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We develop a method to construct a microscopic optical potential from chiral interactions for nucleon-
nucleus scattering. The optical potential is constructed by combining the Green’s function approach with the
coupled-cluster method. To deal with the poles of the Green’s function along the real energy axis we employ
a Berggren basis in the complex energy plane combined with the Lanczos method. Using this approach, we
perform a proof-of-principle calculation of the optical potential for the elastic neutron scattering on 16O. For
the computation of the ground state of 16O, we use the coupled-cluster method in the singles-and-doubles
approximation, while for the A ± 1 nuclei we use particle-attached/removed equation-of-motion method truncated
at two-particle–one-hole and one-particle–two-hole excitations, respectively. We verify the convergence of the
optical potential and scattering phase shifts with respect to the model-space size and the number of discretized
complex continuum states. We also investigate the absorptive component of the optical potential (which reflects
the opening of inelastic channels) by computing its imaginary volume integral and find an almost negligible
absorptive component at low energies. To shed light on this result, we computed excited states of 16O using
the equation-of-motion coupled-cluster method with singles-and-doubles excitations and we found no low-lying
excited states below 10 MeV. Furthermore, most excited states have a dominant two-particle–two-hole component,
making higher-order particle-hole excitations necessary to achieve a precise description of these core-excited
states. We conclude that the reduced absorption at low energies can be attributed to the lack of correlations
coming from the low-order cluster truncation in the employed coupled-cluster method.
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I. INTRODUCTION

Nuclear reactions are the ubiquitous experimental tool to
study atomic nuclei. While many astrophysically relevant
reactions proceed at relatively low energies E < 1 MeV [1],
in the laboratory, these reactions are often studied indirectly
with beams at higher energy (�5 MeV/u). One of the most
important open questions currently being explored today in
our field concerns the astrophysical site for the r process, the
process that gave rise to about half of the heavy elements
in our planet. In order to perform simulations of neutron
star mergers or supernovae explosions (the two possible sites
under consideration), neutron capture rates are needed on rare
isotopes of nuclei as heavy as uranium [1]. Despite all the
effort with ab initio approaches to nuclear reactions, which
include the study of elastic scattering [2–7], transfer [8],
photoreactions [9–11], and capture reactions [12,13], only
selected nuclei and specific reaction channels can be addressed
with the various ab initio methods available (see Refs. [14,15]
for recent reviews).

A more general approach to reactions involving heavier
nuclei is based on a reduction of the many-body picture to
a few-body one, where only the most relevant degrees of
freedom are retained [1]. In such approaches one introduces
effective interactions (the so-called optical potentials) between
the clusters considered. Traditionally these interactions have
been constrained by data, particularly using data on β-stable
isotopes [16,17]. Clearly, the application of these global
parametrizations to exotic regions of the nuclear chart is

unreliable and has uncontrolled uncertainties. It is critical
for progress in the field of reactions that these effective
interactions be connected to the underlying microscopic
theory so that extrapolations to exotic regions can be better
understood.

In most cases, phenomenological optical potentials are
made local for simplicity. We know based on the Feshbach
projection formalism that, in its most general form, the
microscopic optical potential should be complex, nonlocal,
and energy dependent [18,19]. Recently, a series of studies has
shown that nonlocality can affect transfer reaction observables
(e.g., [20–22]) and it is expected that it can equally affect other
reaction channels. So far we have not been able to identify an
experimental method to constrain nonlocality. It is essential
that microscopic theories provide guidance on this aspect of
the optical potential.

The goal of this work is to provide a proof-of-principle
for a new method to compute nuclear optical potentials from
ab initio many-body coupled cluster calculations. It is the
first of a series of studies that aims at constructing an optical
potential rooted in the underlying microscopic formulation
of the problem; a potential which can then be incorporated,
consistently with other ingredients, into the general few-body
formalism. In an approach based on Feshbach projection
operators, the optical potential is the self-energy term in the
Dyson equation [23]. Semiphenomenological optical potential
have been obtained using an approximation of the self-energy
at the Brueckner-Hartree-Fock level [24]. For the scattering of
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nucleons at high energy (�100 MeV), an optical potential can
be derived with the multiple scattering formalism [25]. More
recently, the solution of the Dyson equation by self-consistent
Green’s function methods has been used to compute optical
potentials [26–28]. In this paper, we compute the Green’s
function directly following the coupled cluster method [29,30],
thus circumventing the usual self-consistency approach. The
self-energy can then be determined by inverting the Dyson
equation. The key elements in our approach to compute the
Green’s function are (i) an analytical continuation in the
complex energy plane based on a Berggren basis consisting
of bound, resonant, and nonresonant scattering states [31–35]
and (ii) a generalized nonsymmetric Lanczos method [36]
that allows us to write the Green’s function as a continued
fraction [10,11,37,38]. The first of these two elements is
essential because it allow us to properly deal with the poles
of the Green’s function along the real energy axis and
to obtain numerically stable Green’s functions and optical
potentials. The second element is essential to make the problem
computationally feasible. In this work we demonstrate that
optical potentials, converged with respect to the models space,
can indeed be determined from the Green’s functions generated
from coupled cluster many-body calculations. We note that
the computation of Green’s functions with the coupled-cluster
method is well established in quantum chemistry [39–41], and
that very recently this approach has also been used to extract
the optical potential [42]. Our approach is similar to that effort,
but applied to nuclear many-body problem.

