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A beyond-mean-field approach consisting of angular momentum projection techniques and generator
coordinate method based on Skyrme–Hartree-Fock calculations is employed to investigate single- and double-�
hypernuclear systems. The density-dependent N� interactions derived from the Nijmegen soft-core potentials
are used. Rotational energy spectra and electric-quadrupole transition strengths B(E2) of the hypernuclei 13

�C,
14
��C, 21

�Ne, and 22
��Ne are presented and compared with those of the corresponding core nuclei 12C and 20Ne.

The shrinkage effect of the �s is demonstrated by the B(E2) values, the charge radii, and the shape deformation
β of the nuclear core. It is found that the reduction of the B(E2) values in 13

�C and 14
��C is mainly caused by

the shrinkage of the charge radii of the nuclear cores, while the reduced shape deformations also play important
roles; but the contrary is the case in 21

�Ne and 22
��Ne. Comparison between this and other theoretical models are

made, and the differences between them are illuminated.

DOI: 10.1103/PhysRevC.95.024323

I. INTRODUCTION

In the past half century, many experiments have been carried
out to investigate the properties of � hypernuclei [1–3], and
the observed low-lying energy spectra and electric multipole
transition strengths provide useful information to study the
impurity effect (shrinkage phenomenon [4] and spin splitting
[5,6]) due to the � hyperon, which is deeply bound without
Pauli blocking from the nucleons. In recent years, various
events were also observed for double-� hypernuclei [7,8],
and the experimental data provide possibilities to constrain
the N� and �� interactions. New research plans [9] open
good opportunities to investigate the low-lying energy spectra
for both single- and double-� hypernuclei.

Among various theoretical approaches, the shell model was
used to describe the low-lying energy spectra of light (with
a p-shell nuclear core) single- and double-� hypernuclei
[10–13]. Within a few-body model, the cluster structure of
single- and double-� hypernuclei was investigated, and the
energy spectra, electromagnetic transition rates, and hyper-
nuclear matter distributions were reproduced successfully
[14–17]. Also for light hypernuclei, an ab initio calculation
based on realistic nucleonic and hyperonic interactions was
extended to 13

�C [18]. For sd-shell � hypernuclei, the
antisymmetrized molecular dynamics (AMD) allows very
detailed investigations [19–22] and was recently also extended
to study the cluster structure of 10

�Be and 11
�Be [23].

Compared with the theoretical models mentioned above,
the hypernuclear energy density functional theories includ-
ing Skyrme–Hartree–Fock (SHF) and relativistic mean-field
(RMF) models are suitable to investigate not only light, but
also medium and heavy hypernuclei. The SHF model was
first extended to � hypernuclei by using Skyrme-type N�
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interactions in Ref. [24]. A generalized SHF model employing
effective N� interactions derived from the Nijmegen soft-core
potentials [25–28] or Skyrme-type N� interactions [29] was
used with a spherical mean-field configuration to study the
properties of single- and double-� hypernuclei, and later
quadrupole constraints and pairing interactions were included
into this model [30–32]. The shape evolution in isotope
chains due to the addition of one � was first studied in the
hypernuclear RMF model [33], and then the impurity effect of
a � in various p- and sd-shell hypernuclei was investigated in
a triaxial SHF model [34]. The (super)deformation of hyper-
nuclei was recently investigated within a multidimensionally
constrained RMF model [35,36] and AMD [37].

Considering the importance of low-lying energy spectra
and electric multipole transition strengths in the study of
hypernuclei, it is worthwhile to mention several kinds of
beyond-mean-field calculations for � hypernuclei in recent
years. Based on the hypernuclear RMF model, the particle-
rotor model and the five-dimensional collective Hamiltonian
(5DCH) were extended to investigate the low-lying states
of hypernuclei and the impurity effect of the � [38–42],
and then the RMF model equipped with angular-momentum
projection (AMP) techniques and the generator coordinate
method (GCM) was used to obtain the energy spectrum
and electric-quadrupole transition strengths of 21

�Ne [43]. For
the deformed hypernuclear SHF model, AMP and particle
number projection (PNP) techniques were used to restore the
rotational symmetry and particle number [44], but the mixing
of configurations with different shapes was neglected due to
the absence of the GCM.

