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Neutrons in strong magnetic fields and equation of state of neutron matter
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In the present work, I investigate the influence of neutron mass reduction due to magnetic field on the equation
of state of neutron matter using the lowest-order constraint variational (LOCV) method with the AV18 potential.
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I. INTRODUCTION

The study of the equilibrium state of neutron matter in
a strong magnetic field can provide useful information on
properties of the magnetized compact stars. It is well known
that the soft γ -ray repeaters and anomalous x-ray pulsars have
a strong surface magnetic field with a strength of 1014–1015 G
[1]. According to scalar virial theorem [2,3] the strength of the
magnetic field at the core of neutron stars exceeds B � 1018

G. Moreover, an extremely large magnitude of the strength of
magnetic fields could be produced in the heavy-ion collision
experiments at CERN on the order of B ≈ 1017–1019 G [4].

Such super strong magnetic fields can affect the equation
of state (EOS) in the following ways. First, by producing spin-
polarized states, it modifies the matter contribution to the total
energy and pressure. Second, the magnetic field is contributing
to the total energy and pressure (Maxwell term). Third, and
the most important one, the strong magnetic fields can change
the internal structure of nucleons and reduce their masses [5].
For a magnetic field with a magnitude of approximately B �
1.99 × 1018 Gauss, the first Landau radius, rB � 1, becomes
comparable to the order of the nucleon size, and so the quarks
degrees of freedom play a role. In this situation the mass
spectra of nucleons, which are straightforwardly related to
the quarks’ energy levels, can be altered. The three-quark
system with relativistic interaction in the external magnetic
field has been investigated by Andreichikov et al. [5]. They
have calculated the neutron mass dependency, mn(B), on the
magnetic field and have shown that the neutron mass becomes
small in strong magnetic fields due to color Coulomb and
spin-spin interactions (see Fig. 1). Their results indicate that
the neutron loses half of its mass at magnetic fields around
B ∼ 1.28 × 1019 G [5].

So far, many people have calculated the thermodynamic
properties of nucleon matter in strong magnetic fields using
different theoretical approaches at zero and finite temperature;
here, some of their results are quoted [6–14]. In these studies
the neutron has a constant mass. The calculations of cold
neutron matter have predicted the antiparallel alignment of
the neutron spins versus the magnetic field direction for the
thermodynamically stable states [8,11]. The parallel ordering
of the neutron spins with the magnetic field corresponding
to some threshold densities have also been predicted in
calculations like those of Isayev and Yang [8]. They have
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used the Skyrme effective interaction. A different point of
view was also followed by Isayev and Yang [9], who used
the BSk19, BSk20, and BSk21 interactions, showing that,
due to the appearance of the longitudinal instability in a
strong magnetic field, the partially induced ferromagnetic
phase transition can occur for the neutron star matter in the
magnetar core. In another study, a charged neutral homoge-
neous isospin asymmetric nuclear matter in β equilibrium at
zero temperature under the effect of a magnetic field has been
investigated by Angeles Perez-Garcia et al. [12]. They have
employed a relativistic mean-field model and calculated the
Landau Fermi-liquid parameters for this system. They have
predicted that the proton (neutron and electron) spins tend to
align parallel (antiparallel) with respect to the magnetic fields
with strength higher than B ≈ 1016 G. In my previous study
[13], I investigated asymmetric nuclear matter in the presence
of strong external magnetic fields. According to my results,
the induced phase transition to antiferromagnetic spin states
occurs for the asymmetric nuclear matter in strong magnetic
fields. However, my previous calculations have shown that the
ground state of asymmetric nuclear matter is paramagnetic in
the absence of magnetic field (B = 0) [15].

The aim of the present work is to investigate the influence of
strong magnetic fields and the mass reduction of neutrons due
to magnetic fields on the EOS of neutron matter. Here, I use the
LOCV method and employ the modern AV18 [16] two-body
potential. This potential is also expected to be modified by
strong magnetic fields; however, it is not considered here.