This paper is organized as follows. In Sec. II we introduce
the formalism of the Green’s function and the coupled-
cluster method along with the Berggren basis and discuss
the application of the Lanczos method for the numerical
calculations of the Green’s function. In Sec. III we show an
application for the elastic scattering on 16O and discuss the
results. Finally, we will conclude and discuss future possible
applications in Sec. IV.

II. FORMALISM

A. The single-particle Green’s function

The single-particle Green’s function of an A-nucleon
system has matrix elements

G(α,β,E) = 〈�0|aα

1

E − (
H − EA

gs

) + iη
a
†
β |�0〉

+ 〈�0|a†
β

1

E − (
EA

gs − H
) − iη

aα|�0〉. (1)

Here, α and β denote single-particle states and |�0〉 is the
ground state of the A-body system with energy EA

gs . As usual,
the parameter η � 0 is such that η → 0 at the end of the
calculation. The operators a†

α and aβ create and annihilate
a fermion in the single-particle states α and β, respectively,
and are shorthand for the quantum numbers α = (n,l,j,jz,τz).
Here, n,l,j,jz,τz label the radial quantum number, the orbital
angular momentum, the total orbital momentum, its projection
on the z axis, and the isospin projection, respectively. The

intrinsic Hamiltonian H is

H =
A∑

i=1

�pi
2

2m
−

�P 2

2mA
+

∑
i<j

Vij . (2)

Here, �pi is the momentum of the nucleon i of mass m and
�P = ∑A

i=1 �pi is the momentum associated with the center of
mass motion. We limit ourselves to a two-body interactions
Vij and neglect contributions from three-nucleon forces. It is
useful to rewrite the Hamiltonian as

H =
A∑

i=1

�p2
i

2m

(
1 − 1

A

)
+

∑
i<j

(
Vij − �pi �pj

mA

)
, (3)

separating one-body and two-body contributions. In what
follows, we take the single-particle states from the Hartree-
Fock (HF) basis. We recall that the HF basis is an excellent
starting point for coupled-cluster calculations and that the HF
Green’s function

G(0)(α,β,E) = 〈�0|aα

1

E − (
H0 − EA

gs,0

) + iη
a
†
β |�0〉

+ 〈�0|a†
β

1

E − (
EA

gs,0 − H0
) − iη

aα|�0〉
(4)

is a first-order approximation to the Green’s function (1). In
Eq. (4) H0 is the HF potential, |�0〉 the HF reference state of
the A-nucleon system, and EA

gs,0 the corresponding energy. As
the single-particle states α,β are given by the HF basis, Eq. (4)
can be written as

G(0)(α,β,E) = δα,β

[
	(α − F )

E − εα + iη
+ 	(F − α)

E − εα − iη

]
. (5)

Here, εα is the single-particle energy associated with |α〉 and
	 the unit step function. For a single-particle state α above
the occupied shells in the HF approximation, 	(α − F ) = 1,
whereas 	(α′ − F ) = 0 for α′ below the Fermi level.

The Green’s function fulfills the Dyson equation

G(α,β,E) = G(0)(α,β,E)

+
∑
γ,δ

G(0)(α,γ,E)�∗(γ,δ,E)G(δ,β,E). (6)

Here, �∗(γ,δ,E) is the self energy, which can be obtained
from the inversion of Eq. (6):

�∗(E) = [G(0)(E)]−1 − G−1(E). (7)

To obtain the optical potential we introduce the quantity

�′ ≡ �∗ + U, (8)

where U is the HF potential. For E � EA
gs , �′ in Eq. (8)

corresponds to the optical potential for the elastic scattering
from the A-nucleon ground state [23,43]. We are interested in
the scattering amplitude

ξE+(r) = 〈�0|ar|�E+〉, (9)

where |�E+〉 is the elastic scattering state of a nucleon on the
target with the energy E+ = E − EA

gs and ar the annihilation
operator of a particle at the position r. The scattering amplitude
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ξ c
E+(r) is the solution of the Schrödinger equation containing

the optical potential

− h̄2

2μ
∇2ξ (r) +

∫
dr′�′(r,r′,E+)ξ (r′) = E+ξ (r). (10)

where μ is the reduced mass of the nucleus-nucleon system.
For simplicity, we suppressed any spin and isospin labels.
The optical potential is nonlocal, energy-dependent, and
complex [43] and, for E+ � 0, its imaginary component
describes the loss of flux due to absorption. Similarly, the
overlap ξn(r) = 〈�0|ar|�A+1

n 〉 for a bound state |�A+1
n 〉 of

energy EA+1
n in the A + 1 system fulfills the Schrödinger

equation with the optical potential at the discrete energy
En = EA+1

n − EA
gs .