In this paper, aiming at constructing a unified model
to investigate low-lying energy spectra of both single- and
double-� hypernuclei, a beyond-mean-field calculation (in-
cluding AMP techniques and GCM) based on the hypernuclear
SHF model is derived and implemented to 13

�C, 14
��C, 21

�Ne,
and 22

��Ne. This paper is organized as follows: In Sec. II the
formalism of the beyond-mean-field calculation is introduced,
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Sec. III presents the results and discussions, and in Sec. IV we
summarize the work.

II. FORMALISM

The hypernuclear states are described by a superposition of
angular-momentum-projected mean-field wave functions∣∣�JM

α

〉 =
∑

β

F J
α (β)P̂ J

MK |�(N�)(β)〉, (1)

where FJ
α (β) is the weight function and P̂ J

MK is an AMP
operator with K = Kc + KY being the projection of angular
momentum Jπ on the intrinsic z axis, and Kc and KY are
the components of the nuclear core and of the hyperons,
respectively. The assumption of time-reversal symmetry for
the axially deformed nuclear core leads to Kc = 0 and KY =
±1/2, 0 for single- or double-� hypernuclei, respectively.

The hypernuclear mean-field wave function from the
hypernuclear SHF calculation with a quadrupole constraint
is given by

|�(N�)(β)〉 = |�N (β)〉 ⊗ |��〉, (2)

where |�N (β)〉 and |��〉 are intrinsic wave functions of
the nuclear core with quadrupole deformation β and of the
hyperons, respectively. The deformation parameter β of the
nuclear core is proportional to the quadrupole moment as

β = 4π

3AcR
2
0

〈�N (β)|r2Y20|�N (β)〉, (3)

where Ac is the mass number of the core nucleus and R0 =
1.2A

1/3
c fm, and it is slightly different from the definition in

Ref. [43], but will not influence the current calculation.
Each weight FJ

α (β) in Eq. (1) is determined by the Hill–
Wheeler–Griffin (HWG) equation [45]∑

β ′

[
H ′J

KK (β,β ′) − EJ
α NJ

KK (β,β ′)
]
FJ

α (β ′) = 0, (4)

where the Hamiltonian and norm elements are given by

H ′J
KK ′ (β,β ′) = 〈�(N�)(β ′)|Ĥ ′P̂ J

KK ′ |�(N�)(β)〉, (5)

NJ
KK ′ (β,β ′) = 〈�(N�)(β ′)|P̂ J

KK ′ |�(N�)(β)〉. (6)

The relation between the Hamiltonians Ĥ ′ and Ĥ is

Ĥ ′ = Ĥ − λp(N̂p − Z) − λn(N̂n − N ), (7)

where the last two terms on the right-hand side account for
the fact that the projected wave function does not provide the
correct number of particles on average [46–48].

When the weight function FJ
α (β) is determined, the neutron

or proton root-mean-square (rms) radius is defined as

RJα
rms =

√∑
ββ ′

FJ
α

∗(β ′)FJ
α (β)〈�(N�)(β ′)|r2P̂ J

KK |�(N�)(β)〉,

(8)
and the reduced E2 transition rate is derived as

B(E2,Jα → J ′α′) = 1

2J + 1
|〈α′; J ′||Q̂2||α; J 〉|2, (9)

where

〈α′; J ′||Q̂2||α; J 〉
= √

2J ′ + 1
∑

Mμββ ′
FJ ′

α′
∗
(β ′)FJ

α (β)CJ ′K ′
JM2μ

×〈�(N�)(β ′)|Q̂2μP̂ J
MK |�(N�)(β)〉, (10)

in which Q̂2μ = r2Y2μ(ϕ,θ ) is the electric-quadrupole tran-
sition operator [49] and CJ ′K ′

JM2μ denotes the Clebsh–Gordon
coefficients.

Obtained from the hypernuclear SHF calculation with
density-dependent delta interaction (DDDI) [50], the BCS
wave function for the nuclear core, |�N (β)〉 in Eq. (2), is
written as

|�N (β)〉 =
∏
k>0

(uk + vka
+
k a+

k̄
)|HF〉, (11)

and the wave function for the hyperons is

|��〉 = ϕs(�) (12)

for single-� hypernuclei and an antisymmetrized one,

|��〉 = 1√
2

[ϕs(�1)ϕs̄(�2) − ϕs(�2)ϕs̄(�1)], (13)

for double-� hypernuclei, where ϕs and ϕs̄ are time-reversal
partners of the s� orbit. It has been shown in Refs. [14] and
[42] that the positive-parity J+

α hypernuclear excited states
are dominated by the �s ⊗ I+

α configurations and thus the
coupling to �p states is neglected in this current work.

