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Probing resonances in the Dirac equation with quadrupole-deformed potentials
with the complex momentum representation method
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Resonances play critical roles in the formation of many physical phenomena, and many techniques have been
developed for the exploration of resonances. In a recent letter [Phys. Rev. Lett. 117, 062502 (2016)], we proposed
a new method for probing single-particle resonances by solving the Dirac equation in complex momentum
representation for spherical nuclei. Here, we develop the theoretical formalism of this method for deformed nuclei.
We elaborate numerical details and calculate the bound and resonant states in 37Mg. The results are compared
with those from the coordinate representation calculations with a satisfactory agreement. In particular, the
present method can expose clearly the resonant states in a complex momentum plane and determine precisely the
resonance parameters for not only narrow resonances but also broad resonances that were difficult to obtain before.

DOI: 10.1103/PhysRevC.95.024311

I. INTRODUCTION

Resonances are one of the most striking phenomena in the
whole range of scattering experiments and appear widely in
atomic, molecular, and nuclear physics [1]. Resonances play
critical roles in the formation of many physical phenomena
such as quantum halos [2]. Theoretical explanation of halo in
11Li [3], prediction of giant halo in Zr and Ca isotopes [4,5],
and understanding of deformed halo in 31Ne and 42,44Mg [6–8]
are mainly attributed to consider the contributions from the
continuum, especially the resonances in the continuum. The
change of traditional magic numbers in these nuclei with an
unusual neutron-to-proton ratio can be understood in terms of
the shell structure of resonant levels [9]. It is also found that the
contribution of the continuum to the giant resonances mainly
comes from single-particle resonances [10,11]. Resonances
are also closely relevant to the nucleosynthesis of chemical
elements in the Universe [12,13]. Therefore, research on
resonances is one of the hottest topics in different branches
of physics.

So far, a series of methods has been proposed for reso-
nances, including the scattering phase shift method, the ana-
lytic continuation in the coupling constant (ACCC) approach,
R-matrix method, S-matrix method, Green’s function method,
and so on. These methods have gained success in handling the
unbound problems. Even so, one hopes to establish a unified
theory, which can deal with both bound states and resonant
states on an equal footing. The complex scaling method (CSM)
introduced in Ref. [14] would satisfy this requirement.

In CSM, the wave functions adopted for resonant states are
square-integrable, and thus it is not necessary to use the asymp-
totic boundary conditions. Moreover, the complex scaled equa-
tion can be solved by using the bound-state methods, in which
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the bound states and resonant states are processed equally.
These advantages enable the application of CSM to different
theoretical frameworks, including combinations with the few-
body models [15], shell models [16,17], and Hartree-Fock the-
ories [18,19]. More applications can be found in Refs. [20–22].
Recently, we have applied the CSM to explore the resonances
in spherical nuclei [23–26] and deformed nuclei [27–29] in a
satisfactory agreement with those obtained by other methods.

Although it can describe bound states and resonant states in
a unified way, the CSM still has some shortcomings. For exam-
ple, in order to determine accurately the resonance parameters,
the repeated diagonalization of the Hamiltonian is required
in the complex scaling calculations. In addition, the CSM is
only applicable to the dilation analytic potentials. For systems
like nuclei, the mean-field potential for nucleon movement is
similar to a Woods-Saxon potential. There appears singularity
when the complex rotation angle θ = tan−1 (πa/R), where a
and R represent, respectively, the diffusivity and the range of
potential in the Woods-Saxon potential [30]. Hence, the CSM
is only effective in the interval of 0 < θ < tan−1 (πa/R) for
resonances in nuclei, which confines the application of the
CSM to very broad resonances, while the broad resonances
deserve more attention for their roles in exotic phenomena.

