Isospin mixing of 2⁺ states in ¹⁴N

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (Received 10 December 2016; published 27 February 2017)

I have investigated the possibility that the near vanishing of the proton strength of the 9.17-MeV state in 14 N could be due to isospin mixing. If the two levels involved are at 9.17 and 8.98 MeV, the mixing intensity is 0.41(9) with a *T*-mixing matrix element of 94(10) keV. Some consequences of such mixing are examined.

DOI: 10.1103/PhysRevC.95.024325

I. INTRODUCTION

The $2^+ T = 1$ states at 9.17 and 10.43 MeV in ¹⁴N have long been known as analogs of the 7.01- and 8.32-MeV states in ¹⁴C. Several decades ago, Warburton and Pinkston offered a simple description [1] of the structure of these two states, viz. an almost equal mixture of two basis states—a *p*-shell 2^+ state and the lowest $(sd)^2 2^+$ state. This description has stood the test of time. Virtually all experimental information involving these two states is consistent with the simple picture. For example, in the ¹⁵N(³He, α) reaction the 9.17- and 10.43-MeV levels are populated almost equally [2]. However, as one can see below, a possible problem exists with the single-nucleon stripping spectroscopic factors *S*.

Properties of the two lowest $2^+ T = 0$ and T = 1 states are listed in Table I [3–5]. The most striking feature of these states is the fact that the experimental proton width of the 9.17-MeV state is only 0.122(8) keV [3,6]. An earlier value was 0.135(8) keV [7]. In a simple potential model with a standard Woods-Saxon potential well, having $r_0, a, r_{0c} =$ 1.26, 0.60, 1.40 fm, the single-particle (sp) proton width for $\ell = 1$ decay is 520 keV. Thus, using the expression $C^2S =$ $\Gamma_{\text{exp}}/\Gamma_{\text{sp}}$ (with $C^2 = 1/2$ here), S is only 4.7(3)×10⁻⁴—about 1% of the expected value [5]. The extreme smallness of this quantity has been known for a long time and has been attributed to a small (~4% [1] or 6% to 7% [8]) admixture of $(sd)^2$ in ${}^{13}C(g.s.)$ [where (g.s.) represents the ground state] plus destructive interference between the two major components of the first $2^+T = 1$ state. Two things are wrong with this explanation: (1) Because the 9.17-MeV state is the lower of the two mixed states, this relative phase should be constructive for it. (2) There is no evidence for a similar destructive interference in the parent state in 14 C. The two 2⁺ states there have virtually identical cross sections and angular-distribution shapes in the reaction ${}^{13}C(d, p)$. In addition, the amount of core excitation needed in ${}^{13}C(g.s.)$ is significantly larger than theoretical estimates [9]. I think the explanation may lie in the area of isospin mixing (IM) as I now discuss.

Similar isospin mixing is well established in other light nuclei. For example, two high-lying 2^+ states of ⁸Be are reasonably well described as having the structures ⁷Li + *p* (16.6 MeV) and ⁷Be +*n* (16.9 MeV) rather than T = 0 and 1 [10]. Isospin mixing of 1⁺ and 3⁺ states is significantly less. The 12.71- and 15.11-MeV 1⁺ states in ¹²C are also *T* mixed [11]. In ¹⁴N, lower-lying 1⁻ states exhibit clear evidence of such mixing [12]. Various theoretical approaches have been used to estimate the magnitude of such *T* mixing.

For ⁸Be, Goldhammer [13] used wave functions from the Sussex interaction to compute mixing of the nuclear interaction and the Coulomb potential and reported excellent agreement. Wiringa et al. [14] used Green's function Monte Carlo calculations of isospin mixing (IM) matrix elements for the $2^+, 1^+$, and $3^+ T = 0$ and 1 pairs of states at high excitation in ⁸Be. They included the full electromagnetic interaction and several charge-symmetry-breaking terms of the strong forceboth two and three body. They found that their calculation gave 85%-90% of the experimental IM value for the 2^+ doublet with about two-thirds coming from the Coulomb interaction. For T mixing of 1^- states in 1^{14} N, Lie [15] assumed that T impurities were due to Coulomb forces only. He treated the Coulomb matrix elements connecting T = 0 and T = 1 eigenstates in first-order perturbation. He included only terms connecting basic states with the same configurations, stating that the others were smaller by a factor of about 1/100. His computed T mixing was somewhat smaller than experimental estimates.