Since the projected states do not form an orthogonal
basis, FJ

α (β) are nonorthogonal functions [42], and orthogonal
collective wave functions are constructed as

gJ
α (β) =

∑
β ′

[R 1
2 ]J (β,β ′)FJ

α (β ′), (14)

which are weights of the natural states in the collective
subspace [45], and where

[R 1
2 ]J (β,β ′) =

∑
k

√
nk wk(β)w∗

k (β ′), (15)

with the eigenfunctions wk and eigenvalues nk of the norm op-
erator, Eq. (6), in the projected space. The average deformation

β̄ =
∑

β

∣∣gJ
α (β)

∣∣2
β (16)

reflects the shape of the dominant configuration in the ground
or excited state and indicates the band structure [51].

In Refs. [34,52,53] the SGII Skyrme force [54] was
employed to investigate carbon and neon isotopes and the
corresponding � hypernuclei, and the same Skyrme force is
used in this current calculation, while the spin-orbit term is
reduced to 70% for carbon (hyper)nuclei to give the right
energy of the first-excited state. The strength of the density-
dependent pairing interaction is V = −410 MeV fm3 for both
protons and neutrons, and a smooth pairing energy cutoff of
5 MeV around the Fermi level is used [34,55]. For the N� and
�� parts, the density-dependent effective interactions derived
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FIG. 1. Potential-energy surfaces as functions of deformation parameter β from mean-field calculation and AMP for (a) 12C and (b), (c) 13
�C

and 14
��C using the NSC89 or (d), (e) NSC97f force. The symbols represent the GCM states with given J π , located at the average deformation

β̄ of Eq. (16). Offsets are used for hypernuclei according to the (double-)� binding energies to keep the ground states of all the (hyper)nuclei
at the same level. The spin doublets are represented by one single curve or symbol due to their negligible splitting.

from the Nijmegen soft-core interactions NSC89 and NSC97f
[28] are employed and the hypernuclear spin-orbit forces are
excluded according to Refs. [28,34].

III. RESULTS

Using the beyond-mean-field SHF model introduced in the
previous section, 12C, 20Ne, and the corresponding (double-)�
hypernuclei, i.e., 13

�C, 14
��C, 21

�Ne, and 22
��Ne, are investigated.

Their energy spectra, E2 transition rates, and the shrinkage
effects of �s are discussed in this section.

A. Study of 12C, 13
�C, and 14

��C

Figure 1(a) shows the potential-energy surfaces (PESs) with
given Jπ as a function of the deformation parameter β from
mean-field calculation and AMP for the core nucleus 12C.
The most obvious effect is the energy gained by AMP, which
changes the mean-field PES with a flat curve and near spherical
shape into the Jπ = 0+ one with two pronounced minima at
oblate and prolate shapes, respectively. A similar phenomenon
happens for the beyond-RMF calculation in Ref. [42], but
the barrier between the two minima is much smaller than the
one in our current calculation. The energies from the GCM
calculation located at the average shape β̄ are also shown in
the same panel. The energy of the first 2+ state is 4.44 MeV,
which reproduces precisely the observed one [56] with the
reduced SGII force introduced at the end of the last section.
The second 0+ state locates at 7.34 MeV, and it seems very
close to the observed Hoyle state (7.65 MeV [57–59]), but in
fact it is difficult for the current model to reproduce the Hoyle
state due to its dilute cluster structure [60–62].

Figures 1(b)–1(e) shows the PES patterns and energy levels
from the GCM calculation for 13

�C and 14
��C, using the NSC89

and NSC97f forces. The addition of a single- or double-�
makes the PES slightly stiffer for both mean-field or AMP
calculations, as an impurity effect of the �s, which occupy
the s1/2 orbit and have a stronger attractive interaction with a

spherical nuclear core than with a deformed one. In Figs. 1(b)
and 1(d), the (3+/2, 5+/2) and the (7+/2, 9+/2) states are
represented by the same symbols, respectively, because the
spin splitting of these states is almost zero due to the absence
of a N� spin-orbit term in the Hamiltonian.

