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Coincident excitation and radiative decay in electron-nucleus collisions
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The distorted-wave Born approximation formalism for the description of the (e,e′γ ) reaction, in which emitted
photons and scattered electrons are simultaneously detected, is outlined. Both the Coulomb and the magnetic
scattering are fully taken into account. The influence of electron bremsstrahlung is estimated within the plane-
wave Born approximation. Recoil effects are also discussed. The formalism is applied for the low-energy
(e,e′γ )92Zr reaction with excitation of the first collective (2+

1 ) and mixed-symmetry (2+
2 ) states. The corresponding

transition charge and current densities are taken from a random-phase approximation (RPA) calculation within
the quasiparticle phonon model. It is shown, by this example, in which way the magnetic subshell population
of the excited state influences the angular distribution of the decay photon. For these quadrupole excitations the
influence of magnetic scattering is only prominent at the backmost scattering angles, where a clear distinction of
the photon pattern pertaining to the two states is predicted.
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I. INTRODUCTION

Nuclear excitation by the scattering of fast electrons is
a powerful tool to probe the nuclear structure [1,2] since
only the well-known electromagnetic interaction between
the projectile and the target is involved. The simultaneous
detection of photons which are emitted when the excited
nucleus decays into its ground state implies a considerable
increase of sensitivity to the nuclear structure effects. Such
coincidence measurements also allow one to easily separate
low-spin excited states at intermediate energies from the
background of high-spin states.

A disadvantage of nuclear excitation by electron impact is
the presence of electron bremsstrahlung. A photon resulting
from nuclear decay into the ground state is indistinguishable
from a bremsstrahlung photon (with the same energy) which
is emitted by the electron. Therefore this process has to
be added coherently to the coincident nuclear excitation
and decay process (henceforth called ExDec). Since the
energy resolution of the photon detectors is usually orders of
magnitude larger than the level width of the low-lying excited
states, a considerable fraction of the observed photons may
originate from bremsstrahlung. It is therefore important to
investigate the angular dependence of both processes in order
to choose an experimental setup where the perturbance by
bremsstrahlung is minimized.

A pioneer measurement of the ExDec process involved
the scattering of 67 MeV electrons from a 12C nucleus
and exciting the 2+ state at 4.439 MeV [3]. The influence
of bremsstrahlung was not considered in the theoretical
interpretation of this experiment [4], being in wide angular
regions unimportant for light nuclei such as carbon. In the
calculation of the ExDec process, the distorted-wave Born
approximation (DWBA) was used for the charge contribution,
but not for the current contribution to nuclear excitation. The
Coulomb distortion was found to have a very small effect on
the photon angular distribution.

The first theoretical investigation of the ExDec process,
including bremsstrahlung, dates back to Hubbard and Rose [5],

and was subsequently applied to the excitation of 12C and 16O
nuclei [6]. Use had been made of the plane-wave Born approx-
imation (PWBA) for the inelastic electron scattering, together
with simple models for the nuclear transition densities.

Recently, the excitation of the first collective (2+
1 ) and

mixed-symmetry (2+
2 ) states in 92Zr has been studied in (e,e′)

and (p,p′) reactions [7]. A different q dependence of the
(p,p′) cross sections and a similar q dependence of the (e,e′)
cross sections for these two states was established. This fact
was ascribed to interference effects between valence-shell and
cross-shell excitations in the structure of the two states [7].
An extension of these studies by the (e,e′γ )92Zr reaction
is planned [8]. In the present work we consider predictions
for this reaction as an example of the ExDec process on
medium heavy spin-zero nuclei. The nuclear transition charge
and current densities are calculated within the quasiparticle
random-phase approximation (QRPA) and the quasiparticle
phonon model (QPM) [9]. For the scattering process the
DWBA is applied throughout.

For bremsstrahlung an exact relativistic prescription using
Dirac partial waves for the electronic scattering states has
become standard [10–12], but this theory is no longer feasible
at collision energies exceeding 30 MeV [13]. Therefore we use
the PWBA [14–16], but provide an estimate of its accuracy by
comparing it with the fully relativistic calculations for the same
collision geometry at lower impact energies.

The paper is organized as follows. Section II provides the
theoretical formalism. For simplicity a spin-zero (Jg.s. = 0)
nucleus is assumed (which covers all even-even nuclei). The
formalism can easily be extended to Jg.s. �= 0 nuclei as well.
Recoil effects are considered in Sec. III and the computational
details are supplied in Sec. IV. Results for the first and second
2+ states of 92Zr are given in Sec. V. The conclusion is drawn
in Sec. VI. Atomic units (h̄ = m = e = 1) are used unless
indicated otherwise.

II. THEORETICAL FORMALISM

Let us consider the collision of a relativistic electron with
a spin-zero nucleus at rest. The cross section for the inelastic
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scattering of the electron with the simultaneous emission of a
photon consists of three contributions, the amplitudes of which
have to be added coherently. The dominant contribution to the
ExDec process (henceforth denoted by W

(1)
f i ) describes the

process where in the first step the nucleus is excited from
the ground state to a quasistationary state with decay width
�n. Subsequently the excited nucleus decays via the emission
of a photon. A second, in general much smaller, contribution
arises from the reversed process (to be termed W

(2)
f i ) where

the photon emission precedes the nuclear excitation. The third
contribution is electron bremsstrahlung, provided the ExDec
photon results from the decay to the nuclear ground state.