II. FORMALISM

Consider neutron matter composed of A interacting neu-
trons and in the background of a uniform magnetic field in
the z direction denoted by H = Hk. In this work I assume,
analogously to Refs. [7–10] that the contribution of induced
magnetization to the magnetic field remains small and B ≈ H .
To obtain the magnetic properties and equilibrium state of this
system at the external magnetic field, one should calculate the
Helmholtz free energy, F . The free energy per particle at the
external magnetic field is defined as [17]

F = E − BM1, (1)

where E is the total energy per particle of the spin-polarized
neutron matter and the magnetization M1 is

M1 = 1

A

∫
mdV, m = μnρδ. (2)
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FIG. 1. Neutron mass vs magnetic field [5].

In this equation, μn = −6.030 773 8 × 10−18 MeV/G is the
neutron magnetic moment, δ = ρ(↑)−ρ(↓)

ρ
is the spin polarization

parameter and ρ = ρ(↑) + ρ(↓) is the total density. Labels (↑)
and (↓) are used for spins aligned parallel and antiparallel to
the magnetic field, B, respectively.

The total energy per particle, E, is calculated with the
LOCV method as follows. In this method, a trial many-body
wave function of the form

ψ = Fφ (3)

is adopted, where φ is the uncorrelated ground-state wave func-
tion of A independent nucleons (simply the Slater determinant
of the plane waves) and F = F(1 · · · A) is an appropriate
A-body correlation operator which can be replaced by a
Jastrow form, i.e.,

F = S
∏
i>j

f (ij ), (4)

in which S is a symmetrizing operator.
Now, consider the cluster expansion of the energy func-

tional up to the two-body term [18]:

E([f ]) = 1

A

〈ψ |H |ψ〉
〈ψ |ψ〉 = E1 + E2· (5)

The smallness of the three-body cluster energy has been
discussed in Ref. [19], where it is shown that cluster expansion
converges reasonably and it is a good approximation to stop
after the two-body energy term. For the nucleonic matter, the
one-body term E1 is

E1 =
∑

σ=↑,↓

∑
k�kσ

F

h̄2k2

2mn(B)
, (6)

where kσ
F = (6π2ρσ )1/3 is the Fermi momentum of each

component of the system and mn(B) is the magnetic-field-

FIG. 2. The free energy per particle of the neutron matter versus
density (ρ) for different magnitudes of magnetic field strength (B).
The magnetic field strength is given in Gauss.

dependent (MFD) neutron mass. The two-body energy E2 is

E2 = 1

2A

∑
ij

〈ij |ν(12)|ij − ji〉, (7)

where

ν(12) = − h̄2

2mn(B)

[
f (12),

[∇2
12,f (12)

]]+ f (12)V (12)f (12).

(8)

Here, f (12) and V (12) are the two-body correlation and
potential. Here, in this calculation, I use the AV18 two-
body potential. For more detail see Refs. [13,15]. From
the minimization of the two-body cluster energy one gets
a set of coupled and uncoupled Euler-Lagrange differential
equations [20]. The correlation functions can be calculated
by numerically solving these differential equations, and then
by using these correlation functions, the two-body energy is
obtained.

Finally, the free energy [Eq. (1)] should be minimized with
respect to the spin polarization parameter of the neutrons δ.
By numerical minimization, one obtains this parameter at the
minimum point of the energy corresponding to the equilibrium
state of the system.

III. RESULTS AND DISCUSSION

In Fig. 2, the free energy per particle of the neutron matter
has been shown as a function of total number density (ρ) for
several values of the magnetic field strength, B = 0, 1018.0,
1018.5, and 1019.0 G. The curve corresponding to B = 1019 G
is given just for reference, because the longitudinal instability
of the neutron matter unavoidably occurs at high strengths of a
uniform magnetic field [9,21]. This figure includes the results
of calculations using a constant neutron mass, mn, as well as
the magnetic-field-dependent mass, mn(B). Solid lines denote
the case of a constant neutron mass and the MFD neutron mass
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FIG. 3. The variation of the spin polarization parameter with
magnetic field and density. The magnetic field strength is given in
Gauss.

effects are ignored. The main general conclusion from Fig. 2
is that the free energy is extremely sensitive to the neutron
mass. In the case of a constant neutron mass, the free energy
decreases by increasing the magnetic field. The free energy
reduction depends on the density; low density corresponds
to more reduction, while at high densities the energy curves
converge. At high densities, the contribution of the matter
energy, E, to the total free energy is more important than that
of the magnetic energy, BM1.