In order to hold the advantages of the CSM without its
shortcomings, a complex momentum representation (CMR)
method has been proposed with the Schrödinger equation
formalized using momentum representation [31]. This method
has avoided all the defects of the CSM, and has been used to
explore the bound states [32,33] and resonant states [34,35] in
the nonrelativistic case, and used as the so-called “Berggren
representation” in the shell-model calculations [36,37]. Con-
sidering that the relativistic resonances are widely concerned,
almost all the methods for resonances have been extended to
the relativistic framework [38–45], including the relativistic
CSM [23,28] and the relativistic complex scaled Green’s
function method [26]. Recently, we applied the CMR method
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to the relativistic mean-field (RMF) framework and established
the RMF-CMR method for resonances in a spherical case [46],
in which both bound states and resonant states have been
treated on an equal footing. The RMF-CMR method gathers
the advantages of the RMF and CMR, and is able to describe
self-consistently nuclear bound states and resonant states in
the relativistic framework. Due to these advantages, to develop
the theoretical formalism of this method for deformed nuclei
is necessary because many nuclei are deformed.

In this paper we develop the relativistic version of the
CMR method for deformed nuclei, in which the Dirac equation
describing deformed nuclei is processed into a set of coupled
differential equations by the coupled-channel method and
the set of coupled differential equations is solved using the
complex momentum representation technique. We will first
present the theoretical formalism, and then elaborate numerical
details. Taking the nucleus 37Mg as an example since it has
been identified as a p-wave halo nucleus [47], we calculate the
bound and resonant states, and compare with those obtained
in coordinate representation with the ACCC method.

II. FORMALISM

Considering that the relativistic mean-field theory is very
successful in describing various nuclear phenomena [48–55]
and nuclear inputs in astrophysics [56–60], we explore the
single-particle resonances in deformed nuclei based on the
relativistic mean-field theory with the Dirac equation as

[�α · �p + β(M + S) + V ]ψ = εψ, (1)

where M ( �p) is the nucleon mass (momentum), �α and β are
the Dirac matrices, and S and V are the scalar and vector
potentials, respectively. The details of the RMF theory can be
referenced in these literatures [48–51,55].

The solutions of Eq. (1) include the bound states, resonant
states, and nonresonant continuum. The bound states can be
obtained with conventional methods. For the resonant states,
many techniques have been developed, while some of them
exist with certain shortcomings. In Ref. [46], we proposed
a new method by solving the Dirac equation in complex
momentum representation for spherical nuclei. In the present
work, we develop a theoretical formalism of this method for

deformed nuclei. Without loss of generality, only the axially
symmetrical quadruple deformation is considered here, V (�r)
and S(�r) are taken as

V (�r) = V0f (r) − β2V0k(r)Y20(ϑ,ϕ),

S(�r) = S0f (r) − β2S0k(r)Y20(ϑ,ϕ), (2)

where β2 is the quadruple deformation parameter. Similar
to Ref. [61], a Woods-Saxon type potential is adopted with
f (r) = 1

1+exp [(r−R)/a] and k(r) = rdf (r)
dr

. In order to explore
the resonances in deformed nuclei, we transform Eq. (1) into
momentum representation as∫

d�k′〈�k|H |�k′〉ψ(�k′) = εψ(�k), (3)

where H = �α · �p + β(M + S) + V is the Dirac Hamiltonian,
ψ(�k) is the corresponding wave function in momentum
representation, and |�k〉 represents the wave function of a free
particle with wave vector �k = �p/h̄. In order to solve the Dirac
equation (3) for deformed system, the coupled-channel method
is adopted, the wave function is expanded as

ψ(�k) = ψmj
(�k)

=
∑
lj

(
f lj (k)φljmj

(�k)
glj (k)φl̃jmj

(�k)

)
, (l̃ = 2j − l) (4)

with

φljmj
(�k) =

∑
ms

〈
lm

1

2
ms

∣∣∣∣jmj

〉
Ylm(�k)χms

,

where f lj (k) and glj (k) are the radial components of Dirac
spinors in momentum representation, l and m are the quantum
numbers of the orbital angular momentum and its projection
on the third axis, j and mj are the quantum numbers of the
total angular momentum and its projection on the third axis,
and χms

is the spin wave function with the third component
of spin angular momentum ms . It should be emphasized that
the projection of the total angular momentum on the third axis
mj and the parity π are good quantum numbers for an axially
deformed system.