A. Excitation followed by decay (W (1)
f i )

In the two-photon approximation W
(1)
f i accounts for the

coupling of electron and nucleus by a virtual photon and
the coupling of the nucleus to a real photon, and hence is
a third-order process. It is calculated from [5]

W
(1)
f i =

(−ie

c

)3

ZT

∫
d4xe

3∑
ν=0

3∑
μ=1

∫
d4xNd4yN

×
∑

n

〈φf |Jμ(yN )|φn〉〈φn|Jν(xN )|φi〉θ (tyN
− txN

)

×〈ψf |jν(xe)|ψi〉icD0(xe − xN )Aμ(k,yN ). (2.1)

In this expression φi and φf are the initial and final nuclear
states with energy Enuc,i and Enuc,f , respectively, while φn is
the intermediate state with a time dependence e−i(Enuc,n−i�n/2)t .
The initial and final scattering states of the electron with
total energies Ei and Ef , respectively, are described by ψi

and ψf . ZT is the nuclear charge number which arises from
the coupling to the real photon (whereas an additional factor
−ZT from the electron-nucleus coupling is absorbed into
the electronic scattering states), and θ (τ ) is the Heaviside
step function. The nuclear and electronic transition charge
and current density operators are denoted by Jν and jν ,
respectively [17], xN = (ctxN

,xN ) and yN refer to the nuclear
coordinates, and xe is the electronic coordinate. The photon
propagator D0 and the photon field Aμ are given by

D0(xe − xN ) = − 1

(2π )4

∫
d4q

e−iq(xe−xN )

q2 + iε

= 1

8π2

∫
dq0e

−iq0c(te−txN
) e

iq0|xe−xN |

|xe − xN | ,

Aμ(k,yN ) = c

2π
√

ω
ε

μ∗
λ eiωtyN e−ik yN , (2.2)

where ω = kc is the photon frequency, k is the photon
momentum, and ελ describes the photon polarization. After
performing all trivial time and energy integrals, W

(1)
f i can be

written as a superposition of terms, each corresponding to a
particular intermediate state. These terms are products of the
transition amplitude Aexc

ni for excitation to the state φn, and of
the amplitude Adec

f n for the successive decay to the state φf .

Explicitly, for the ground-state decay (Enuc,f = Enuc,i),

W
(1)
f i = i

ZT c2

4π
√

ω
δ(Ef − Ei + ω)

1

ω − Ex + i�n/2

×
∑
Mn

Aexc
ni (Mi,Mn)Adec

f n (Mn,Mf ), (2.3)

where for an excited state with fixed spin Jn the sum runs over
the corresponding magnetic substates Mn. Ex is the energy of
the excited state and e = 1 is used.

Given the general case of an initial state with spin Ji and
magnetic quantum number Mi , the excitation amplitude is
defined by [1]

Aexc
ni (Mi,Mn) = −1

c

3∑
ν=0

∫
dxedxN 〈φn|Jν(xN )|φi〉

× 〈ψf |jν(xe)|ψi〉 1

|xe − xN |e
i
c
|Ef −Ei ||xe−xN |.

(2.4)

For its evaluation, the conventional partial-wave expansions
are used for the wave functions of the electron and for the
propagator [17,18]. The nuclear transition matrix elements are
partial-wave expanded in the following way [2]:

〈φn|Jν(xN )|φi〉 =
√

4π

{
�ni(xN ), ν = 0,
jni(xN ), ν = 1,2,3,

(2.5)

with

�ni(xN ) =
∑
LM

(JiMiLM|JnMn)�L(xN )Y ∗
LM (x̂N ),

jni(xN ) = −i
∑
L′LM

(JiMiLM|JnMn)JLL′(xN )YM∗
LL′(x̂N ),

(2.6)

where here and in the following x denotes the modulus of
x. YLM and YM

LL′ are scalar and vector spherical harmonics,
respectively, and (JiMiLM|JnMn) are Clebsch-Gordan coef-
ficients [19]. The nuclear properties are inherent in the nuclear
charge (�L) and current (JLL′) transition densities. Details of
the evaluation of Aexc

ni in the DWBA formalism can be found
in Refs. [1,17,20,21].

The decay amplitude to the final state with quantum
numbers Jf and Mf is defined by

Adec
f n (Mn,Mf ) =

∫
d yN 〈φf |ε∗

λ J( yN )|φn〉e−ik yN . (2.7)

For the decay into the 0+ ground state, to be considered
here, the transition current density JLL′(yN ) is identical to
the transition current density for excitation. Also excitation
and decay are mediated in this case by one single multipole L.
Upon partial-wave expanding the photon field [19],

e−ik yN = 4π
∑
lm

(−i)ljl(kyN )Y ∗
lm(k̂)Ylm( ŷN ), (2.8)
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where jl(x) is a spherical Bessel function, the decay amplitude
reduces to

Adec
f n (Mn,Mf ) = −4πi(JnMnLM|Jf Mf )

∑
L′

(−i)L
′

×
∑
μ,�

(e+
� ε∗

λ)(L′μ1�|LM)Y ∗
L′μ(k̂)RL′(k).

(2.9)

The radial integral in Eq. (2.9) is given by

RL′(k) =
∫ ∞

0
r2dr jL′(kr)JLL′(r). (2.10)

Its calculation is straightforward since JLL′(r) vanishes rapidly
outside the nucleus. For a given L, the angular momentum L′
is determined by parity and angular momentum conservation
(L′ = L ± 1 if the parity of the transition is (−1)L, otherwise
L′ = L [2]). e� is a spherical unit vector and M is determined
by M = Mf − Mn.