In this paper, we construct the optical potential by an
inversion of the Dyson equation (6) after a direct computation
of the Green’s function (1) following the coupled-cluster
method [30]. In the following section, we present the main
steps involved in the computation of the Green’s function in
our approach.

B. Green’s function from coupled-cluster method

The HF reference state for the nucleus consisting of A
nucleons is

|�0〉 = �A
i=1a

†
i |0〉. (11)

In coupled-cluster theory, see Refs. [30,44] for details, the
ground state is represented as

|�0〉 = eT |�0〉, (12)

and T denotes the cluster operator,

T = T1 + T2 + · · ·
=

∑
i,a

tai a†
aai + 1

4

∑
ijab

tab
ij tijaba

†
aa

†
bajai + · · · . (13)

We note that T1 and T2 induce 1p-1h and 2p-2h excitations of
the HF reference, respectively. Here and in what follows, the
single-particle states i,j, . . . refer to hole states occupied in
the reference state |�0〉 while a,b, . . . denote valence states
above the reference state. In practice, the expansion (13) is
truncated. In the coupled cluster with singles and doubles
(CCSD) all operators Ti with i > 2 are neglected. In that case,
the ground-state energy and the amplitudes tai ,tab

ij are obtained
by projecting the state (12) on the reference state and on all
1p-1h and 2p-2h configurations for which〈

�0|H |�0
〉 = E,〈

�a
i |H |�0

〉 = 0,〈
�ab

ij |H |�0
〉 = 0. (14)

Here,

H ≡ e−T HeT

= H + [H,T ] + 1
2! [[H,T ],T ] + · · · (15)

denotes the similarity transformed Hamiltonian, and it can be
computed systematically via the Baker-Campbell-Hausdorff

expansion. For two-body forces and in the CCSD approxi-
mation, this expansion actually terminates at fourfold nested
commutators.

The CCSD equations (14) show that the CCSD ground state
is an eigenstate of the similarity-transformed Hamiltonian in
the space of 0p-0h, 1p-1h, 2p-2h configurations. The trans-
formed Hamiltonian is not Hermitian because the operator
eT is not unitary. As a consequence, H has left and right
eigenvectors which constitute a bi-orthogonal basis with the
corresponding completeness relation∑

i

|�i,R〉〈�i,L| = 1̂. (16)

The right ground state is the reference state |�0〉, while the left
ground state is given by 〈�0,L| = 〈�0|(1 + �), where � is a
linear combination of particle-hole de-excitation operators.

Using the ground state of the similarity-transformed Hamil-
tonian, we now can write the coupled cluster Green’s function
GCC as

GCC(α,β,E) ≡ 〈�0,L|aα

1

E − (
H − EA

gs

) + iη
a
†
β |�0〉

+ 〈�0,L|a†
β

1

E − (
EA

gs − H
) − iη

aα|�0〉.
(17)

Here, aα = e−T aαeT and a
†
β = e−T a

†
βeT are the similarity-

transformed annihilation and creation operators, respectively,
and the Baker-Campbell-Hausdorff expansion yields the rela-
tions

aα = aα + [aα,T ], (18)

a
†
β = a

†
β + [a†

β,T ]. (19)

We note that the truncation of the cluster operator T is reflected
in the expression of the coupled-cluster Green’s function (17),
and, if all excitations up to Ap-Ah were taken into account
in the expansion (13), the Green’s function (17) would be
identical to (1).

One might be tempted to use the completeness relations for
the A ± 1 systems to obtain the Lehmann representation of the
Green’s function:

GCC(α,β,E) =
∑

i

〈�0,L|aα

∣∣�A+1
i

〉〈
�A+1

i

∣∣a†
β |�0〉

E − (
EA+1

i − EA
gs

) + iη

+
∑

j

〈�0,L|a†
β

∣∣�A−1
j

〉〈
�A−1

j

∣∣aα|�0〉
E − (

EA
gs − EA−1

j

) − iη
. (20)

Here, |�A+1
i 〉 (|�A−1

j 〉) is an eigenstate of H for the A + 1

(A − 1) system with energy EA+1
i (EA−1

j ). To simplify the
notation, the completeness relations are written in (20) as
discrete summations over the states in the A ± 1 systems. In
principle, the Green’s function (20) could be obtained by cal-
culating the spectrum of the A ± 1 systems using the particle-
attached equation-of-motion (PA-EOM) and particle-removed
equation-of-motion (PR-EOM) coupled-cluster methods [45].
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However, in practice, this approach is difficult to pursue as the
sum over all states also involves eigenstates in the continuum.
To avoid this problem, we return to the expression in Eq. (17)
and use the Lanczos technique [10,11] for its computation.