In Ref. [28] four parameter sets for different density-
dependent Nijmegen soft-core interactions were used to
investigate the properties of single- and double-� hypernuclei,
and it was shown that the NSC89 and NSC97f forces
yield the better overall reproduction of hypernuclear binding
energies. In our current beyond-mean-field calculation, using
the ground-state energies obtained by the GCM, the single-
and double-� removal energies of 13

�C and 14
��C are 10.1 and

19.9 MeV for the NSC89 force, and 12.1 and 23.9 MeV for the
NSC97f force, respectively, compared with the experimental
value of 11.7 MeV for 13

�C [63].
The average deformations of the ground states in 12C, 13

�C,
and 14

��C using the NSC97f force are β̄ = −0.130, −0.101, and
−0.075, respectively, as shown in Figs. 1(a), 1(d), and 1(e),
which indicates that the addition of the �s drives the average
shape towards the spherical region, and the same phenomenon
also happens for the NSC89 force. This trend is caused by the
fact that the � located in an s orbit favors a spherical nuclear
core and slightly prefers a prolate nuclear core to an oblate
one, as explained in more detail in Ref. [34].

This influence of �s on the core nucleus is shown more
clearly in Fig. 2, which displays the collective wave functions
gJ

α of 12C in Fig. 2(a) and �J of 14
��C with J = 0+

1 ,2+
1 , and 4+

1
in Figs. 2(b), 2(c), and 2(d), respectively. The quantity

�J (β) = ∣∣gJ
α=1(β)

∣∣
H

− ∣∣gJ
α=1(β)

∣∣
c

(17)

is introduced to describe the change of the absolute value of
gJ

α (β) when two �s are added. The subscripts H and c denote
gJ

α (β) for a hypernucleus and a core nucleus, respectively. We
can see that, due to the addition of �s, the absolute value of gJ

α

of the 0+
1 state in 14

��C decreases in the β < −0.5 domain and
increases in the −0.5 < β < 1.2 domain compared with the

024323-3



CUI, ZHOU, GUO, AND SCHULZE PHYSICAL REVIEW C 95, 024323 (2017)

FIG. 2. Collective wave functions gJ
α (β) for the GCM states of

the ground band with J π = 0+,2+,4+ (a) of 12C, and the change �J ,
Eq. (17), due to the addition of double-� for (b)–(d) 14

��C using the
NSC97f force. The arrows indicate β̄ for each state of 12C and 14

��C.

one in 12C. Figure 2 also indicates the position of the average
deformation β̄ of each state by arrows, and the reduction of β̄
is seen clearly. Similar phenomena happen in the case of the
2+

1 and 4+
1 states. An equivalent behavior of gJ

α also exists in
13
�C but is not so obvious as in 14

��C.
The ground-band energy levels and electric-quadrupole

transition strengths are shown in Fig. 3 for 12C, 13
�C, and 14

��C.
The addition of �s enlarges the excitation energies, because it
reduces both the radius and deformation of the system, which
leads to a reduced moment of inertia and increases the distance
of the rotational levels [64]. The reduced radius and shape
deformation also lead to the reduction of E2 transition rates
shown in Fig. 3, which will be discussed in detail below.

FIG. 3. Energy spectra of 12C, 13
�C, and 14

��C, using the N�

interaction parameters NSC89 and NSC97f. Electric-quadrupole
transition strengths B(E2) are shown in e2 fm4 along the arrows.
The experimental data are taken from Refs. [56–59] for 12C and
Ref. [6] for 13

�C.

TABLE I. Core transition rates cB(E2) and relative change
�, Eq. (19), in 13

�C using the NSC89 and NSC97f interaction,
respectively. Beyond-RMF results using the PC-F1 force are taken
from Ref. [42]. The unit of B(E2) and cB(E2) is e2 fm4.