B. Reversed process (W (2)
f i )

If the photon is emitted prior to nuclear excitation, the
corresponding transition amplitude W

(2)
f i reads

W
(2)
f i =

(−ie

c

)3

ZT

∫
d4xe

3∑
ν=0

3∑
μ=1

∫
d4xNd4yN

×
∑

n

〈φf |Jν(xN )|φn〉〈φn|Jμ(yN )|φi〉θ
(
txN

− tyN

)
×〈ψf |jν(xe)|ψi〉icD0(xe − xN )Aμ(k,yN ). (2.11)

This can be transformed into the following expression:

W
(2)
f i = −i

ZT

2

c2

2π
√

ω
δ(Ef − Ei + ω)

1

ω + Ex − i�n/2

×
∑
Mn

Aexc
f n (Mn,Mf )Adec

ni (Mi,Mn). (2.12)

It can be shown that, for the spin-0 nuclei, W
(2)
f i differs from

W
(1)
f i only by the sign and the resonance denominator.

C. Electron bremsstrahlung

It is assumed that the nucleus remains in this process in its
ground state throughout the collision. For a Jg.s. = 0 nucleus
considered in this paper, electron bremsstrahlung results only
from the charge interaction between electron and nucleus [14]
(the case of Jg.s. �= 0 is treated in Ref. [15]). Then, in the one-
photon approximation, the corresponding transition amplitude
is given by

W brems
f i = − ie

c

3∑
μ=1

∫
d4xe〈ψf |jμ(xe)Aμ(k,xe)|ψi〉

= ic√
ω

δ(Ef − Ei + ω)
∫

dxe〈ψf |αε∗
λ|ψi〉e−ikxe ,

(2.13)

where α is a vector of Dirac matrices.

D. Total cross section

In the following we will assume that the polarization
degrees of freedom remain unobserved. In order to obtain the
total cross section one has therefore to average over the initial
(ζ i and Mi) and sum over the final spin polarization (ζ f and
Mf ) of the electron and nucleus, respectively, and also to sum
over the photon polarization ελ. Therefore, collecting terms
and setting Ji = Jf = 0 [5],

d3σtot

dωd�kd�f

= 4π2ω2EiEf kf

kic5

1

2

∑
ζi

∑
ζf

∑
λ

×
∣∣∣∣1

c
Mbrems

f i + 1

c

(
M

(1)
f i + M

(2)
f i

)∣∣∣∣
2

, (2.14)

where Mf i is defined by Wf i = δ(Ef − Ei + ω)Mf i accord-
ing to the equations (2.3), (2.12), and (2.13). When ζ f is
chosen along kf (the electron momentum in its final state),
the cross section is independent of the sign of ζ f such that the
sum over ζf reduces to a factor of 2.

If there are more decay channels of the excited state, the
transition amplitudes M

(1)
f i and M

(2)
f i have to be multiplied by

the square root of the branching ratio �n0/�n, where �n0 is
the partial decay width of φn to the ground state, while �n is
the total decay width of φn [6].

III. RECOIL EFFECTS

In the formalism of the previous section recoil effects
due to the finite mass MT of the target nucleus have been
neglected. Particularly for the lighter nuclei or for very high
collision energies this is no longer a good approximation, most
importantly because a finite momentum of the nucleus shifts
the photon frequency out of resonance [22]. In the following
the various contributions to recoil are derived. Thereby, the
reference frame is the laboratory frame throughout, where the
nucleus is initially at rest.

A. Recoil concerning excitation plus decay

For a given excitation energy ωex (which may differ from
the level energy Ex due to the finite width �n), the energy Ef

of the scattered electron is calculated from energy-momentum
conservation,

Ei + Enuc,i = Ef + Enuc,n

ki = kf + qn, (3.1)

where Enuc,i = MT c2 and Enuc,n =
√

q2
nc

2 + M2
T c4 + ωex .

The result for Ef is lengthy and is given, e.g., in Ref. [20].
In particular, it depends on the electron scattering angle ϑf

and is slightly lower than Ei − ωex (the value attained for
MT → ∞).

After excitation the nucleus decays to the ground state,
emitting a photon of frequency ω. This frequency is again
derived from the conservation of energy and momentum,

Enuc,n = Enuc,f + ω

qn = qf + k, (3.2)
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where Enuc,f =
√

q2
f c2 + M2

T c4 and, with (3.1), qf = ki −
kf − k. Upon squaring Enuc,f from (3.2) one obtains

ω = kc

= 1

2

ω2
ex + 2ωex

√
q2

nc
2 + M2

T c4

ωex +
√

q2
nc

2 + M2
T c4 − kic cos θk + k̂kf c

, (3.3)

where θk is the photon emission angle and qn = ki − kf . It
is readily seen that for MT → ∞, ω → ωex , but otherwise ω
can be above or below ωex , depending on the directions k̂ and
k̂f of photon and scattered electron, respectively.

Apart from affecting the energy of the outgoing particles,
recoil also modifies the cross section in terms of a recoil
factor f −1

rec [2] which arises from the integration of the
transition probability over Ef with the help of the energy-
conserving δ-function, δ(Ei + Enuc,i − Ef − Enuc,f − ω). It
is given by [16]

frec = 1 − kf qf Ef

k2
f Enuc,f

. (3.4)

Note that the excitation energy ωex enters into the resonance
factors in Eqs. (2.3) and (2.12) by means of 1/(ωex − Ex +
i�n/2) and 1/(ωex + Ex − i�n/2), respectively.