C. Lanczos method

In this section, we describe the calculation of the
coupled-cluster Green’s function (17) using the Lanczos
method [10,11,37,38]. To simplify the notation we introduce
the shorthand

∣∣vA+1
β

〉 ≡ a
†
β |�0〉, (21)〈

uA+1
α

∣∣ ≡ 〈�0,L|aα, (22)∣∣vA−1
α

〉 ≡ aα|�0〉, (23)
〈
uA−1

β

∣∣ ≡ 〈�0,L|a†
β (24)

and write the Green’s function as

GCC(α,β,E) = 〈
uA+1

α

∣∣ 1

E − (
H − EA

gs

) + iη

∣∣vA+1
β

〉

+ 〈
uA−1

β

∣∣ 1

E − (
EA

gs − H
) − iη

∣∣vA−1
α

〉
. (25)

For a truncation of T at the np-nh level, the states |vA+1
β 〉 and

〈uA+1
α | belong to the vector space VA+1 spanned by the states

built from 1p-0h, ..., np-(n − 1)h excitations of the reference
state |�0〉. Similarly, the states |vA−1α〉 and 〈uA−1

β | belong
to the vector space VA−1 spanned by 0p-1h, ..., (n − 1)p-nh
excitations of the reference state. Introducing |Xβ〉 and |Yα〉
defined as

[z+ − H ]|Xβ〉 ≡ ∣∣vA+1
β

〉
, (26)

[z− + H ]|Yα〉 ≡ ∣∣vA−1
α

〉
, (27)

with z+ ≡ E + EA
gs + iη and z− ≡ E − EA

gs − iη, we can
write

GCC(α,β,E) = 〈
uA+1

α

∣∣Xβ

〉 + 〈
uA−1

β

∣∣Yα

〉
. (28)

This matrix element of the Green’s function is calculated by
solving the systems of linear equations (26) and (27) in the
Lanczos basis. The advantage of working in the Lanczos basis
is twofold. First, the actual dimensions of the linear systems
(defined by the number of Lanczos vectors Nlanc) needed to
reach convergence are much smaller than the dimension of the
full space VA+1 and VA−1. Second, the resolution has to be
done only once for all energies E.

Let us now focus on the first term on the right-hand side
of (28), i.e., the term associated with the particle part of the

Green’s function. Starting with the normalized states
|vA+1

β 〉
N0

and 〈uA+1
α |
N0

(where the norm is N0 =
√

〈uA+1
α |vA+1

β 〉) as right
and left Lanczos pivots, we construct iteratively a set of Nlanc

pairs of Lanczos vectors. By construction, H is conveniently

represented in the Lanczos basis as a tridiagonal matrix:

⎡
⎢⎢⎣

a0 b0 0 0 . . .
b0 a1 b1 0 . . .
0 b1 a2 b2 . . .
...

...
...

...
. . .

⎤
⎥⎥⎦.

Using Cramer’s rule for the resolution of linear systems,
one can then show that 〈uA+1

α |Xβ〉 is given by the continued
fraction

〈uA+1|Xβ〉 = N0

(z+ − a0) − b2
0

(z+ − a1) − b2
1

(z+ − a2) − · · ·

.

(29)
As it is clear from the expression above, one just needs to
solve the linear system (26) only once in order to calculate
〈uA+1|Xβ〉 for any value of the energy E. The convergence
as a function of Nlanc is quickly reached as we will show in
Sec. III. The calculation of the second term in (28), i.e., the
hole part of the Green’s function, proceeds in a similar manner.

D. Berggren basis

Ultimately we want to compute the optical potential
describing scattering processes at arbitrary energies. However,
as η → 0, the coupled-cluster Greens’ function in Eq. (20) has
poles at energies E = (EA+1

i − EA
gs) which make the numer-

ical calculation unstable. There have been various proposed
solutions to this problem, such as using a complex scaling
technique [46–49], or carrying calculations at finite values of η
and extrapolating to η → 0 [50]. Another (phenomenological)
approach to this problem is to employ a finite energy dependent
width which accounts for damping and decay processes that are
not included in the employed theoretical approach [51]. In this
work, we suggest a different approach based on an analytic
continuation of the Green’s function in the complex energy
plane using a Berggren basis [31,34], that includes bound,
resonant, and discretized nonresonant continuum states. As
we will demonstrate below, by employing the Berggren basis
it is possible to obtain stable numerical results as η → 0.

Thus, the set of HF states includes bound, resonant (when
they exist), and complex-continuum states single-particle
states. Accordingly, the many-body spectrum for the A + 1
(A − 1) systems obtained with the PA-EOM CCSD (PR-
EOM CCSD) is composed of bound, resonant, and complex-
continuum states. In other words, the poles of the Green’s
function [cf. Eq. (20)] have either a negative real or complex
energy. As a consequence, as η → 0, the values of the Green’s
function matrix elements for E � 0 smoothly converge to a
finite value. In the case of a real HF basis consisting of bound
and discretized real energy continuum states, the calculation
would become unstable for small η since the Green’s function
poles would then be located at real values of E.

