from that
of a rigid rotor. For the triaxial case, with calculations similar
to our method 2, the VMI parameters are presented in Ref. [27]
for selected nuclei with measured rotational spectrum and a
γ band. It is reported that the ground band are not sensitive

FIG. 1. The VMI parameters C and I0 for the isotones of N = 76
by using methods 1, 2, and 3. In (a) and (b) γ is treated as a free
parameter and in (c) and (d) γ is fixed as the value obtained in
macroscopic-microscopic calculations [37].

to γ deformation, and hence to obtain best fit at a nonzero γ ,
the inclusion of γ band is necessary. This is true for a “good”
rotational spectrum for which the σ would turn out to be small.

In Table I, we present the VMI parameters for selected
nuclei for which the macroscopic-microscopic calculations
[37] suggest a strong γ deformation. For the fitting procedure,
among the available experimental levels [38] for ground and γ
band, the levels with spin up to 10+

1 and 6+
2 , respectively, are

considered. The VMI parameters and γ are varied to obtain
the best fit. In Fig. 1 a and b, the VMI parameters from Table I
are plotted only for isotopes with neutron number N = 76.
The VMI parameters can be different for different methods
because the form of the total energy of the rotor is different
among these methods. Among the first three methods, the
results for C from method 1 deviates from the other methods.
This is a consequence of the form of the potential energy which
has three terms with three moments of inertia in method 1
whereas the other methods have only one term. The parameter

TABLE I. Variable moment of inertia parameters from methods 1, 2, 3 and 4. Among the available experimental levels for ground and γ

band, the levels with spin up to 10+
1 and 6+

2 , respectively, are considered in the fitting.

Nucleus Z Method 1 Method 2 Method 3 Method 4

C I0 γ C I0 γ C I0 γ b γ

MeV3 MeV−1 MeV3 MeV−1 MeV3 MeV−1

132Ba 56 0.003 3.3 30.0◦ 0.007 6.2 36.8◦ 0.002 1.0 36.5◦ 0.026 34.3◦
134Ba 56 0.004 6.6 30.0◦ 0.013 4.8 26.6◦ 0.020 5.7 29.0◦ 0.027 30.0◦
134Ce 58 0.010 5.8 23.3◦ 0.008 7.9 22.8◦ 0.009 8.7 23.2◦ 0.011 34.7◦
136Ce 58 0.004 11.3 30.0◦ 0.021 6.5 26.9◦ 0.029 7.1 31.3◦ 0.017 30.0◦
136Nd 60 0.074 12.2 25.1◦ 0.016 10.5 24.3◦ 0.024 11.3 24.4◦ 0.008 25.5◦
138Nd 60 0.004 9.4 30.0◦ 0.017 6.9 32.9◦ 0.016 7.4 34.2◦ 0.014 30.0◦
136Sm 62 0.003 11.7 14.6◦ 0.003 11.0 15.5◦ 0.003 10.9 15.3◦ 0.007 25.1◦
138Sm 62 0.054 12.1 17.5◦ 0.009 11.2 25.1◦ 0.005 10.4 24.7◦ 0.028 25.5◦
140Gd 64 0.004 7.1 38.6◦ 0.004 9.9 23.9◦ 0.004 11.1 24.2◦ 0.026 25.2◦
142Gd 64 0.007 2.1 41.0◦ 0.004 1.4 37.7◦ 0.006 2.6 41.5◦ 0.022 31.1◦
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TABLE II. Similar to Table I but the triaxial deformation γ is fixed to the value given in Ref. [37].

Nucleus Z γ Method 1 Method 2 Method 3 Method 4

C I0 σ C I0 σ C I0 σ b

MeV3 MeV−1 MeV3 MeV−1 MeV3 MeV−1

132Ba 56 20.0◦ 0.011 4.2 0.593 0.006 5.5 0.506 0.005 6.9 0.292 0.135
134Ba 56 30.0◦ 0.004 6.6 0.438 0.014 4.9 0.296 0.020 5.7 0.134 0.027
134Ce 58 22.5◦ 0.010 5.7 0.276 0.006 7.1 0.218 0.007 8.1 0.130 0.043
136Ce 58 27.5◦ 0.002 8.8 0.294 0.021 6.6 0.080 0.026 7.0 0.055 0.020
136Nd 60 25.0◦ 0.074 12.2 0.004 0.016 10.6 0.026 0.022 11.2 0.015 0.009
138Nd 60 30.0◦ 0.004 9.4 0.160 0.010 5.9 0.248 0.012 6.6 0.148 0.014
136Sm 62 17.5◦ 0.003 9.0 0.253 0.003 11.9 0.087 0.004 12.0 0.082 0.020
138Sm 62 22.5◦ 0.066 12.8 0.003 0.005 10.0 0.094 0.008 11.8 0.039 0.036
140Gd 64 20.0◦ 0.056 14.7 0.003 0.004 10.4 0.121 0.010 15.1 0.014 0.047
142Gd 64 30.0◦ 0.002 9.4 0.255 0.008 5.3 0.436 0.010 6.2 0.201 0.022