B. Recoil in the bremsstrahlung process

For the spin-zero nuclei considered here, only the kinemat-
ical recoil has to be considered, whereas the dynamical recoil
(bremsstrahlung emission by the nucleus [23]) is absent. For
a coherent superposition of nuclear decay and bremsstrahlung
it is necessary that, when measuring the photon energy, one
cannot distinguish its origin. Accordingly, the bremsstrahlung
amplitude W brems

f i has to be calculated for the ω determined
from (3.3). The energy of the scattered electron is then obtained
from energy-momentum conservation for the bremsstrahlung
process,

Ei + Enuc,i = Ẽf + Ẽnuc,f + ω,

ki = k̃f + Pf + k, (3.5)

with Ẽnuc,f =
√

P 2
f c2 + M2

T c4 and Pf = ki − k̃f − k. The

respective formula for Ẽf can be found in Ref. [16].
From the conservation of the total energy it follows that

Ef + Enuc,f = Ẽf + Ẽnuc,f , and one can show by contra-

diction that, for a fixed direction k̂f = ˆ̃kf , k̃f = kf is the
only solution. This implies that if the photons from nuclear
decay and bremsstrahlung are indistinguishable in the photon
detector, so are the electrons from the respective processes in
the electron detector. Hence nuclear decay and bremsstrahlung
are always coherently contributing, irrespective of the detector
resolutions.

IV. COMPUTATIONAL DETAILS

A. Nuclear structure part

The transition charge and current densities have been
calculated within the quasiparticle-phonon model (QPM) [9].
Details of their calculation can be found in Ref. [21]. We recall

only their formal expression in QRPA for an excitation of the
ith one-phonon state,

�Li(r) =
n,p∑
jj ′

(ujvj ′ + vjuj ′)
(
XLi

jj ′ + YLi
jj ′

)
�L

jj ′(r) (4.1)

JLL′i(r) =
n,p∑
jj ′

(ujvj ′ − vjuj ′)
(
XLi

jj ′ − YLi
jj ′

)
JLL′

jj ′ (r), (4.2)

where uj and vj are the coefficients of the Bogoliubov
transformation from particles to quasiparticles (their squares
are the occupation numbers of the mean-field level j = |nlj 〉
for holes and particles, respectively). X and Y are the phonon’s
forward and backward amplitudes. The quantities �L

jj ′(r) and

JLL′
jj ′ (r) in Eqs. (4.1) and (4.2) are the particle-hole charge and

current transition densities, respectively.
The charge transition densities �L(r) of the collective (2+

1 )
and mixed-symmetry (2+

2 ) states in 92Zr (L = 2+) are given in
Fig. 2 of [7]. As discussed in Ref. [7], they can be represented
as a superposition of the contributions from the dominant
two-quasiparticle valence-shell configurations [ν(2d5/2)2 and
π (1g9/2)2] and of the collective part from the giant quadrupole
resonance (GQR). The neutron ν(2d5/2)2 component in the
wave function of the 2+

2 state changes sign as compared
to the 2+

1 state while the sign of the π (1g9/2)2 component
remains unchanged. As a result of the interference between
the two-quasiparticle and the collective GQR components, the
total proton transition densities of the 2+

1 and 2+
2 states look

very much alike. At the same time, the total neutron transition
density of the 2+

1 state is peaking at larger radii as compared
to the one of the 2+

2 state. Thus the q dependence of the (e,e′)
scattering cross section for not too backmost angles [which
depends only on the proton �L(r)] is predicted to be the same
for both states. The (p,p′) cross section depends on both the
proton and neutron parts of �L(r) and accordingly one expects
a shift to higher q-values for the 2+

2 state. These predictions
have been experimentally confirmed [7].

The QPM current densities JL,L′(r) of the 2+
1 and 2+

2
states in 92Zr are plotted in Fig. 1. They are composed of the
convection and magnetization currents. The contribution of the
convection current to the total current densities is rather small.
Note that the valence-shell two-quasiparticle ν(2d5/2)2 and
π (1g9/2)2 configurations, important for the charge transition
densities in this nucleus, give no contribution to the current
densities due to the factor (ujvj ′ − vjuj ′ ) in Eq. (4.2). Both
J21(r) and J23(r) are larger for the 2+

2 state while the opposite is
true for �2(r). In our calculations the more transparent QRPA
prescription for the transition densities is used. In fact, QPM
and QRPA provide the same relative Mn-subshell populations
in the excitation process, while differing slightly in the absolute
cross section.

B. Reaction part

The partial waves used for the electronic scattering states
are obtained with the help of the Fortran code RADIAL of
Salvat et al. [24]. They are solutions to the Dirac equation in
the nuclear potential generated from the ground-state charge
distribution, which for 92Zr is tabulated in terms of a Fourier-
Bessel expansion [25].
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FIG. 1. Current densities JL,L′ (r) of the 2+
1 and 2+

2 states in 92Zr
for L′ = L − 1 (a) and L′ = L + 1 (b). Separately shown is the
contribution of the convection current (thin lines) to the total current
(thick lines).