In order to fulfill the Berggren completeness [31], the
complex-continuum single-particle states must be located
along a contour L+ in the fourth quadrant of the complex
momentum plane below the resonant single-particle states.
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According to the Cauchy theorem, the precise form of the
contour L+ is not important, provided all resonant states
lie between the contour and the real momentum axis. The
Berggren completeness then reads

∑
i

|ui〉〈ũi | +
∫

L+
dk|u(k)〉〈 ˜u(k)| = 1̂, (30)

where the discrete states |ui〉 correspond to bound and resonant
solutions of the single-particle potential, and |u(k)〉 are
complex-energy scattering states along the complex-contour
L+. In practice, the integral along the complex continuum is
discretized, yielding a finite discrete basis set.

III. RESULTS

We now present results for the elastic scattering of a
neutron on 16O. The choice of this problem is motivated
by the fact that 16O is a doubly magic nucleus and as such
can be computed relatively precisely using the coupled-cluster
method. We will work at in the CCSD approximation and
use the NNLOopt [52] nucleon-nucleon interaction. We also
want to point out that we introduced a simplification for the
solutions of the PA-EOM CCSD and the PR-EOM CCSD
equations. Instead of solving these problems with the mass
A + 1 (A − 1) for the A + 1 (A − 1) systems [53], we have
used in all calculations the mass A = 16. This introduces
a small error (of the order ∼1/A) that is not relevant in
this proof-of-principle calculation. In principle, the optical
potential should be expressed in the neutron-target relative
coordinates. However, the calculations are performed using the
laboratory coordinates [the Hamiltonian H , Eq. (2), is defined
with these coordinates] and we will identify the calculated
optical potential with the optical potential in the relative
coordinates. This also introduces a small error of the order
∼1/A.

Table I shows the PA-EOM CCSD energies for the low-
lying states in 17O. The first two states (Jπ = 5/2+,1/2+)
are bound whereas the second excited state (Jπ = 3/2+) is
resonant. In the computation of these states, we start the HF
calculations in a single-particle basis that employs a mixed
representation of harmonic oscillator states and Berggren
states. We include all harmonic oscillator shells such that
2n + l � Nmax and, for a given Jπ state in 17O, we only use
Berggren states for the partial wave (l,j ) that couples with
the 0+ ground state in 16O to the total angular momentum
Jπ . For instance, for the 5/2+ ground state in 17O we use

TABLE I. PA-EOM CCSD energy of the lowest states in 17O and
CCSD ground-state energy in 16O with the NNLOopt [52] interaction.
Results are given in MeV. The resonant J π = 3/2+ state has a
complex energy.

Nmax E(5/2+) E(1/2+) E(3/2+) Egs(16O)

8 −4.35 −2.62 2.68 − i0.32 −121.68
10 −4.49 −2.73 2.24 − i0.25 −123.24
12 −4.56 −2.76 2.34 − i0.21 −123.49
14 −4.57 −2.80 2.26 − i0.12 −123.52

harmonic oscillator states for all partial waves excepted for
the neutron d5/2 orbital. We have checked that the results
remain unchanged when the Berggren basis is used for multiple
orbitals. The harmonic oscillator frequency is kept fixed at
h̄ω = 20 MeV.

Energies are practically converged for Nmax = 14 at a
precision of few keV for the ground state in 17O and few
tens of keV for the excited states. We note that, due to the
non-Hermitian character of both the CC and the representation
of the Hamiltonian in the Berggren basis, the dependence of
the energy with the size of the model space is not necessarily
monotonic. This can be seen, for instance, in the result for
the (complex) energies of the Jπ = 3/2+ resonance in 17O.
Table I also shows the CCSD ground-state energy in 16O.

The calculated ground state of 16O at the CCSD level is
underbound by about 4 MeV compared to the experimental
value at −127.62 MeV, while CCSD with a perturbative triples
correction gives a ground-state energy of −130.1 MeV [52].
The ground-state of 17O is found to be overbound by about 0.4
MeV [Eexp(5/2+) = −4.14 MeV]. The first excited state is
underbound by about 0.5 MeV [Eexp(1/2+) = −3.272 MeV],
and the real part of the energy of the resonant Jπ = 3/2+ state
is about 1.3 MeV above the experimental value Eexp(3/2+) =
0.943 − i0.48 MeV. One can speculate whether higher order
correlations such as 3p-2h excitations in the PA-EOM ap-
proach, and the neglected three-nucleon forces will impact
these low-lying states in 17O. We also remind the reader that
we have used A = 16 in the PA-EOM CCSD calculations of
17O, which introduces a small error in the computation of
total binding energies. A more significant effect is seen if one
looks at the energies of 17O with respect to the ground-state of
16O, shown in Table I. In the PA-EOM CCSD computations
of 17O, the energies are given with respect to the ground state
of 16O, i.e., ωA+1

μ = EA+1
μ − E∗

0 . Using A = 17 for 17O, the
ground-state energy E∗

0 of 16O is computed with the same mass
A = 17, so in order to get the correct threshold one needs to
add the energy shift E∗

0 − E0, where E0 is the ground-state
energy of 16O with A = 16; this shift is about −0.7 MeV for
the states show in in Table I (see, e.g., [4,53] for more details).