I0 (related to the deformation) does not change abruptly with
the change in nucleus. The values of C and I0 are well within
the range reported in Ref. [22]. Though the obtained values
of VMI parameters are different for different methods, the γ
values turn out to be similar. As a next step, to disentangle
the effect of change in γ and VMI parameters, we analyze the
VMI parameters from different methods for a fixed γ .

In Table II, we present the results for the same set of nuclei
presented in Table I but the calculations are done with γ as
given in Ref. [37]. The parameters C and I0 from this table
are plotted in panels (c) and (d) of Fig. 1. Some differences
in panels (a) and (b) are reduced (for example in case of
Z = 56 and 58) because of the use of same γ deformation.
It has to be noted that the differences in the VMI parameters
should not be weighed too much because of the possible
coexisting minima in the χ2 values. In Table II the softness
parameter σ is also given, which is inversely proportional to the
stiffness parameter C. The parameter b of method 4 can also
be considered as a softness parameter. In Fig. 2, the softness

FIG. 2. The softness parameters σ and b obtained from the
methods 1, 2, 3, and 4 are shown for the isotones of N = 76. This
plot is made with Table II. The γ deformation is fixed as the value
obtained in macroscopic-microscopic calculations [37].

parameters of the selected nuclei are plotted versus the proton
number Z. All the methods yield same trend of variation of
the softness. The nucleus 132Ba has the largest softness among
all the other nuclei considered here. This suggests that 132Ba
has more vibration like component, i.e., it is less deformed
compared to others. As we go beyond 132Ba the deformation
increases [37,39]. One can note that for 136Nd the σ is smallest
and it originates from a rigid-rotor–like behavior.

B. Ground and γ bands of 136Nd

We start our analysis with the triaxial rotor 136Nd. It is
predicted to have a triaxial deformation γ = 25◦ according
to the macroscopic-microscopic calculations [37], where the
macroscopic part is calculated by using the finite-range
liquid-drop model (FRLDM) and the microscopic corrections
are obtained with the folded-Yukawa single-particle levels.
136Nd is the core for the odd-A triaxially deformed 137Pm
(β2 = 0.190, β4 = −0.028, and γ = 25◦ [37,39]), which is
also studied in this work. In Fig. 3, we present the rotational
spectrum of 136Nd, calculated with all the four methods
described in Sec. II A. The experimental and theoretical results
are in very good agreement for the ground band and are quite
comparable for the γ band. The calculated γ from all the four
methods are consistent with the FRLDM predictions. Both the
ground and γ bands are obtained with the same deformation
and VMI parameters. The quality of the fit for methods 1 and 2
suggests that both the bands are built on the same configuration
[12]. The results from method 3 reveals that the fit for the γ
band is not good and so are the underlying approximations of
that method. The VMI parameter b dependent method 4 is also
somewhat comparable with the other methods.

In Fig. 4, we present the variation of the γ band with the
deformation γ . This figure depicts that the γ band appears only
for 5◦ � γ � 55◦ and it varies swiftly with γ . Thus this band
plays a crucial role in determining the triaxiality in nuclei. A
common feature of the γ band we can note is that the 2+

2 and
3+

1 lie closer and similarly the levels 4+
2 and 5+

1 lie closer in
contrast to the experimental feature where the 3+

1 and 4+
2 lie

closer. This feature is inherent to the rigid triaxial rotor model
of Davydov and Filippov [26], which can be clearly seen in
Fig. 4 b. The extension of this model with VMI also does
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FIG. 3. Rotational spectra of 136Nd for the ground (g) and γ

bands. (a), (b), (c), and (d) represent the calculations with methods
1, 2, 3, and 4 for the triaxial rotor as described in Sec. II A. The g

band contains only positive parity even angular momentum states,
while the γ band contains both even and odd angular momentum
states with positive parity. Grey lines correspond to the experimental
spectra [40] which are used in the fit. The solid lines represent our
calculations with best fitting values of γ and VMI parameters C and
I0 for methods 1, 2, and 3 and parameter b for method 4.