The total decay widths of the 2+
1 and 2+

2 states of 92Zr
(at energies Ex = 0.9345 MeV and 1.847 MeV, respectively)
were determined experimentally to �n = 9.1 × 10−8 keV
and 4.706 × 10−6 keV, respectively, and the branching ratios
�n0/�n are unity for the lower and 0.309 for the higher 2+
state [7,26]. The LaBr photon detector, to be used in the
planned experiments [8,27], has a resolution �ω of 3% of
the photon energy ω, amounting to 30-60 keV. Therefore,
an average of the cross section over �ω is mandatory, such
that (2.14), including recoil, turns in the peak maximum into〈

d3σtot(Ex)

dω d�kd�f

〉
�ω

= 1

�ω

4π2ω2EiEf kf

kic5

1

frec

1

2

×
∑
ζi

∑
ζf ,λ

∫ Ex+�ω/2

Ex−�ω/2
dωex

∣∣∣∣∣1

c
Mbrems

f i

+ 1

c

√
�n0

�n

M
(1)
f i

∣∣∣∣∣
2

. (4.3)

We have dropped the contribution M
(2)
f i from the reversed

process, as it is, at any excitation energy, orders of magnitude
below the sum of M

(1)
f i and Mbrems

f i .
The shape of the integrand is basically determined by

the resonance factor from M
(1)
f i in Eq. (2.3). Taking into

consideration that the variation of Mbrems
f i and of (ωex − Ex +

i�n/2)M (1)
f i is small, both quantities can be approximated by

their values for ωex = Ex , if ωex changes by some tens of keV.
This speeds up the integration procedure considerably. Note
that (4.3) is not valid in the wings of the peak where detector
statistics lead to a Gaussian peak shape [3,8].

For the evaluation of the transition amplitudes a coordinate
system is chosen which is the same as for nuclear excitation.
The z axis is taken along the direction k̂i of the incident
electron, the y axis along k̂i × k̂f and the x axis along
ey × k̂i , such that kf lies in the (x,z) plane (which is called
scattering plane). Therefore, the photon momentum k is given
by k = Dzk0 where k0 = k(sin θk,0, cos θk) lies in the (x,z)
plane and Dz is a rotation matrix,

Dz =
⎛
⎝cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0
0 0 1

⎞
⎠, (4.4)

which rotates k0 out of the scattering plane by the azimuthal
angle ϕ to give the general representation of k in spherical
coordinates. Correspondingly, the conventional basis vectors
for the linear photon polarization must also be rotated,

ελ1 = Dz

⎛
⎝0

1
0

⎞
⎠ =

⎛
⎝− sin ϕ

cos ϕ
0

⎞
⎠,

ελ2 = Dz

⎛
⎝− cos θk

0
sin θk

⎞
⎠ =

⎛
⎝− cos θk cos ϕ

− cos θk sin ϕ
sin θk

⎞
⎠. (4.5)

It is convenient to represent the polarization vectors in terms
of the spherical unit vectors, ε∗

λ = ∑
μ c(λ)

μ eμ. For λ1 and λ2,
the coefficients are

c
(1)
0 = 0, c

(1)
+1 = i√

2
e−iϕ, c

(1)
−1 = i√

2
eiϕ,

c
(2)
0 = sin θk, c

(2)
+1 = cos θk√

2
e−iϕ, c

(2)
−1 = −cos θk√

2
eiϕ.

(4.6)

With this representation it follows that in Eq. (2.9), e+
� ε∗

λ =
c(λ)
� .

The bremsstrahlung amplitude is calculated within the
PWBA, including form factors, as described in Ref. [16].
Figure 2 shows the comparison between the PWBA and the
Dirac partial-wave (DW) theory [13] for the emission of a
photon with ω = 1.847 MeV in 10 MeV 92Zr(e,e′) collisions
at a scattering angle ϑf = 40◦. The energy of 10 MeV was
chosen because of convergence problems for higher energies
at the larger angles. It is seen that the PWBA underestimates
the bremstrahlung cross section by about a factor of 1.3
at all angles. The energy depencence of this Dirac-wave
enhancemant factor is very weak above 10 MeV [13].

Recoil effects increase with scattering angle and with
collision energy. For the largest angle (ϑf = 179◦) we have
found that the omission of recoil leads at most to a 2–3%
increase of the ExDec cross section throughout the photon
angular distribution for collision energies up to 100 MeV.
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FIG. 2. Triply differential cross section d3σ/dω d�kd�f for
bremsstrahlung emitted in collisions of 10 MeV electrons with
92Zr (ZT = 40) as a function of θk . The photon frequency is
ω = 1.847 MeV (the 2+

2 excitation energy), the scattering angle
is ϑf = 40◦, and the azimuthal angle between photon and electron is
ϕ = 0.

This is about twice as much as the change of the excitation
cross section by recoil effects (for the 2+ states in 92Zr under
consideration). Also the kinematical recoil in bremsstrahlung
is small for our cases of interest (�1%). In our results, recoil
is included throughout.

V. RESULTS FOR THE 92Zr NUCLEUS

In this section we will focus on the excitation of the lowest
two 2+ states of 92Zr and on the resulting distribution of
the Mn subshells. In the sequel we provide results for the
total ExDec process, both with and without the inclusion of
bremsstrahlung.