J π
i → J π

f NSC89 NSC97f PC-F1

B(E2) cB(E2) �(%) cB(E2) �(%) �(%)

3/2+
1 → 1/2+

1 10.66 10.66 − 5.00 10.56 − 5.93 − 14.17

5/2+
1 → 1/2+

1 10.63 10.63 − 5.26 10.56 − 5.89 − 14.17

7/2+
1 → 3/2+

1 14.90 16.56 − 4.60 16.49 − 5.00 − 21.36

7/2+
1 → 5/2+

1 1.66 16.58 − 4.48 16.49 − 5.00 − 21.35

9/2+
1 → 5/2+

1 16.57 16.57 − 4.51 16.49 − 5.00 − 21.36

For a comprehensive understanding of the shrinkage effect
reflected by the B(E2) values, it is worthwhile to make
a comparison of results of the current calculation and the
beyond-RMF calculation in Ref. [42]. As in that reference,
the quantity

cB(E2,Ii → If ) = 1

(2Ii + 1)(2Jf + 1)

{
If Jf ji

Ji Ii 2

}−2

×B(E2,Ji → Jf ) (18)

is introduced to remove the trivial factor due to the angular-
momentum coupling for the s1/2 state of the � particle, where
c emphasizes the “core transition.” In Table I, the cB(E2)
values of 13

�C and the relative shrinkage [42]

� ≡ cB(E2) − B(E2;12 C)

B(E2;12 C)
(19)

are given and compared with the results of Ref. [42]. We can
see that B(E2,2+

1 → 0+
1 ) is reduced by 5%–6% in this current

work, whereas Ref. [42] reports a stronger reduction of about
14%. One reason for the difference between the two models
is that the beyond-RMF model gives a more shallow projected
energy curve near the two minima than the beyond-SHF model
does. In Fig. 1(a), it is shown that the barrier between the
two energy minima with Jπ = 0+ is about 4 MeV, while it
is just 1 MeV or less in Fig. 2 of Ref. [42]. As shown in
Fig. 2 of this current paper, the addition of �s makes the
configuration with small β more dominant, which causes the
reduction of B(E2). But the large barrier between the two
energy minima hinders such trend in 13

�C, which makes
the reduction of B(E2) in this current work weaker than in
Ref. [42]. Actually, the shrinkage of 13

�C is commonly very
strong in RMF calculations. In Ref. [35], the addition of one
� turns the oblate 12C into a spherical one and reduces the
proton radius from 2.57 to 2.50 fm.

To show in full detail where the reduction of the B(E2)
values in 13

�C and 14
��C comes from, we introduce as in

Ref. [14] the ratio

�B = cB(E2,2+
1 → 0+

1 ;13
� C)

B(E2,2+
1 → 0+

1 ;12 C)
= 1 − �. (20)

Provided the simple assumption that the B(E2) value is
proportional to the square of the intrinsic quadrupole moment
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TABLE II. Root-mean-square charge radii rc in unit of fm, and
the ratios �r , �β , �B according to Eq. (23) of 12C, 13

�C, and 14
��C

using different N� interactions.

12C 13
�C 14

��C

rc rc �r �β �B rc �r �β �B

NSC89 2.58 2.56 0.964 0.985 0.950 2.54 0.933 0.950 0.886
NSC97f 2.56 0.962 0.978 0.941 2.54 0.936 0.957 0.895

Q0 [45],

B(E2,I + 2 → I ) = 5

16π
Q2

I+2→I ,

(21)
Q2

I+2→I = Q2
0

∣∣CI+22I
K 0K

∣∣2
,

and using the approximation to first order in β for moderate
deformation [32,65],

Q0 ≈ Ze

√
16π

5

3

4π
R2

0β ≈ Ze

√
5

π
〈r2〉β, (22)

�B is expressed approximately as the product of two factors

�B ≈ Q2
c0

Q2
0

= �r�β, (23)

in which 〈r2〉1/2 is the rms charge radius of 12C, while Qc0

and 〈r2
c 〉1/2 are the same quantities of the nuclear cores in 13

�C
or 14

��C. The ratio �r ≡ 〈r2
c 〉2/〈r2〉2 indicates the reduction of

the size of the nuclear core, whereas �β ≡ β2
c /β

2 measures
the effect caused by the change of β.

The GCM calculation in this current paper shows, however,
that there are no well-defined shapes for the ground band of
12C, 13

�C, and 14
��C. For example, while the ground state of

12C is a “spread” one, the 2+
1 state is oblately deformed, as

shown in Fig. 2. So it is difficult to derive �β from the shape
parameters β and βc. However, according to Eq. (23), it can
be estimated by �β ≈ �B/�r , since in our calculation �B and
�r are explicitly derived by E2 transition rates and rms charge
radii, respectively.