II. CALCULATIONS AND RESULTS

A $2^+ T = 0$ state exists at 8.980 MeV with a width of 8(2) keV [3]. The sp proton width at this energy is 360 keV, resulting in $S = 2\Gamma_{exp}/\Gamma_{sp} = 0.044(11)$. In the reaction ${}^{13}C({}^{3}He, d)$, the limit on its strength is $(2J + 1) C^2 S < 0.2$, i.e., S < 0.08—in agreement with my S computed from the width. Shell-model calculations within the p shell [5] predict only one $2^+ T = 0$ state anywhere near this energy region, and that is presumably the known $2^+ T = 0$ state at 7.029 MeV. The p-shell energy prediction is 6.991 MeV. That state has $(2J + 1)C^2S = 0.31$ in the reaction ${}^{13}C({}^{3}He, d)$ —i.e., S = 0.12, to be compared with the p-shell prediction [5] of S = 0.13—very good agreement.

An $(sd)^2$ shell-model calculation puts the lowest $2^+ T = 0$ state about 0.7 MeV above the first $2^+ T = 1$. Thus, mixing between the *p*-shell and $(sd)^2 T = 0$ states could be responsible for some of the proton strength observed for the 8.98-MeV state. However, even if the $2^+ T = 0$ states do not mix, the 8.98-MeV state could acquire *p* strength from the lower $2^+ T = 1$ state through isospin mixing. Because these two states are only 192 keV apart, only a small *T*-mixing matrix element would be required. And, in this case, the interference will be destructive for the upper (9.17-MeV) state so that the resulting single-nucleon strength could easily almost vanish.

I thus assume that the 8.98- and 9.17-MeV states arise from isospin mixing between a pure T = 0 and a T = 1 state. I take

TABLE I. Properties of 2^+ states in ${}^{14}N$ (energies in MeV and widths in keV).

Т	$E_x(\exp)^a$	$S(^{3}\mathrm{He}, d)^{\mathrm{b}}$	Γ_{exp}^{a}	$\Gamma_{\rm sp}$	S_{Γ}^{c}	$E_x(\mathrm{th})^{\mathrm{d}}$	$S_{\rm th}{}^{\rm d}$
0	7.029	0.12	Bound			6.991	0.13
0	8.980	< 0.08	8(2)	360	0.044(11)		
1	9.172	< 0.032	0.122(8)	520	$4.7(3) \times 10^{-4}$	9.524	0.052
1	10.432	Not seen	33(3)	2300	0.029(3)		

^aReference [3].

^bReference [4].

 $^{c}S_{\Gamma} = 2\Gamma_{exp}/\Gamma_{sp}.$

^dReference [5].

the T = 1 basis state to be the analog of the 7.01-MeV state in ¹⁴C, whose structure is composed of approximately equal mixtures of a *p*-shell state and the lowest 2^+ $(sd)^2$ state. The theoretical spectroscopic factor for the pure *p*-shell state is 0.052 [5] or 0.0456 [9] of which about one-half will belong to the 7.01-MeV state and hence to the T = 1 basis state in ¹⁴N. In the reaction ¹³C(*d*, *p*) [16], the 7.01- and 8.32-MeV states have an approximately equal spectroscopic factor S = 0.065. Normalizing the data to distorted-wave calculations at forward angles (as is usually done) reduces these to 0.032 each.

For spectroscopic factors of the pure isospin states, I define $S_T = A_T^2$ so that A_1 is thus 0.161 or 0.151. I make no assumption about the nature of the T = 0 basis state and see what information emerges from the fitting.