When one uses the MFD mass, the free energy of the
magnetized neutron matter shows different behaviors and the
energy curves of the finite and zero fields cross each other
at some critical density. The critical density increases by
increasing the magnetic field strength. As can be seen, for
densities lower than the critical density, the free energy is
inversely proportional to the magnetic field, similar to the case
of a constant neutron mass. However, at higher densities, the
free energy per particle was shown to become repulsive as a
result of increasing the magnetic field strength. Therefore, the
inclusion of the MFD mass effects leads to distinct results,
because even at fields of about 1018.0 G, the MFD mass plays
an important role.

The spin polarization parameter (δ) corresponding to the
equilibrium state of the neutron matter at the presence of
external magnetic fields has been shown in Fig. 3. In this
figure, the spin polarization has been presented as a function
of the total number density for different values of the magnetic
field strength. This figure shows that the spin of neutrons
aligns antiparallel to the magnetic field direction. This figure
also shows that the absolute value of the spin polarization
parameter (|δ|) increases by increasing the magnetic field
strength for all densities. In addition, the dependence of the
spin parameter of the neutron matter on the neutron mass has
been considered and it has been found that it has different
behaviors depending on the neutron mass. It is recognized
that the absolute value of the spin polarization of the neutron

FIG. 4. Magnetization per particle of neutron matter versus
density (ρ) at B = 1018.0 G.

matter decreases by taking the MFD neutron mass into
account.

In what follows, the magnetization M , which is defined
as the magnetic moment per particle, is considered and
thermodynamically is given by [14]

M = −
(

dF

dB

)
ρ

= M1 + M2. (9)

The first term, M1, results from the explicit dependence of F
on B [see Eq. (1)]. It can be written as M1 = μnδ, and δ is
the polarization of the ground state of the magnetized neutron
matter (Fig. 3). The second term, M2, coming from the implicit
dependence through the field-dependent neutron mass mn(B),
is

M2 = −
(

∂F

∂mn

)
ρ,δ

dmn

dB
.

These quantities are shown versus the density at B = 1018.0 G
in Fig. 4. For comparison, the absolute value of the neutron
magnetic moment is also included. Figure 4 displays that
the value of M2 is always negative and decreases with
density. Compared with M1, the magnetization M2 is larger
in magnitude at high densities. Therefore, the effects of the
magnetization M2 are more significant than those due to M1

at these densities. For example, the free energy in the case of
the MFD mass is increased above the constant mass diagram
(Fig. 2).

The equation of state of the magnetized neutron matter, P ,
can be simply obtained by using

P = ρ2 ∂F

∂ρ
. (10)

Here, the Maxwell term B2/8π contribution from the pressure
has been omitted. In Fig. 5, the pressure of the magnetized
neutron matter has been presented as a function of density (ρ)
for different values of the magnetic field strength (B). It can
be seen that the pressure behaves as an increasing function of
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FIG. 5. Same as in Fig. 2 but for pressure.

the magnetic field strength. However, in the case of a constant
mass the effects of the magnetic field on the pressure of the
neutron matter is not considerable at a value of B � 1018.5 G.
For B = 1018.5 G the pressure is indistinguishable from that

of the field free case (B = 0), while the MFD neutron mass
has appreciable effects on the equation of state. The pressure
of the magnetized neutron matter increases considerably when
mn(B) is used. This implies that the MFD neutron mass leads
to a more stiff equation of state compared to the constant
neutron mass.

IV. SUMMARY AND CONCLUSIONS

In this paper, the influence of neutron mass reduction due to
the magnetic field on the equation of state and other properties
of magnetized neutron matter have been studied. Here, the
lowest-order constrained variational method has been used for
calculating the free energy and the equation of state at different
magnetic field and densities. It is seen that the decreasing of
the neutron mass due to applying the magnetic field leads to a
more stiff equation of state. It is also seen that the magnetic-
field-dependent neutron mass has appreciable effects on the
spin polarization and magnetization of the magnetized neutron
matter.
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