In Table II, the rms charge radii rc and the ratios �r , �B ,
�β of the different (hyper)nuclei are listed. One can see that
the addition of �s always leads to a shrinkage of the charge
radius and that �r is smaller than �β in all cases. This means
that the reduction of the E2 transition strengths in the nuclear
core is mainly due to the shrinkage of the charge radii, but also
the reduced shape deformation plays a non-negligible role.

In our calculation, the spectroscopic quadrupole moment
Q2→2 of the 2+

1 state, Eq. (10) with α = α′ = 1 and J =
J ′ = 2+, is calculated for 12C and its value is Q(b) = +0.074
compared with the experimental one +0.06(3) [66]. Also
for 20Ne, which will be discussed in the next section, the
calculated and experimental Q(b) values are −0.205 and
−0.23(3) [66], respectively. According to Eq. (21), these
differences between calculated and experimental Q values are
closely related to the differences of the B(E2) values shown
in Figs. 3 and 5.

B. Study of 20Ne, 21
�Ne, and 22

��Ne

The hypernucleus 21
�Ne has been studied in various theoret-

ical models [20,42,43,67] and is thus suitable for a comparison
of the different approaches. In this section, we give a uniform
description of 20Ne, 21

�Ne, and 22
��Ne in our beyond-SHF model

and investigate in detail the reduction of B(E2).
For 20Ne, Fig. 4(a) shows the energy curves from mean-field

calculations and AMP, and the GCM levels are indicated by
symbols at the average deformations β̄. The most obvious
difference to the case of 13

�C is the very strong deformation
of β̄ ≈ 0.5 already at the mean-field level and persisting
in all excited states. The 0+ curve in our current work is
qualitatively the same as the one obtained in the beyond-RMF
calculation [42], with similar deformation, but with a larger
barrier between the two energy minima. Figures 4(b)–4(e) give
the energy curves of 21

�Ne and 22
��Ne in an offset manner, using

the NSC89 and NSC97f forces. The single- and double-�
binding energies are 13.6 and 26.8 MeV for the NSC89 force,
while 15.9 and 31.4 MeV for the NSC97f force, respectively.
The average deformation β̄ reduces from 0.514 to 0.483 and
0.433 in 20Ne, 21

�Ne, and 22
��Ne, respectively, for the NSC97f

force. As in the case of 13
�C, the absence of a hypernuclear

FIG. 4. Same as in Fig. 1, but for 20Ne, 21
�Ne, and 22

��Ne.
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FIG. 5. Same as in Fig. 3, but for 20Ne, 21
�Ne, and 22

��Ne. The
experimental data are taken from Ref. [56].

spin-orbit term makes the spin splitting very small, and it is
not shown in the figure.

In Fig. 5, we display the ground bands of 20Ne, 21
�Ne, and

22
��Ne, and the B(E2) values between the rotational levels.
The calculated 2+

1 state of 20Ne is at 1.35 MeV compared
with the observed one at 1.63 MeV, and the B(E2) value also
coincides satisfactorily with the observed one. This B(E2)
value is reduced by about 5%–7% in 21

�Ne and 12%–14% in
22

��Ne.
To make a comprehensive comparison with other models,

we list in Table III the reduction of cB(E2) in 21
�Ne in this

current calculation and those in different kinds of models
including the beyond-RMF model, clustering model [67], and
AMD [20]. It is shown that the reduction of cB(E2) in our
calculation is stronger than that in the beyond-RMF model
with PC-F1 parameters, but weaker than that with PC-PK1
parameters. The clustering model and AMD give much larger
reductions than both our calculation and the beyond-RMF
calculation [42].

But recently a more self-consistent beyond-RMF calcula-
tion using AMP and GCM techniques obtained a reduction
of cB(E2,2+

1 → 0+
1 ) in 21

�Ne of more than 12% [43]. In
that reference the Jπ = 1/2+ projected energy curve has two
energy minima with prolate and oblate shapes, respectively,
and that pattern is similar to the one in our current calculation

TABLE III. Reduction �, Eq. (19), of the core nuclear transition
cB(E2) in 21

�Ne. For comparison, the results using beyond-RMF
model (PC-F1 and PC-PK1) [42], AMD [20], and cluster model [67]
are given.