For the physical states in ¹⁴N, I write

$$|8.98 \operatorname{MeV}\rangle = u|T = 0\rangle + v|T = 1\rangle;$$

$$|9.17 \operatorname{MeV}\rangle = -v|T = 0\rangle + u|T = 1\rangle.$$

Then the spectroscopic amplitudes are $A(8.98) = uA_0 + vA_1, A(9.17) = -vA_0 + uA_1$, and the S's are the squares of these numbers. I then fit these expressions to the experimental strengths of the two physical states. If I take $A_1 = 0.151$ as given and use the relation $u^2 + v^2 = 1$, I have two experimental numbers with which to determine two parameters— A_0 and v^2 , say. With $A_1 = 0.151, A(8.98) =$

FIG. 1. Plot of the T = 0 spectroscopic amplitude A_0 vs the amount of *T*-mixing v^2 required to reproduce the experimental proton spectroscopic factors for the 8.98- and 9.17-MeV 2⁺ states of ¹⁴N.

TABLE II. Results of isospin-mixing analysis.

Quantity	Value
$\overline{v^2}$	0.41(9)
A_0	0.148(33)
A_1	0.151 ^a
<u>V</u>	94(10) keV

^aFrom a shell-model calculation, assuming equal mixing of $2^+ T = 1$ states before isospin mixing.

0.21(3), and A(9.17) = 0.0217(7), I obtain the plot displayed as Fig. 1. The result is $v^2 = 0.41(9)$, $A_0 = 0.148(33)$. The matrix element responsible for the isospin mixing is then 94(10) keV, considerably smaller than the corresponding result of 620 keV [12] for *T* mixing of 1⁻ states in ¹⁴N. Results of the present analysis are presented in Table II. Long ago, Lie [15] had remarked "For positive-parity states no case exists where a particular particle state and a hole state couple to identical configurations with T = 0 and T = 1. The *T* impurities in the positive-parity states are accordingly supposed to be of minor importance and are not considered."

I now examine some of the consequences of such isospin mixing between the 2^+ states.

Before any isospin mixing, if the two $2^+ T = 1$ states in ¹⁴N are approximately equal mixtures of the two basis states discussed above and if ¹⁴N(g.s.) is a pure *p*-shell state, the g.s. *M*1 strengths should be equal for the two 2^+ states. Electron inelastic scattering at 180° is a good measure of this quantity. Such an experiment [17] at 40.6 MeV reported cross sections of 13.19(77) and 13.17(107) nb/sr for the 9.17- and 10.43-MeV states, respectively (Table III). Their reported γ widths were 6.6(13) and 9.6(19) eV. Warburton and Pinkston [1] reported dimensionless *M*1 strengths of $\Lambda[M1(9.17)] = 4.1$ and $\Lambda[M1(10.43)] = 5.5$. The theoretical value for the pure *p*-shell 2⁺ state was 12 [1]. Thus, in the electron-scattering experiment, the two *M*1's are approximately equal, whereas in the γ experiment, the 9.17-MeV state is weaker. Other reported values [3,18–20] are also listed in Table III.

TABLE III. Ground-state M1 strengths^a of 9.17- and 10.43-MeV states of ¹⁴N.

Process	Quantity	9.17 MeV	10.43 MeV	Reference
(<i>e</i> , <i>e</i> ′) 180°	Cross	13.19(77)	13.17(107)	[17]
	section	nb/sr	nb/sr	
	$\Gamma(\gamma_0)$	6.6(13) eV	9.6(19) eV	[17]
$^{13}C(p,\gamma)$	$\Gamma(\gamma_0)$	7.7(9) eV	12.1(15) eV	[18]
	$\Gamma(\gamma_0)$	8.7(15) eV	17	[19,20]
	B(<i>M</i> 1)	0.53(9)	0.71	[<mark>1,8</mark>]
		W.u.	W.u.	
	$\Lambda(M1)$	4.1	5.5	[<mark>1,8</mark>]
Compilation	$\Gamma(\gamma_0)$	6.2(3) eV	10.21(65) eV	[3]
	<i>B</i> (<i>M</i> 1)	0.38(2)	0.43(3)	[3]
		W.u.	W.u.	