FIG. 4. The γ band of 136Nd calculated with (a) method 2
(Sec. II A 2) and (b) method 4 (Sec. II A 4). Grey lines correspond to
the experimental spectra [40].

FIG. 5. Energy spectra of 136Nd calculated with different values
of VMI parameter b (17).

not affect this feature. This discrepancy regarding the γ band
could be attributed to several effects like the mixing of γ band
with the two quasiparticle states or other higher vibrational
bands, which are neglected in this work.

The rotational spectra for 136Nd obtained with method 4, in
which the VMI parameter is represented by b, is presented in
Fig. 5 for different values of b. Here only the ground band is
considered and we have good fit at different γ depending on
the choice of the parameter b. For example, a similar quality
fit can be achieved for the combinations (a) b = 0.011 and
γ ∼ 25◦, (b) b = 0.016 and γ ∼ 20◦, and (c) b = 0.004 and
γ ∼ 30◦. Hence, fixing parameters is quite ambiguous in this
method. Apart from this ambiguity propagating to the particle-
plus-rotor calculations, this method has serious drawbacks
while implementing the VMI as discussed later. However,
method 4 (Fig. 5) helps in identifying quickly the significance
of triaxiality in even-even nuclei. In our calculations, the
parameters fitted to reproduce the rotor spectrum are retained
in the particle-plus-rotor calculations as in Refs. [29,30]. This
is not the case in many other calculations (e.g., Refs. [14,15])
where all the parameters are tuned freely to fit the spectrum of
the odd-A nucleus.

C. Ground and side bands of 137Pm

We proceed to calculate the rotational spectra of odd-A
triaxial nucleus 137Pm, in which the measured spectrum of
the rotor 136Nd is utilized. The odd proton in 137Pm is
coupled with 136Nd through the rotation-particle coupling as
discussed in Sec. II C. In Fig. 6, the single-particle (proton)
energies and the quasiparticle energies in 137Pm are shown at
relevant deformations. In Figs. 6(a), and 6(b), the variation
of single-particle and quasiparticle energies is shown as a
function of β2. We choose β4 = −0.147β2 predicted by FRDM
[39] and hence β4 is not treated as an independent parameter.
The single-particle energy plot provides information about the
valence level and the other levels which could contribute to
the mixing through the Coriolis interaction. In other words,
they help us to identify and restrict the basis states which
enter the particle-plus-rotor calculations. The quasiparticle
diagram provides a similar information but more accurately.
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FIG. 6. (a) Single-particle and (b) quasiparticle energies of 137Pm as a function of β2,(β4). (c) Quasiparticle energies of 137Pm as a function
of γ . These energies are calculated with universal set of parameters [31]. The choice of β2 and β4 are consistent with the finite range droplet
model calculations [39] and γ is adjusted to have best fit for rotational spectra of 136Nd, which is the core for 137Pm. The solid and dashed lines
correspond to the positive and negative parity states, respectively. The green dots represent the states of valence particle and the yellow line
represents the chemical potential from BCS calculations. At zero deformation the degenerate states are labeled by lj .

In Fig. 6(c), we present the variation of quasiparticle energies
with the γ deformation. We can note the possibility of change
in the yrast state as we go towards higher γ . From these
plots, it can be observed that the valence shell (green dots
in Fig. 6) may correspond to the different levels originating
from the 2d5/2,1g7/2, and 1h11/2 orbitals. The widely accepted
ground state configuration of 137Pm has the valence proton
in 1h11/2 orbital [43,44], and consequently a negative parity
yrast band. For highly deformed triaxial shapes, 1h11/2 orbital
can mix (through Coriolis interaction) with the neighboring
negative parity orbitals and hence we include the 2p1/2 and
2f7/2 orbitals in the basis. Thus all levels of 1h11/2, 2p1/2, and
2f7/2 orbitals are included to form the basis for calculating the
matrix elements of the particle-plus-rotor system. This choice
assures convergence of our results in terms of the number of
basis states.