We now illustrate the efficiency of the Lanczos method to
calculate the Green’s function matrix elements (cf. Sec. II C).
In Fig. 1, we show the convergence of the real part of the radial
(diagonal r = r ′) s-wave optical potential as a function of the
number of Lanczos iterations Nlanc. Here, the single-particle
basis is based on a model space with harmonic-oscillator shells
up to Nmax = 10 and 50 discretized Berggren s1/2 shells. We
show results in Fig. 1 for E = 10 MeV. After about 10 Lanczos
iterations, the (diagonal) potential quickly converges except
in the vicinity of the origin r = 0 where the convergence is
slower. However, close to the origin the s-wave scattering
wave function u(r) ∼ r , and the small dependence on Nlanc

will have a negligible impact on observables. As we will see
later (cf. Fig. 5), the depth of the potential close to the origin
depends on Nmax but again, due to the behavior of the scattering
wave function in that region, this dependence will have a small
impact on the results (see Fig. 5).

Results should be independent of the choice of the
contour L+ in the complex momentum plane as long as
its discretization is adequate for the infrared scales under
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FIG. 1. Real part of the radial (diagonal) optical potential in the
neutron s wave at E = 10 MeV as a function of Nlanc, the number
of Lanczos iterations. Calculations were performed with Nmax = 10
and 50 discretized Berggren shells for the neutron s1/2 partial wave.

consideration [54]. Figure 2 shows the real part of the
radial (diagonal) neutron s-wave potential at E = 1 and E =
10 MeV using two contours L+

1 and L+
2 . Both contours, shown

in Fig. 3, are defined by two segments [ka,kb] and [kb,kc]
located on the fourth quadrant of the complex momentum
plane, where ka is taken as the origin. For the contour L+

1 , the
segment [ka,kb] has a norm of 0.4 fm−1, with an argument
equal to −π/4, and [kb,kc] is a horizontal segment with
Re(kc) = 4 fm−1. For the contour L+

2 , the segment [ka,kb] has
a norm of 0.2 fm−1 and an angle equal to −π/5, and [kb,kc] is
a horizontal segment with Re(kc) = 4 fm−1. We take 10 and
50 points on each segments for L+

1 , whereas we take 5 and
45 points for the discretization of L+

2 . Figure 2 shows that the
results are practically independent of the choice of the contour.

In Fig. 4, we illustrate the numerical stability of our
approach as η → 0. We show the imaginary part of the
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FIG. 2. Real part of the radial (diagonal) optical potential in
the neutron s wave at E = 1 and E = 10 MeV using two different
contours L+

1 ,L+
2 for the single-particle neutron s1/2 shells, in a model

space with Nmax = 10.
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FIG. 3. k-plane contours L+
1 ,L+

2 used in the calculation of the
s-wave optical potential in Fig. 2.

(diagonal) s-wave Green’s function Gs1/2 (r,E) ≡ Gs1/2 (r,r,E)
using (i) a complex and (ii) a real set of HF orbitals for the s1/2

neutron shells. While the shown results are for r = 2.4 fm, we
note that the qualitative behavior is independent of the value
of r . As expected (see Sec. II D), for η values significantly
larger than zero, both bases give the same results. Let us
first consider the real HF basis, corresponding to the dashed
lines in Fig. 4. For η = 2 MeV the results are smooth but, as
η decreases, considerable oscillations appear, and for η ∼ 0
peaks with widths proportional to η start to appear near the
Green’s function poles, at real energies. If instead we use a
complex single-particle basis (solid lines in Fig. 4) no such
instability occurs as η → 0.