Putting the wave function (4) into Eq. (3), the Dirac equation
becomes

Mf lj (k) − kglj (k) +
∑
l′j ′

∫
k′2dk′V +(l′,j ′,p,q,l,j,mj ,k,k′)f l′j ′

(k′) = εf lj (k),

−kf lj (k) − Mglj (k) +
∑
l′j ′

∫
k′2dk′V −(l̃′,j ′,p,q,l̃,j,mj ,k,k′)gl′j ′

(k′) = εglj (k) (5)

with

V +(l′,j ′,p,q,l,j,mj ,k,k′)

= (−)l il+l′ 2

π

∫
r2dr[V (r) + S(r)]jl(kr)jl′(k

′r)
∑
ms

〈lm|Ypq(�r )|l′m′〉
〈
lm

1

2
ms

∣∣∣∣jmj

〉〈
l′m′ 1

2
ms

∣∣∣∣j ′mj

〉
, (6)

V −(l̃′,j ′,p,q,l̃,j,mj ,k,k′)

= (−)l̃ i l̃+l̃′ 2

π

∫
r2dr[V (r) − S(r)]jl̃(kr)jl̃′(k

′r)
∑
ms

〈l̃m̃|Ypq(�r )|l̃′m̃′〉
〈
l̃m̃

1

2
ms

∣∣∣∣jmj

〉〈
l̃′m̃′ 1

2
ms

∣∣∣∣j ′mj

〉
, (7)
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where jl(kr) [jl̃(kr)] are the spherical Bessel functions of order l [l̃]. Equation (5) is a set of coupled integration equations. Its
solution is difficult to obtain by the conventional methods especially for the resonant states. By turning the momentum integration
into a sum over a finite set of points k and dk with a set of weights w, the integration equation (5) becomes a matrix equation

Mf lj (ka) − kag
lj (ka) +

∑
l′j ′

∑
b

wbk
2
bV

+(l′,j ′,p,q,l,j,mj ,ka,kb)f l′j ′
(kb) = εf lj (ka),

−kaf
lj (ka) − Mglj (ka) +

∑
l′j ′

∑
b

wbk
2
bV

−(l̃′,j ′,p,q,l̃,j,mj ,ka,kb)gl′j ′
(kb) = εglj (ka). (8)

In Eq. (8), the Hamiltonian matrix is not symmetric. For simplicity in computation, we symmetrize it by the following
transformation:

f(ka) = √
wakaf (ka), g(ka) = √

wakag(ka), (9)

which gives us a symmetric matrix in momentum representation as

∑
b

⎡
⎣Mδabflj (kb) +

∑
l′j ′

√
wawbkakbV

+(l′,j ′,p,q,l,j,mj ,ka,kb)fl′j ′
(kb) − kaδabglj (kb)

⎤
⎦ = εflj (ka),

∑
b

⎡
⎣−kaδabflj (kb) − Mδabglj (kb) +

∑
l′j ′

√
wawbkakbV

−(l̃′,j ′,p,q,l̃,j,mj ,ka,kb)gl′j ′
(kb)

⎤
⎦ = εglj (ka). (10)

So far, to solve the Dirac equation (1) becomes an eigenso-
lution problem of the symmetric matrix. All the bound and
resonant states can be obtained simultaneously by diagonaliz-
ing the Hamiltonian in Eq. (10). Compared with Refs. [61,62],
where the bound solutions are obtained by solving a set
of coupled differential equations and every resonant state is
handled solely by the scattering phase shift method or the
ACCC approach, there is no doubt that the present method is
more convenient.