A. Nuclear excitation by electron impact

In Fig. 3(a) the excitation cross sections of the second
2+ state for a given subshell Mn = 0,±1,±2 are displayed
at a collision energy of 75 MeV. These cross sections are
normalized to the total cross section dσtot/d�f (which is
an incoherent sum over all subshell contributions [20]). At
scattering angles between 30◦–50◦ all subshells are occupied
with similar probability. In particular the sign of Mn does
not play much role for the smaller angles. However, at the
backward angles the Mn = 0 subshell becomes dominant, and
close to 180◦, where magnetic scattering comes into play,
nearly all excitation strength is focused in Mn = 1.

The relative Mn-subshell contributions are similar for the
excitation to the 2+

1 state [Fig. 3(b)], except at the backward
angles where the Mn = 1 contribution for 2+

2 dominates
because of the larger transition current densities. Figure 3(b)
also displays the dependence of the Mn = 0 and Mn = 1
contributions on the collision energy. An increase from 75
to 100 MeV has hardly any effect in the forward hemisphere.
However, at large scattering angles there is a strong depletion
of Mn = 0 in favor of Mn = 1 which carries the information on
the magnetic transition current densities (the effect of which is
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FIG. 3. Relative contribution dσMn

d�f
/ dσtot

d�f
of a given Mn subshell

for the 2+ state excitation in the 92Zr(e,e′) reaction as a function of
ϑf : (a) 2+

2 state for a collision energy of 75 MeV; (b) 2+
1 state for

collision energies of 75 MeV (thick lines) and 100 MeV (thin lines).

growing with collision energy). Note that the total excitation
cross section decreases with angle and above 60◦ also with
energy when Ee = Ei − c2 is increased from 75 to 100 MeV.

B. Excitation followed by decay

Now we consider the ExDec results. In this subsection
we only take into account the contribution from M

(1)
f i in

Eq. (2.14). Since the resonance denominator (ωex − Ex +
i�n/2)−1 factors out in this case, the averaging procedure
according to (4.3) changes the cross section only by a scaling
factor, whereas the shape of the angular or energy distributions
remain unaffected. Therefore we also perform no averaging
in this subsection. The results are obtained at the excitation
energy of the peak maximum, ωex = Ex.

Figure 4 displays the separate Mn-subshell contributions
to the ExDec cross section, which are obtained by retaining
only a single Mn state in the sum given in Eq. (2.3), as a
function of the photon emission angle θk at ωex = 1.847 MeV.
Since only one Mn contributes, each subshell cross section is
symmetric with respect to θk = 180◦ (i.e., it is independent of
the azimuthal angle ϕ). In particular one can show that

d3σ (Mn = 0)/dω d�kd�f ∼ B0 sin2 2θk,

d3σ (Mn = ±1)/dω d�kd�f ∼ A±1 cos2 θk + B±1 cos2 2θk,

d3σ (Mn = ±2)/dω d�kd�f ∼ A±2 sin2 θ + B±2 sin2 2θ.

(5.1)
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FIG. 4. Triply differential cross section d3σ/dω d�kd�f for the
excitation of the 2+

2 state of 92Zr by 75 MeV electrons and subsequent
photon decay as a function of θk: (a) at ϑf = 40◦, (b) at ϑf = 179◦,
with ϕ = 0. Shown are subshell contributions as well as the total
cross section from the coherent sum over Mn.

Thereby the quadrupole part of the angular distribution
(with coefficients Bn) originates from the contribution of the
photon polarization vector ελ2 , whereas the dipole part (with
coefficients An, being zero for Mn = 0) is due to ελ1 (see also
Fig. 5). For the Mn = ±2 states the coefficients B±2 are quite
small, which results in a dipole-type pattern.

At a scattering angle of 40◦ [Fig. 4(a)] all subshells
contribute with similar weight to the total cross section, and
a sign reversal of Mn hardly changes the results [which
reflects the behavior of the excitation cross sections; see
Fig. 3(a)]. At the backmost angles [Fig. 4(b)] the regular
quadrupole pattern of the total cross section, occurring for
ϑf � 170◦, is modulated by the dominance of the Mn = 1
subshell contribution, whereas the Mn = −1 and Mn = ±2
subshells are completely negligible.

The contributions of the two photon polarization directions
to the total cross section are illustrated in Fig. 5. Here it
is clearly seen that the part resulting from ελ1 (a vector
perpendicular to the reaction plane defined by ki and k)
gains importance with increasing scattering angle and severely
influences the photon angular distribution at the backmost
scattering angles.

It is well known from the early studies of the coincident
excitation and decay theory [4] that for not too large scattering
angles where only the interaction between the charges of
electron and nucleus plays a role, the PWBA leads to a
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FIG. 5. Triply differential cross section d3σ/dω d�kd�f for the
2+

2 excitation and decay of 92Zr by 75 MeV electrons as a function of
θk at ϕ = 0. Shown are the contributions from ελ1 and ελ2 to the total
cross section at ϑf = 40◦ (a) and 179◦ (b).

photon angular distribution which is azimuthally symmetric
with respect to the direction of the momentum transfer qn =
ki − kf . The shift of the cross section minima obtained from
an accurate calculation as compared to the PWBA is therefore
a measure of two effects. One is the Coulomb distortion,
implemented in the DWBA prescription of electron scattering,
which comes into play for the heavier nuclei. However, more
important for nuclear structure investigations, a shift is also
caused by the presence of the magnetic interaction between the
currents of the colliding particles. The previous experimental
investigations on the quadrupole excitation of the 12C nucleus
at scattering angles in the forward hemisphere (ϑf = 60◦ and
80◦ [3]) identified a shift of about 2◦, from which the relative
sign between the charge and the current contributions to the
cross section could be determined. For 92Zr the magnetic
interaction is considerably weaker such that the cross section in
the forward hemisphere arises only from Coulomb scattering.
The resulting shift, due to Coulomb distortion, is about 0.1◦
for angles below 120◦. From Fig. 6 it follows, however, that the
shift becomes particularly prominent at the backmost angles,
say, above ϑf = 160◦. Moreover, it is considerably larger for
the 2+

2 excitation (as compared to the 2+
1 excitation), which

shows that its origin is indeed the presence of the magnetic
interaction.