For the rotation-particle coupling (Sec. II C) we consider
three important methods, viz. (i) the PRM with VMI defined
through parameter b, (ii) PRM with VMI defined through
parameter C (applicable only for axially deformed nuclei),
and (iii) MPRM. To highlight the differences in results from
these methods, we study the rotation alignment through plots
presented in Fig. 7 where only the yrast states are shown.
We first discuss the case of γ = 0◦ because the PRM with
VMI (25), is applicable for the axially deformed nuclei only.
It is conventional [45] in these plots to choose a fixed BCS
chemical potential (to see only the role of deformation) far
from the valence orbital such that the levels fan out with
deformation. Accordingly, in our case the BCS chemical
potential λ = −6 MeV is chosen. In Fig. 7, panel (a) is
constructed with the PRM, where rotor is treated as a rigid
body. The moment of inertia I0 is extracted from the E2+

1

(373.7 keV) [40] value of the rotor 136Nd as explained in

Sec. II A 4. A well-known feature of the rotation alignment
plot is the lowering of the state with I = 7/2− (R = 2) at
higher deformations due to the dominance of the deformation
alignment [46]. For a demonstration of the method with VMI
parameter b, we choose a large value for b(=0.06), and
the corresponding results are presented in panel (b). In this
procedure, the VMI I(R) is replaced by I(I ), which leads
to the spurious lowering of the higher angular momentum
states evidenced clearly in panel (b). In this case we can see,

FIG. 7. Spectra showing rotation alignment in 137Pm at γ = 0◦

calculated using different methods with the BCS chemical potential
λ = −6 MeV: (a) PRM with fixed moment of inertia (rigid core).
(b) PRM with VMI (17) defined through the parameter b. (c) PRM
with VMI (25) defined through the parameter C. (d) MPRM utilizing
the experimental energies of the core 136Nd.
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FIG. 8. Similar to Fig. 7, but at γ = 25◦.

also that, the states with lower angular momentum are pushed
upwards. In panel (c), the results are those from the PRM, with
VMI (25) depending on parameter C (=0.0082 MeV3) which
fits the rotor spectrum at γ = 0◦. Here also one can see that
the higher angular momentum states are spuriously lowered
but the lower angular momentum states appear as expected.
This can be ascribed to the fact that the expression (24) is
approximate and is valid for low angular momentum. But in
both panels (b) and (c), the degeneracy at zero deformation
is not maintained. In panel (d), we present the results from
the MPRM. At zero deformation, the particle is completely
decoupled and the rotational states have experimental energies
of the core 136Nd. Degeneracy at zero deformation is still
maintained, we get back the core energies even when the core
is not a pure rigid rotor, and there is no spurious lowering of
high angular momentum states. In this figure the green lines of
different patterns belong to the decoupled band, which is also
an important feature of the rotation alignment plot.

The rotation alignment plot for the triaxial deformation γ =
25◦ is presented in Fig. 8. A significant change can be observed
with the inclusion of γ . The spread in different angular
momentum states is now reduced. In panel (a), the PRM
comprises the rigid rotor. Panel (b) shows the results of PRM
with VMI parameter b = 0.06, where the spurious lowering
of high angular momentum states and nondegenerate states at
β2 = 0, are evident. Interestingly, we can note that with the
role of triaxial deformation, the role of deformation alignment
seems to be attenuated. Here the states corresponding to
low angular momentum I are going up at higher β2 (β4)
instead of coming down. We infer that this is an artifact of
having a constant λ. In Fig. 9, a realistic rotation alignment
plot is shown where λ is calculated at every deformation.
Here we can see that the role of deformation alignment
dominates at higher deformation. For a given R, the energies
of all the lower angular momentum states rapidly decrease
with deformation. This clearly explains the preference for
lower angular momentum states in the case of deformation

FIG. 9. Similar to Fig. 8, but with the BCS chemical potential
calculated at every deformation.

alignment. At higher deformations (β2 � 0.35) we can see that
the Iπ = 1/2−(R = 6) state becomes lower than the expected
state with Iπ = 7/2−. In all the above rotation alignment plots,
we can see that the states which are forming the decoupled
band (shown by different green lines) are less affected with
the change in β2.