J π
i → J π

f NSC89 NSC97f PC-F1 PC-PK1 AMD Cluster
�(%) �(%) �(%) �(%) �(%) �(%)

3/2+
1 → 1/2+

1 − 5.08 − 5.64 − 3.19 − 7.16 − 11.8 − 23.9

5/2+
1 → 1/2+

1 − 5.08 − 6.51 − 3.19 − 7.16 − 11.5

7/2+
1 → 3/2+

1 − 4.55 − 4.40 − 3.95 − 4.80 − 17.8 − 22.6

7/2+
1 → 5/2+

1 − 4.55 − 2.00 − 3.95 − 4.80

9/2+
1 → 5/2+

1 − 3.98 − 2.00 − 3.95 − 4.81 − 13.0

TABLE IV. Same as Table II, but for 20Ne, 21
�Ne, and 22

��Ne.

20Ne 21
�Ne 22

��Ne

r rc �r �β �B rc �r �β �B

NSC89 2.92 2.91 0.977 0.971 0.949 2.88 0.948 0.910 0.863
NSC97f 2.90 0.975 0.967 0.944 2.89 0.952 0.922 0.877

(Fig. 4), but with a much smaller barrier between the two
energy minima. The barrier is nearly 4 MeV in our current
calculation, but less than 1 MeV in Ref. [43]. As discussed
in the previous section, this softness of the PES is (at least
one of) the reason(s) why the beyond-RMF calculation [43]
obtains a larger reduction of cB(E2) in 21

�Ne than our current
calculation does. Furthermore, in Ref. [42], the PES with
PC-PK1 parameters is slightly softer than that with PC-F1
parameters, and the reduction of B(E2) values corresponding
to PC-PK1 parameters is indeed larger than the one from PC-F1
parameters (see Table III), in line with the argument above.

In analogy to the last section, we investigate the major cause
for the reduction of cB(E2) in 21

�Ne and 22
��Ne, through the

comparison of �r and �β , which indicate the change of charge
radius and shape deformation, respectively. Table IV shows
the values of �r and �β in 21

�Ne and 22
��Ne using the NSC89

force and NSC97f force, respectively. �β is always smaller
than �r , which indicates that in this case the decrease of shape
deformation plays a more important role for the reduction of
the B(E2) transition.

This result is opposite to the case of 13
�C and 14

��C discussed
in the previous section, which might be explained by two
possible reasons. First, the deformation of 20Ne is much larger
than that of 12C, and therefore the added �s might cause a
bigger effect. Second, the different compactness of nucleons
in 12C and 20Ne, i.e., the average density of nuclear matter is
larger in 20Ne than that in 12C. In Fig. 6, we give the nuclear
density distribution of the ground state of 12C and 20Ne. It is
shown that the density of nuclear matter in 20Ne is larger than
the one in 12C and reaches more than 0.16 fm−3 in the center
of 20Ne. The saturation of nuclear density in 20Ne hinders the

FIG. 6. Nuclear density distribution of the ground states for 12C
and 20Ne. An identical color bar is used for both nuclei.
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�s from shrinking the radius, which is not the case for 12C
with a more dilute density.

IV. CONCLUSIONS

Based on a hypernuclear SHF model with realistic N�
interactions, AMP techniques, and GCM, we investigated the
energy spectra and the reduced E2 transition rates of the cores
in 13

�C, 14
��C, 21

�Ne, and 22
��Ne, and compared them to those of

12C and 20Ne, respectively. The projected energy curves with
different angular momenta as functions of β were obtained
and we found that the addition of �s makes the PES slightly
stiffer.

As an impurity effect, the �s lead to reduced cB(E2)
values. Through the comparison with the results of other
models, especially the beyond-RMF models [42,43], we found
that the reduction of cB(E2) in our calculation for 13

�C
and 21

�Ne is smaller than that in the beyond-RMF model,
and the reason is that the projected PES derived from the
beyond-RMF model is softer than the one from the current

calculation. Different advanced theoretical approaches thus
predict quantitatively different results for the deformation
properties, and this is an important problem to address in future
work.

A further analysis was made to investigate the reduction of
the charge radius and shape deformation β of the nuclear cores.
We found that the reduction of the E2 transition strengths in
13
�C and 14

��C is mainly due to the charge-radius shrinkage
of the nuclear core, while the reduced shape deformation also
plays an important role. On the contrary, in the much stronger
deformed 21

�Ne and 22
��Ne the reduction of shape deformation

is the dominant reason for the reduced cB(E2).
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