Next, we show in Fig. 5, the convergence of the real part
of the (diagonal) the s-wave optical potential as the size of the
model space increases from Nmax = 8 to 14. Results are shown
for E = 10 MeV and, in all cases, 50 discretized shells are used

1 2 3 4 5 6 7 8 9 10
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-0.03

-0.02

-0.01

G
s 1/

2(r
=2

.4
fm

,E
) [
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η=2 MeV
η=1 MeV
η=0.5 MeV
η=2 MeV
η=1 MeV
η=0.5 MeV
η=0 MeV

FIG. 4. Imaginary part of the neutron s-wave Green’s function
Gs1/2(r,E) at r = 2.4 fm (see text for details). The dashed lines
correspond to calculations with a real HF basis whereas the full lines
were obtained using a complex contour. Calculations were performed
with Nmax = 10 and 50 discretized shells in the s1/2 partial wave.
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FIG. 5. Real part of the diagonal optical potential in the neutron
s wave at E = 10 MeV. Results are shown for at Nmax = 8–14 and
50 discretized shells in the s1/2 partial wave

for the Berggren basis in the s wave, and η = 0. For Nmax =
10 and E = 10 MeV, the results agree with those shown in
Fig. 2. Convergence is achieved for Nmax = 14 for r � 1 fm.
For small values of r , the optical potential depends on Nmax.
This is understandable because short-range physics gets better
resolved as the model space increases, and thus convergence
becomes harder. Again we note that in this region the scattering
wave function u(r) ∝ r and the dependence of the potential on
Nmax does not impact observables. To demonstrate this point,
Fig. 6 shows the integrated quantity

Vint(r) ≡ r

∫
dr ′r ′V (r,r ′)u(r ′) = V eq(r)u(r). (31)

The potential Vint(r) can be viewed as the local equivalent
potential V eq(r) multiplied by the scattering wave function,
and corresponds to the source term in the one-body optical-
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FIG. 6. Real part of Vint(r) in the neutron s wave at E = 10 MeV.
Results are shown for at Nmax = 8–14. For illustration purpose, we
also show the results obtained with the phenomenological potential
from Ref. [17].
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FIG. 7. Contour plot of the real part of the neutron s-wave
potential V (r,r ′,E) for Nmax = 14 and 50 discretized s-wave shells
at E = 10 MeV.

model-type Schrödinger equation. The variations of the optical
potential with the model space for small values of r do not
impact the behavior of Vint(r). For illustration, Fig. 6 also
shows a result for Vint(r) obtained using a phenomenological
potential based on a Woods-Saxon form factor [17].

So far, we have only presented results for the diagonal
part of the optical potential. Figure 7 shows a contour plot
for the nonlocal neutron s-wave optical potential. Introducing
the relative coordinate rrel = r − r ′ and the center-of-mass
coordinate R = (r + r ′)/2, we plot the optical potential as
a function of rrel at fixed R = 1 fm in Fig. 8. We can see
that the full width at half maximum is about 2.2 fm. Clearly,
this potential is very different from a model of a Dirac delta
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FIG. 8. Neutron s-wave optical potential at E = 10 MeV plotted
as V (R + rrel/2,R − rrel/2) at fixed R = 1/2 fm. Here Nmax = 14
and 50 discretized s-wave shells are included in the single-particle
basis.
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FIG. 9. Contour plot of the real part of the neutron d3/2-wave
potential for Nmax = 14 at E = 10 MeV.

function in rrel and exemplifies the degree of nonlocality
which is predicted microscopically. We note that, due to
the non-Hermitian nature of the coupled-cluster method, the
potential V (r,r ′) is slightly nonsymmetric in r and r ′, and as
a consequence V (R,rrel) is not quite an even function of rrel.
In Figs. 7 and 8 the energy is E = 10 MeV and results were
obtained for Nmax = 14 and 50 discretized shells for the s wave
along a contour in the complex plane.

Calculations of the optical potential in other partial waves
follow along the same lines. For illustration, we show a contour
plot of the d3/2-wave potential in Fig. 9. Results are shown for
E = 10 MeV at Nmax = 14 and 50 discretized shells for the
d3/2 wave along a complex contour. As in other cases, we take
the limiting value η = 0.

We finally turn to the imaginary part of the optical potential.
The imaginary part describes the loss of flux due to inelastic
processes. For most nuclei, and particularly for heavier sys-
tems, there are many compound-nucleus resonances above the
particle threshold, and absorption is known to be significant.
Our results for the imaginary part of the potential, along the
diagonal r = r ′ are shown in Fig. 10 for the neutron s1/2 wave
at E = 10 MeV. The model space consists of Nmax = 10 and
50 discretized shells for the s wave. We consider various values
of η. In the limit η = 0, the imaginary part of the potential is
very small, and this is true for the whole range of energies up
to E = 10 MeV. As one can see in Fig. 10, as η decreases
to zero, the imaginary part also decreases and becomes very
small for η = 0. We observed the same qualitative behavior
for all other considered partial wave, up to d5/2; a result that
does not change when the model space increases.

To further illustrate our difficulties with the imaginary part,
we plot in Fig. 11 the imaginary volume integral J l

W ,

J l
W = 4π

∫
dr r2

∫
dr r ′2 Im �′

l(r,r
′; E) (32)
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FIG. 10. Imaginary part of the radial (diagonal) optical potential
in the neutron s wave at E = 10 MeV. Calculations were performed
at Nmax = 10 with 50 s1/2 discretized shells. Results are shown for
several values of η.

for the optical potential in the s wave, taking a model space
with Nmax = 14 and 50 discretized s waves.