In Fig. 10 we show the rotational spectra (ground band) of
137Pm as a function of γ . This band is built on one quasiparticle
in the 1h11/2 orbital. The theoretical results are calculated with
MPRM utilizing the experimental energies of the core. The
core 136Nd is triaxial and hence the corresponding energies
comprise the information about γ . Consequently, a major
role of triaxiality is already included in the calculation at
every γ in terms of the core energies. Thus, in this figure,
the rotational energies of the particle-plus-rotor system is not
very sensitive to γ . These results conform very well with the
experimental data, especially at higher γ where the mean field

FIG. 10. The ground band of 137Pm calculated with MPRM is
plotted with respect to the nonaxial deformation γ . Experimental
energies represented by the grey lines are taken from [41,42].
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FIG. 11. The ground band along with the states with Iπ = 7/2−

and 9/2−, of 137Pm, calculated with MPRM is presented as a function
of the axial deformation β2(β4) where γ = 25◦. The thicker lines in
grey and yellow colours correspond to the experimental energies of
ground and the side bands [41,42], respectively.

of the odd particle also has a triaxial deformation. In Fig. 11,
the negative parity ground band along with the states with
angular momentum 7/2− and 9/2− (side band) are shown as
a function of β2(β4). The ground band is not very sensitive
to β2 deformation but the side band is quite sensitive to β2.
At β2 ∼ 0.23, the calculated energies of the side band fits
well with the data. The degeneracy of the side band at β2 = 0
implies that both these states correspond to R = 2. Thus, the
state 9/2− may not be a simple rotational state built on 7/2−.
These states are favoured by the deformation alignment as
shown in Fig. 9. The deformation alignment happens at higher
β2 and hence with increasing β2 these states are more favoured,
as depicted by the lowering of their energies (as seen in Fig. 11
also) at higher β2.

FIG. 12. Ground band of 137Pm calculated within PRM, for
different combinations of VMI parameter b, and Coriolis attenuation
coefficient ρ. Experimental energies represented by the grey lines are
taken from [41,42].

FIG. 13. Low-lying negative parity bands of the odd-A nucleus
137Pm calculated with deformation parameters (β2, β4, γ ) as
mentioned in the inset. Experimental energies represented by the
grey lines are taken from [41,42].

In Fig. 12 we present the rotational spectra of 137Pm
obtained with the PRM (with VMI parameter b) using different
sets of parameters. Here we consider different combinations
of two parameters, viz., the VMI parameter b and the Coriolis
attenuation coefficient ρ. From Fig. 12, it is clear that with
different combinations of parameters, we can obtain fits of
similar quality. For example, combinations (a) and (c) favor
γ = 0◦; (b) favors γ ∼ 20◦; and (d) favors γ ∼ 25◦. One
can arrive at numerous such combinations while considering
b and ρ as free parameters and hence exemplifies their
strong influence on the rotational spectrum. Consequently,
this method does not yield a unique or unambiguous set of
parameters for a given nucleus. These results are quite sensitive
to γ because the rotor energies also change swiftly with γ . The
change in the rotor energies with γ at the given b, is already
shown in Fig. 5.

The best fitting rotational spectrum of 137Pm calculated
with MPRM is presented in Fig. 13, which includes the
side band also. It is useful to iterate that the parameters
C,I0, and γ are determined from the rotor spectrum. With
β2 = 0.19 (suggested by FRDM[39]) the calculated ground
band energies agree well with the data. In other words, without
any adjustable parameters, the MPRM reproduces the ground
band. The agreement with the data is better at β2 = 0.23 where
we get the placement of the side band also correctly, i.e., the
relative energy difference between the ground state (11/2−)
and the 7/2− state is in conformity with the experiment. This
claim needs to be substantiated by systematic calculations for
various similar cases. Identifying the relative placement of
bands built on low-lying states is very crucial in the exotic
nuclei where only a few levels are identified experimentally.
With such validated MPRM, it will be interesting to utilize the
resulting wave functions to calculate the decay widths of the
proton emitting nuclei.

IV. SUMMARY

We have presented a nonadiabatic approach (MPRM) for
the rotation-particle coupling in triaxially deformed odd-A
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nuclei. Different methods to study the even-even rotor are
analyzed in this regard, with an emphasis on the variable
moment of inertia (VMI). From the study of the rotation
alignment, we pointed out that the realization of VMI has
to be carried out carefully for the rotation-particle coupling.
The cases where improper implementation of VMI leads to
spurious displacement of rotational states, and ambiguity in
parameters, are brought out. We have demonstrated that the
MPRM is free from these drawbacks and could even yield
the correct relative placement of a side band in 137Pm. This

approach is quite suitable to study the low-lying states of the
exotic nuclei. Work is in progress to apply this method to study
the structure and decay of triaxial proton emitters.
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