^aW.u. is Weisskopf units.

TABLE IV. Cross sections for two-nucleon transfer to $2^+ T = 1$ states in A = 14 nuclei.

$^{12}\mathrm{C}(t,$	$p)^{14}C^{a}$	${}^{12}\mathrm{C}({}^{3}\mathrm{He},p){}^{14}\mathrm{N}^{\mathrm{b}}$		
$\overline{E_x}$	$\sigma_{ m max}$	E_x	σ (15°)	
7.01 MeV	9.6 (mb/sr)	9.17 MeV	4.2 (mb/sr)	
8.32 MeV	8.1 (mb/sr)	10.43 MeV	5.4 (mb/sr)	
Ratio	1.18		0.78	

^aReference [22].

^bReference [23].

If the postulated isospin mixing is indeed present, the 9.17-MeV state would lose some *M*1 strength to the 8.98-MeV state. However, the g.s. of ¹⁴N is not purely of *p*-shell structure, and the ¹²C ×(*sd*)² 1⁺ component will have *M*1 strength from the ¹²C ×(*sd*)² 2⁺ component of the two 2⁺ states. This contribution would be expected to be constructive for 9.17 and destructive for 10.43. In any case, the 8.98-MeV state should have some *M*1 strength for the g.s. In a very early experiment [21], it was observed to decay primarily to the g.s. with a reported γ width of only 0.10 eV. However, this resonance sits atop a wide resonance ($\Gamma \sim 400$ keV) corresponding to the 8.78-MeV 0⁻ state [3]. I have been unable to find any further information on the γ width of the 8.98-MeV state. Further research might be profitable.

In the (e,e') experiment, the 8.98- and 9.17-MeV states would not have been resolved. That might explain the observation of equal cross sections in (e,e') but a weaker B(M1)for 9.17 MeV than for 10.43 MeV in the (p,γ) work.

Another consequence of the proposed isospin mixing would be a loss of two-nucleon transfer strength by the 9.17-MeV state and a gain of that strength by the 8.98-MeV state. Cross sections for the ${}^{12}C(t, p)$ reaction [22] to the parent states in ${}^{14}C$ and the ${}^{12}C({}^{3}\text{He}, p)$ reaction [23] to the analogs in ${}^{14}N$ are listed in Table IV. With isospin conservation, the ratio of cross sections in the two reactions should be the same, and yet a large difference is observed. If the ratio in ¹⁴N were to be the same as in ¹⁴C, we would expect $\sigma(9.17) = (9.6/8.1)5.4 = 6.4 \text{ mb/sr}$, to be compared to the observed value of 4.2 mb/sr. With the isospin-mixing intensity of 0.41(9) from above, the 9.17-MeV state would have lost 2.6(6) mb/sr to the 8.98-MeV state. Thus, the results of two-nucleon transfer are consistent with the proposed isospin mixing. The (³He, *p*) cross section for the 8.98-MeV state is about 3 mb/sr, easily accommodating the cross section lost by the 9.17-MeV state.

The isospin mixing suggested here would allow some cross section for the 9.17-MeV state in a reaction that should populate only T = 0 states—such as ${}^{10}\text{B}({}^6\text{Li}, d)$. In an early study of that reaction [24], the 9.17- and 9.13-MeV states would not have been resolved, and the latter was the second strongest state observed. (Only the 11.06-MeV state was stronger.) In a study of the same reaction in our laboratory [25], the resolution was about 45 keV, again insufficient to resolve the two states. I would expect a good resolution experiment should find a ratio of $\sigma(9.17)/\sigma(8.98) \sim 0.41/0.59$. The situation is complicated further by the fact that the 5⁺ state at 8.96 MeV is very strong and not resolved from the 8.98-MeV state.