Figure 7 compares DWBA and PWBA for the 2+
2 state at

the complete photon angular distribution for the two scattering
angles ϑf = 40◦ and 179◦. At 40◦ the tiny shift between
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the minima from DWBA and PWBA is hardly perceptible;
however, the cross section within DWBA is globally enhanced
by a factor of 1.5. This situation remains unchanged up to a
scattering angle of about 150◦. The photon patterns for the 2+

1
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FIG. 7. Triply differential cross section d3σ/dω d�kd�f for the
2+

2 excitation in 75 MeV (e,e′γ )92Zr reactions as a function of θk at
ϑf = 40◦ (a) and 179◦ (b) for ϕ = 0 within DWBA, PWBA, and the
Coulomb contribution to PWBA. In (a), the arrow marks the angle
θq = �(k̂i ,q̂n) = 291.96◦. In (b), the arrow marks θq = 359.51◦.

and the 2+
2 states are the same in the forward hemisphere (with

the same DWBA enhancement factor); however, the cross sec-
tion for the 2+

1 state is about three orders of magnitude larger.
At 179◦ [Fig. 7(b)] where the shift is very large, the influence of
magnetic scattering is elucidated within the PWBA by switch-
ing off the contribution from the transition current densities.
This leads to a shift of the minima by as much as 15◦. A further
shift (by about 10◦ for the deeper minimum) is induced by the
change from PWBA to DWBA. (For the 2+

1 state, the shifts
are 10◦ and 6◦, respectively.) While the Coulomb-distortion
induced shift is small both for Coulomb scattering and mag-
netic scattering (if considered separately), Coulomb distortion
strongly affects the absolute cross sections. Explicitly, at 179◦,
the Coulomb part of the 2+

2 state is lowered by a factor of 0.65,
whereas the magnetic part is increased by a factor of 2.5. This
was not taken into account in the earlier calculations where the
magnetic scattering was only treated in PWBA [4]. For the 2+

1
state where at 179◦ the magnetic scattering is less important,
the Coulomb distortion even leads to a reduction of the total
cross section (by a factor of 0.85).

To consider how the interplay between the Coulomb
and magnetic contributions influences the photon angular
distribution comparison is made between the shape of the
angular distributions relating to the 2+

1 and the 2+
2 state by

normalizing them to equal maximum height (Fig. 8). For a
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FIG. 8. Triply differential cross section d3σ/dω d�kd�f from
the (e,e′γ )92Zr reaction at ϕ = 0 as a function of θk . Shown are
results for the 2+

1 and 2+
2 excitation (the latter multiplied in the graph

by a factor Fm). (a) Fm = 550, (b) Fm = 250, (c) Fm = 550.
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magnetic scattering in 100 MeV (e,e′)92Zr excitation.

collision energy of 75 MeV no difference is seen at 40◦.
However, at 179◦ where both Coulomb and magnetic scattering
contribute to the cross section (in a different way for the two 2+
states), the respective cross sections are shifted and of different
magnitude in the second maximum [Fig. 8(a)]. In contrast,
when the collision energy is increased to 100 MeV, Coulomb
scattering is at 179◦ completely unimportant for both 2+ states.
This leads to a very similar shape of the angular distribution,
with a shift of only 2◦ [Fig. 8(b)]. However, a reduction of
the scattering angle to 170◦ at this energy leads again to a
pronounced distinction of the photon patterns pertaining to the
two excited states [Fig. 8(c)].

In order to access the different behavior of the 2+
1 and 2+

2
states in an experiment it is suggested to measure the cross
section at two distinct photon angles θk1 and θk2 and form their
ratio R [8]. Such a ratio technique had already been applied
in Ref. [3]. In Fig. 9(a) R is plotted as a function of scattering
angle for 100 MeV electrons. It is seen that the largest
difference between the collective and the mixed-symmetry
states occurs in the region ϑf = 150◦–170◦. On the other hand,
a measure of the relative importance of Coulomb and magnetic
scattering in the excitation process is the ratio

Q =
√

dσcoul

d�f

dσmag

d�f

/
dσtot

d�f

, (5.2)
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FIG. 10. Cross section averaged over the detector resolution

�ω/ω = 3% for the 2+
2 excitation in 75 MeV (e,e′γ )92Zr reactions

at ϑf = 40◦ (a) and 179◦ (b) for ϕ = 0 as a function of θk . Shown
are results for the total cross section from (4.3) (solid lines), and for
the case where the bremsstrahlung is switched off (dashed lines). The
bremsstrahlung background (dotted lines) is shown separately.

where dσcoul/d�f is the cross section induced by �L and
dσmag/d�f the one resulting from JL,L±1 (while dσtot/d�f

accounts for all three transition densities). When both quanti-
ties are equally important, Q ≈ 0.5 (not precisely 0.5 due to
coherence effects). Figure 9(b) supports the conjecture that the
maximum deviation between the 2+

1 and the 2+
2 states relates

to the fact that Coulomb and magnetic scattering contribute
nearly equally to the ExDec cross section.