In order to understand these results, we recall that the
compound states that contribute to the flux removal from
the elastic channel consist of a high number of particle-
hole excitations and are usually described by stochastic
approaches [55]. However, the coupled-cluster approach to
the optical potential presented in this paper employs only
1p-1h and 2p-2h excitations and is thus limited to absorption
on resonant states that are dominated by 1p-1h excitations.
In our example of scattering off 16O, its Jπ = 3− state (at
about 6 MeV of excitation energy) is thought to be of 1p-1h
structure. With the NNLOopt interaction, we computed this
state using EOM-CCSD and found it at about 10 MeV of
excitation. Another relevant excited state in 16O is the first
excited 0+ state, also at ≈6 MeV, which is known to have a
strong 4p-4h configuration. In our coupled cluster calculations
this state is above 10 MeV. In fact, there are no other excited
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FIG. 11. Neutron s-wave imaginary volume integral JW (E) for
several values of η. Calculations were performed at Nmax = 14 with
50 discretized s1/2 shells.
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FIG. 12. Elastic-scattering phase shifts in the neutron s and d

waves as a function of Nmax. In all cases 50 discretized Berggren
shells are included.

states below 10 MeV. In general, positive parity states of
16O are dominated by 2p-2h excitations, and are therefore
not well described in EOM-CCSD. Thus, from this analysis,
we conclude that it is not possible to produce significant
absorption at low energies for neutron scattering on 16O due to
the employed low-order cluster truncations in our EOM-CCSD
and PA/PR-EOM CCSD approximations.

One path forward is to introduce a phenomenological and
energy dependent width in the Green’s function, to account for
higher-order correlations such as 3p-2h and 2p-3h not included
in PA/PR-EOM CCSD [51]. As shown in Fig. 10, this will
increase the absorption at lower energies. This would also
allow us to account for collective states which may exist in
nature and which cannot be reproduced in the coupled cluster
approach at the CCSD level.

Finally we show, in Fig. 12, the neutron elastic scattering
phase shift obtained with the optical potential in the s and
d partial waves, as a function of the model space.1 We want
to emphasize here that calculations for higher partial waves
proceed similarly and are straightforward. We find that, for
Nmax = 14, all calculated phase shifts have converged (all
calculations here are done with 50 discretized shells). The
sharp rise of the phase shift in the d3/2 partial wave is the
standard signature of the resonance Jπ = 3/2+ in 17O, which
is numerically predicted to be at E = 2.26 − i0.12 MeV from
our PA-EOM CCSD calculations (see Table I).

1In principle, the phase shift should be obtained by solving the
Schrödinger equation (10) in relative coordinates, with the reduced
mass μn-16O of the n -16O system. However, with the optical potential
being calculated in the laboratory frame [the Hamiltonian H (2)
is defined in the laboratory], a correction to the reduced mass is
needed. This correction is such that the reduced mass μ′ used to solve
the Schrödinger equation (10) is 1/μ′ = (1 − 1/A)/m [cf. Eq. (2)].
Doing so, the bound states of the optical potential in the d5/2 and s1/2

partial waves correspond to, respectively, the ground state and first
excited state in 17O obtained with the PA-EOM CCSD method.

IV. CONCLUSIONS

We constructed microscopic nuclear optical potentials by
combining the Green’s function approach with the coupled-
cluster method. For the computation of the Green’s function,
we used an analytical continuation in the complex energy
plane, based on a Berggren basis. Using the Lanczos method,
we expressed the Green’s function as a continued fraction.
The computational cost of a single Lanczos iteration is similar
to that of a PA-EOM-CCSD calculation, i.e., polynomial in
system size, and thus affordable. The convergence with the
number of Lanczos iterations was demonstrated. The Dyson
equation was then inverted to obtain the optical potential.

In the coupled-cluster singles-and-doubles approximation,
the optical potential and the neutron elastic scattering phase
shifts on 16O converge well with respect to the size of the
single-particle basis, for the low partial waves. The predicted
optical potential has a strong nonlocality that is not Gaussian.
In addition, we found an almost vanishing imaginary part of the
potential for scattering energies below 10 MeV. This lack of an
absorptive component was attributed to neglected higher-order
correlations in the employed coupled-cluster methods.

In the future, we plan to update the NN force currently used
to one that is able to reproduce charge radii of heavier systems.
We also plan to include three-nucleon forces in the coupled-
cluster calculations of the Green’s functions, as well as higher-
order correlations in the employed coupled-cluster methods.
We expect this will produce an increase in the imaginary part
of the derived optical potential. Once these improvements
are in place, this work can be extended to other systems
(the limitations being the computational cost associated with
the CC calculations) and to other reaction channels such as
transfer, capture, breakup, and charge sexchange. Systematic
studies involving heavier nuclei and consistent calculations
along isotopic chains will provide critical information on how
to extrapolate the optical potential to unknown regions of the
nuclear chart.
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