The diagonalization of the Hamiltonian matrix in Eq. (10)
can provide us the energies and wave functions in momentum
representation. If we regard the wave functions in coordinate
representation, the following transformation is introduced:

ψ(�r) = 〈�r|ψ〉 = 1

(2π )3/2

∫
d�kei�k·�rψ(�k). (11)

For an axially deformed nucleus, putting the wave functions (4)
into Eq. (11), we obtain the Dirac spinors in coordinate space
as

ψ(�r) = ψmj
(�r) =

∑
lj

(
f lj (r)φljmj

(�r )
glj (r)φl̃jmj

(�r )

)
, (12)

with the radial components

f lj (r) = il

√
2

π

∑
a

√
wakajl(kar)flj (ka),

glj (r) = il̃

√
2

π

∑
a

√
wakajl̃(kar)glj (ka).

III. NUMERICAL DETAILS AND RESULTS

Based on the preceding formalism, we explore the reso-
nances in real nuclei. Before starting these calculations, we
clarify several key points: (i) the coupled-channel method is

adopted in solving the Dirac equation for deformed nuclei,
where the wave functions are expanded with different channels
labelled as lj . The sum over lj in Eq. (4) needs to be restricted
to a limited number Nc; (ii) the momentum integration in
Eq. (5) is from zero to infinity, it needs to be truncated to a large
enough momentum kmax. When kmax is fixed, the integration
can be calculated by a sum shown in Eq. (10). As a sum
with evenly spaced dk and a constant weight wa converges
slowly, here it is replaced by the Gauss-Legendre quadrature
with a finite grid number Nl . Through these processions, the
Hamiltonian in Eq. (10) becomes a 2NcNl × 2NcNl matrix. In
the actual calculations, the momentum is truncated to kmax =
4.0 fm−1, which is sufficient for all the resonances concerned.
The grid number of the Gauss-Legendre quadrature Nl = 120
is used for the momentum integration along the contour, which
is enough to ensure the convergence with respect to numbers
of discretization points. The coupled-channel number Nc = 8
is taken for the wave function expansions, which is enough to
ensure the required precision.

With these parameters designed, we explore the resonances
in deformed nuclei with 37Mg as an example because it has
been identified as a p-wave halo nucleus [47]. For comparison
with the ACCC calculations, the parameters in the scalar
potential S and vector potential V adopted are the same as those
in Ref. [62]. The Dirac equation is solved by diagonalizing
the 2NcNl × 2NcNl matrix in Eq. (10) along an appropriate
contour of momentum integration. The contour is required to
be large enough to expose all the resonances concerned.

To single out a large enough contour, we first check
the dependence of the calculations on the contour. For this
purpose, we have explored the resonant states in 37Mg with
four different contours, which are displayed in Fig. 1 for
the states �π = 1/2− with β2 = 0.4. Similar to the spherical
case [46], the resonant states have nothing to do with the
choice of the contour. With the change of integration contour,
the continuous spectra follow the contour, while the resonant

024311-3



FANG, SHI, GUO, NIU, LIANG, AND ZHANG PHYSICAL REVIEW C 95, 024311 (2017)

FIG. 1. Single-particle spectra in 37Mg for the states �π = 1/2−

with β2 = 0.4 in the complex k plane with four different contours.
The open red circles, blue squares, olive diamonds, and magenta
dots represent the resonances obtained in four different contours,
respectively. The smaller labels with a dot inside represent the
continuum. The gray lines represent the corresponding contours of
momentum integration.

states always stay at their original positions. When the contour
becomes deeper from the magenta color to the blue color, the
continuous spectra drop down with the contour, the resonant
state 1/2[301] does not move its position. Similarly, when the
contour moves from left (red color) to right (olive color) or
from right to left, the continuous spectra follow the contour,
while the resonant states 1/2[301] and 1/2[321] remain their
own positions. These indicate that the physical resonant states
obtained by the present method are indeed independent on the
contour. Hence, we can select a large enough contour to expose
all the resonances concerned. This conclusion is in agreement
with that in the spherical case [46].