C. Influence of bremsstrahlung

While the cross section for bremsstrahlung is a slowly
varying function of the photon frequency which hardly differs
when ω is changed within the detector resolution �ω, the
averaged ExDec cross section is inversely proportional to �ω
[see (4.3) with Mbrems

f i removed]. Therefore the importance
of the bremsstrahlung background to the ExDec process
depends strongly on �ω. Using that �ω is proportional
to ω, the bremsstrahlung background is larger for the 2+

2
excitation. As known from Fig. 2, bremsstrahlung is strongly
double-peaked near θk = 0◦ and θk = ϑf . These double-peak
structures are clearly visible in the total cross section (4.3)
which results from the coherent superposition of the ExDec
and the bremsstrahlung transition amplitudes [see Fig. 10(a)
for ϑf = 40◦ where the cross section in the peak maximum is
displayed and where �ω = 0.03ω = 55.4 keV is used for the
2+

2 decay photon). There is only a small angular region around
θk = 150◦ and 250◦ where the influence of bremsstrahlung is
reduced below 10%, and it is clearly of advantage to place
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�ω/ω for (e,e′γ )92Zr reactions as a function of Ee at ϑf = 40◦ and
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2 states. Shown are the ExDec results including

bremsstrahlung (solid lines) and without bremsstrahlung (dashed
lines). The respective bremsstrahlung results are also shown (dotted
lines).

electron and photon detectors in opposite half-planes with
respect to the beam axis. The situation improves, however,
when the scattering angle gets larger because bremsstrahlung
decreases strongly with ϑf whereas the increasing magnetic
scattering enhances the ExDec cross section. At the backmost
angles [see Fig. 10(b) for ϑf = 179◦] bremsstrahlung plays
only a role in the vicinity of the double-peak structures
(here near 0◦ and 180◦), which can easily be avoided in the
experiment.

Bremsstrahlung becomes less important not only when the
scattering angle increases, but also when the electrons are more
energetic. This is displayed in Fig. 11 where the averaged cross
section with and without the inclusion of bremsstrahlung is
plotted as a function of energy. For a scattering angle of 40◦
and a photon emission angle of 270◦ (as suggested by the
experimentalists) the influence of bremsstrahlung becomes
negligible near 50 MeV for the 2+

1 excitation, but for the
2+

2 excitation it plays a role up to 100 MeV for the energy
resolution �ω/ω = 3%.

In Fig. 11(b) it is shown for the 2+
2 state how the

bremsstrahlung background can be suppressed when a detector
with a better resolution is used. An improvement from 3% to
0.5% enhances the ExDec cross section by a factor of 6. Thus,
for the same geometry, bremsstrahlung can be disregarded
above 70 MeV. In contrast, for a poorer resolution of 10%,
bremsstrahlung has to be considered up to 150 MeV.

VI. CONCLUSION

In this paper we have considered possible applications of
the (e,e′γ ) reaction to nuclear structure studies. Low-lying
quadrupole excitations of 92Zr have been taken as an object.
We have shown that for scattering angles ϑf of electrons in
the forward hemisphere all Mn subshells of the 2+ states are
excited with a similar intensity which results in a regular
quadrupole pattern of the photon angular distribution. In
contrast, at the backmost scattering angles only the Mn =
0 and Mn = 1 subshells play a role which leads to an
irregular angular distribution. This pattern is composed of a
dipole angular distribution resulting from photons polarized
perpendicular to the reaction plane, and a shifted quadrupole
pattern which is caused by the photons polarized in the reaction
plane.

The nuclear structure effects can be visualized by the
interplay between the Coulomb and the magnetic scattering.
For example, they are supposed to lead to differences in the
ExDec process of the two lowest quadrupole states in 92Zr.
Unfortunately these effects are not perceptible at forward
scattering angles where the predicted cross sections are large.
To investigate them, scattering angles around 178◦–180◦ are
required for 75 MeV electrons, where the cross sections have
decreased by four orders of magnitude as compared to those
near ϑf = 40◦.

Treating Coulomb and magnetic scattering separately, we
have found that at backward angles the effect of Coulomb
distortion (i.e., the difference between PWBA and DWBA)
leads to a considerable change in the absolute cross section
rather than to a shift in the photon angular pattern. However,
in the photon angular distribution of the total cross section the
shift of the minimum with respect to the azimuthal symmetry
axis in PWBA is very large at such backward angles (of the
order of 20◦). This may lead to a pronounced difference in
the angular pattern of the two quadrupole states, depending
strongly on collision energy and scattering angle.

We have also estimated how bremsstrahlung, emitted by
the electron while the nucleus remains in its ground state,
spoils the spectra. The effect depends strongly on the resolution
of the photon detector. We conclude that for LaBr detectors
bremsstrahlung is of minor importance for the 2+

1 state.
However, for the 2+

2 state, implying a larger detector resolution,
the bremsstrahlung background is high for scattering angles
in the forward hemisphere and is only negligible at much
higher collision energies (about 100 MeV) or at the backward
scattering angles.

To conclude, the (e,e′γ ) reaction is a challenging test
for nuclear models. It provides physical observables which
allow to probe nuclear current distributions in excited states
of nuclei. The best conditions for that are when the Coulomb
and magnetic contributions are equally important.
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