III. CONCLUSIONS

To summarize, I have investigated isospin mixing as the mechanism responsible for the nearly vanishing proton strength for the 9.17-MeV state in ¹⁴N. If the 2⁺ states at 8.98 and 9.17 MeV result from isospin mixing of T = 0 and 1 basis states, then the mixing intensity is found to be 0.41(9), and the *T*-mixing matrix element is 94(10) keV. Such mixing will influence the g.s. *M*1 strengths, decreasing it for 9.17 and increasing it for 8.98. The proposed mixing is in excellent agreement with the observed difference in 2*n* and *np* stripping strengths to the 2⁺ states in ¹⁴C and their analogs at 9.17 and 10.43 in ¹⁴N. If the proposed mixing is correct, the 9.17-MeV state should be populated in reactions that should reach only T = 0 states—such as ¹⁰B(⁶Li, *d*).

- [1] E. K. Warburton and W. T. Pinkston, Phys. Rev. 118, 733 (1960).
- [2] G. C. Ball and J. Cerny, Phys. Lett. 21, 551 (1966).
- [3] F. Ajzenberg-Selove, Nucl. Phys. A523, 1 (1991).
- [4] R. J. Peterson and J. J. Hamill, Nucl. Phys. A362, 163 (1981).
- [5] S. Cohen and D. Kurath, Nucl. Phys. A101, 1 (1967).
- [6] D. Vartsky et al., Nucl. Phys. A505, 328 (1989).
- [7] W. Biesiot and P. B. Smith, Phys. Rev. C 24, 2443 (1981).
- [8] J. Rose, F. Riess, and W. Trost, Nucl. Phys. 52, 481 (1964).
- [9] D. J. Millener (private communication).
- [10] P. Paul, D. Kohler, and K. A. Snover, Phys. Rev. 173, 919 (1968).
- [11] D. P. Balamuth, R. W. Zurmühle, and S. L. Tabor, Phys. Rev. C 10, 975 (1974).
- [12] M. J. Renan, J. P. F. Sellschop, R. J. Keddy, and D. W. Mingay, Nucl. Phys. A193, 470 (1972).
- [13] P. Goldhammer, Phys. Rev. C 11, 1422 (1975).
- [14] R. B. Wiringa, S. Pastore, S. C. Pieper, and G. A. Miller, Phys. Rev. C 88, 044333 (2013).
- [15] S. Lie, Nucl. Phys. A181, 517 (1972).

- [16] R. J. Peterson, H. C. Bhang, J. J. Hamill, and T. G. Masterson, Nucl. Phys. A425, 469 (1984).
- [17] N. Ensslin, L. W. Fagg, R. A. Lindgren, W. L. Bendel, and E. C. Jones, Jr., Phys. Rev. C 19, 569 (1979).
- [18] S. S. Hanna and L. Meyer-Schutzmeister, Phys. Rev. 115, 986 (1959).
- [19] H. B. Willard, J. K. Bair, H. O. Cohn, and J. O. Kington, Phys. Rev. 105, 202 (1957).
- [20] G. Clerc and E. Kuphal, Z. Phys. 211, 452 (1968).
- [21] H. H. Woodbury, R. B. Day, and A. V. Tollestrup, Phys. Rev. 92, 1199 (1953).
- [22] S. Mordechai, H. T. Fortune, G. E. Moore, M. E. Cobern, R. V. Kollarits, and R. Middleton, Nucl. Phys. A301, 463 (1978).
- [23] C. H. Holbrow, R. Middleton, and W. Focht, Phys. Rev. 183, 880 (1969).
- [24] R. L. McGrath, Phys. Rev. 145, 802 (1966).
- [25] H. T. Fortune, H. G. Bingham, D. J. Crozier, and J. N. Bishop, Phys. Rev. C 11, 302 (1975).