Using the triangular contour with the four points k =
0 fm−1, k = 0.5 − i0.5 fm−1, k = 1.0 fm−1, and kmax =
4.0 fm−1, all the concerned bound and resonant states in 37Mg
can be obtained over the range of deformation. An illustrative
result is displayed in Fig. 2 for the states �π = 1

2
±
, 3

2
±
, . . . , 9

2
±

with β2 = −0.2. From Fig. 2, it can be seen that the bound
states are exposed clearly on the imaginary axis, the resonant
states are isolated from the continuum in the fourth quadrant,
and the continuous spectra follow the integration contour. In
the region of resonant states, there are 15 resonant states
exposed in the present calculations. Some resonant states
are close to the real k axis, which correspond to the narrow
resonances with smaller width. Some other resonant states are
far away from the real k axis, which are broad resonances.
In other words, the current calculations have provided us not
only narrow resonances but also broad resonances as long as
the momentum contour covers the range of resonances.

As we focus on the resonances in deformed nuclei, it is
interesting to observe intuitively the dependence of resonances
on deformation. In Fig. 3, we show the �π = 1

2
±
, 3

2
±
, . . . , 9

2
±

FIG. 2. Single-particle spectra in 37Mg for the states �π =
1
2

±
, 3

2

±
, . . . , 9

2

±
with β2 = −0.2 in the complex momentum plane.

The bound states, resonant states with different quantum numbers,
and continuum are marked with different labels, while the purple
solid line represents the contour of momentum integration in complex
momentum plane.

resonant states with several different deformations. When
β2 = 0, the system is spherically symmetric, there appear four
resonant states 2p1/2, 2d5/2, 1f5/2, and 1g9/2 in the complex
momentum plane. When the spherical symmetry is broken,
the degenerate states 2d5/2 and 1f5/2 are respectively split into
three resonant states and the degenerate state 1g9/2 into five
resonant states. Their positions in the complex momentum

FIG. 3. Single-particle resonances for the states �π =
1
2

±
, 3

2

±
, . . . , 9

2

±
in the complex momentum plane with several dif-

ferent deformations. The outstanding labels denote the resonant
states with the corresponding quantum numbers, while the black
open circles and purple solid line represent the continuum and the
integration contour in the complex momentum plane, respectively.
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FIG. 4. The evolution of single-particle energies to deformation
for all the bound and resonant states concerned, where the bound
states are marked by the solid lines and the resonant states by the
dashed lined with the Nilsson labels on the lines and the corresponding
spherical labels in the position β2 = 0.

plane depend on the deformation. With the development of
deformation, some resonant states disappear and some other
resonant states appear in the current region of momentum,
which can be found in Fig. 3 with β2 = 0.2.

From Figs. 2 and 3, it is seen that the bound states and
resonant states together with their evolutions to deformation
can be obtained in the present calculations. For the resonant
states, we can read the real and imaginary parts of their wave
vectors from the complex k plane, and then we can calculate the
resonance parameters like energy and width in terms of Er +
iEi = Er − i�/2 = √

k2 + M2 − M . The calculated single-
particle energies varying with deformation are shown in Fig. 4
for the bound states and resonant states, where the bound
levels are marked by the solid line and the resonant levels by
the dashed lines with the Nilsson labels on the lines and the
corresponding spherical labels in the position β2 = 0. For the
resonant states, we show the single-particle energies in Fig. 4
together with the corresponding widths in Fig. 5.

In comparison with the coupled-channel calculations in the
coordinate representation, on one hand, it is found that all the
available bound levels and their evolutions to β2 are fully the
same as those shown in Ref. [62]. For the resonant levels,
our results are also in agreement with those obtained by the
ACCC in Ref. [62]. On the other hand, in addition to the levels
with the spherical labels 1f7/2, 2p3/2, 2p1/2, and 1f5/2, we
have also obtained the resonant levels with the spherical labels
2d5/2 and 1g9/2. Especially for the states with the spherical
label 2d5/2 which locate at the middle of 2p1/2 and 1f5/2,

FIG. 5. The evolution of widths to deformation for all the
concerned resonant states. They are marked by the color dashed lines
with the Nilsson labels on the lines and the corresponding spherical
labels in the position β2 = 0.

the calculations in Ref. [62] have not given out the results on
these states. Furthermore, a notable phenomenon appears in the
resonant level 5/2[402]. With increasing of the deformation in
the prolate side, its energy drops down while its width goes up
rapidly. Eventually, the resonant state disappears at the large
deformation.

The evolution of the widths to deformation for the con-
cerned resonant states is shown in Fig. 5. Similar to the ener-
gies, there exists the shell structure in these widths. Especially
for the spherical case, the gap appearing in the widths between
2d5/2 and 1g9/2 is very large. Compared with the energy, the
order is different for the width. Namely, although the energies
of the 2d5/2 states are lower, the corresponding widths are
larger due to the smaller centrifugal barrier.

In addition to the energy spectra, we have also obtained
the wave functions for deformed nuclei in the momentum
space. In Fig. 6, we show the radial-momentum probability

FIG. 6. Radial-momentum probability distributions for the states
�π = 5/2+ with β2 = 0.3, where the blue dashed line and red solid
line correspond, respectively, to the bound state and resonant state,
and the others correspond to the background of the continuum.
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FIG. 7. Radial density distributions in the coordinate space for the
bound states 1/2[110] and 1/2[310], and the resonant state 1/2[301]
with β2 = 0.4. Here, the left four lines belong to 1/2[110], the top
four lines on the right belong to 1/2[310], and the other four lines
belong to 1/2[301]. The four contours are the same as those in Fig. 1.

distributions (RMPD) for the single-particle states �π = 5/2+
with the quadruple deformation β2 = 0.3. It can be seen that
there are two single-particle states with their RMPD expanded
much wider than the surrounding states. By checking their
energies, it is found that the blue dashed line corresponds to the
bound state 5/2[202] and the red solid line corresponds to the
resonant state 5/2[422]. The other states, their RMPD display
sharp peaks at different values of k, corresponding to the free
particles. These results agree with the Heisenberg uncertainty
principle: a less well-defined momentum corresponds to a
more well-defined position for the bound and resonant states;
and a well-defined momentum corresponds to a less well-
defined position for the free particles. In the actual calculations,
we have obtained many single-particle states corresponding to
the free particles. Note that to make the RMPD clear, only a
part of free states are displayed in the figure.

With these wave functions in the momentum space ob-
tained, we can transform them into the coordinate space by
using Eq. (12). In Fig. 7, we have shown the radial density
distributions in the coordinate space for the bound states
1/2[110] and 1/2[310], and the resonant state 1/2[301] with
β2 = 0.4, where the four contours are the same as those in
Fig. 1. Whether bound states or resonant states, the radial

density distributions in the coordinate space are independent
of the contour, while those of continuous spectra depend on
the contour.

The above results indicate that the present method is
applicable and efficient for the exploration of resonances in
both spherical and deformed nuclei. Comparing with those
frequently used methods that are only effective for narrow
resonances, the present method is superior because it is not
only appropriate for narrow resonance, but also can be reliably
applied to broad resonances that were difficult to obtain before.

IV. SUMMARY

In summary, we have developed a new method to explore the
resonances for deformed nuclei by solving the Dirac equation
in complex momentum representation. In this scheme, the
Dirac equation describing deformed nuclei is processed into
a set of coupled differential equations by the coupled-channel
method. The set of coupled differential equations is then solved
by using the complex momentum representation technique,
which makes the solutions of the Dirac equation become the
diagonalization of a matrix. This method describes the bound
states and resonant states on an equal footing, which greatly
simplifies the problem of how to handle the unbound states for
deformed systems.

We have presented the theoretical formalism, elaborated
the numerical details, and discussed the dependence of the
calculations on the contour of momentum integration, and
the satisfactory results are obtained in comparison with the
coordinate representation calculations. As an illustrative ex-
ample, we have explored the resonances in 37Mg and obtained
the energies and widths of single-particle resonant states and
their evolutions to the deformation. Compared with the CSM
and ACCC calculations, the agreeable results are obtained for
narrow resonances. However, for broad resonances that are
difficult to be obtained by other methods, the present method
is also applicable and effective.
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