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Triaxial shape fluctuations and quasiparticle excitations in heavy nuclei
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The deformation parameters (β,γ ) together with two-quasiparticle excitations are taken into account, for the
first time, as coordinates within a symmetry conserving (angular momentum and particle number) generator
coordinate method. The simultaneous consideration of collective as well as single-particle degrees of freedom
allows us to describe soft and rigid nuclei as well as the transition region in between. We apply the new theory
to the study of the spectra and transition probabilities of the 156–172Er isotopes with a pairing-plus-quadrupole
residual interaction. Good agreement with the experimental results is obtained for most of the observables studied
and with the same quality for the very soft and the strongly deformed nuclei.
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I. INTRODUCTION

Beyond mean field theories (BMFTs) have developed
considerably in recent years [1–3]. The consideration of fluc-
tuations around the most probable mean field values and the
recovery of the symmetries broken in the mean field approach,
in particular the angular momentum, have allowed us to largely
extend the traditional domain of the mean field approach
(MFA), in particular to nuclear spectroscopy.

These developments have taken place along different lines.
The most sophisticated theories start with the mean field
approach [in general the Hartree-Fock-Bogoliubov (HFB)
one] or with the symmetry conserving mean field approach
(SCMFA) [3,4]. Later on symmetry (angular momentum, AM,
particle number, PN, and parity) conserving fluctuations in the
most relevant degrees of freedom (shape parameters or energy
gaps) are considered within the generator coordinate method
(GCM). The solution of the associated Schrödinger equation
(Hill-Wheeler-Griffin [5]) provides energy eigenstates and
wave functions. In this line there have been calculations with
effective interactions: Skyrme [6], Gogny [7,8], and relativis-
tic [9] or schematic interactions [10]. A second research line
has progressed along the Bohr collective Hamiltonian [11],
namely the so called five-dimensional collective Hamiltonian
(5DMCH) derived either from the adiabatic time-dependent
Hartree-Fock method or from the GCM in the Gaussian
overlap approximation. There have been calculations with
schematic interactions [12] and effective ones: Gogny [13],
Skyrme [14,15], or relativistic [16] among others.

These investigations are mainly concerned with the collec-
tive degrees of freedom, and an enormous effort, theoretically
and numerically, has been made. Important phenomena such
as shape coexistence and β and γ bands, among others, have
been successfully described.

On the opposite end, noncollective models using quasipar-
ticle states have been used extensively to study ground and
side bands as in the projected shell model (PSM) [17,18].
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The natural domain of the PSM is well deformed nuclei.
Here only one shape is considered, and by the exhaustive use
of multi-quasiparticle states a very good agreement with the
ground and noncollective side bands is achieved. The PSM,
however, in spite of considering many multi-quasiparticle
states, does not always describe properly the collective β and
γ bands.

The above-mentioned GCM theories are complex and CPU
time consuming; therefore, degrees of freedom such as two
(or more) quasiparticle states (2qp) have been ignored until
now. The role (absence) of the 2qp states in these calculations
has been minimized (justified) with arguments such as “we
concentrate on collective states” or “2qp states that appear at
β = γ = 0 (for example) appear as ground states at different
(β,γ ) values considered in the fluctuation mesh”. Though these
arguments are qualitatively correct, a quantitative analysis of
the role played by pure quasiparticle excitations in collective
states has not been performed. For example, it is well known
that the collectivity of the β and γ bands changes with the
mass number. In order to shed some light on this issue, in this
work we consider simultaneously the PN and AM projected
(PNAMP) collective shape fluctuations in the (β,γ ) parameters
as well as the PNAMP 2qp states built on top of each shape.
A preliminary analysis along these lines has been performed
recently in Ref. [19] for axially symmetric shapes. We apply
the new theory to perform a systematic study of the collective
excitations in the Er isotopes from N = 88 to N = 104. Since
the light isotopes are very soft in the shape parameters (β,γ )
and the heavy ones are strongly deformed, it is expected that
the role played by the collective and the single-particle degrees
of freedom as well as their coupling will be elucidated. It
is expected that the inclusion of the two-quasiparticle states
will improve the description of the collective states in the Er
isotopes with larger neutron numbers. In our calculations we
use the pairing-plus-quadrupole Hamiltonian of Ref. [19]. In
Sec. II we give a presentation of the theoretical framework and
some numerical details. The results are shown and discussed in
Sec. III followed by a summary and the conclusion in Sec. IV.

II. THEORY

As mentioned in the Introduction, the shape parameters
(β,γ ) are used to generate HFB wave functions, |�0(β,γ )〉,
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with different quadrupolar shapes. For this purpose we solve
the Hartree-Fock-Bogoliubov equation with constraints on
the total quadrupole moments, Q̂0 ≡ Q̂20 and Q̂2 ≡ Q̂22,
and the average particle number. The wave function |�0(β,γ )〉
of the energy minimum for given (β,γ ) values is provided by
the solution of the variational principle equation

δ〈�0(β,γ )|Ĥ − λnN̂ − λpẐ − λq0Q̂0 − λq2Q̂2|�0(β,γ )〉
= 0, (1)

with the Lagrange multipliers λn, λp, λq0 and λq2 determined
by the constraining conditions

〈�0(β,γ )|N̂ |�0(β,γ )〉 = N,

〈�0(β,γ )|Ẑ|�0(β,γ )〉 = Z,

〈�0(β,γ )|Q̂0|�0(β,γ )〉 = q0,

〈�0(β,γ )|Q̂2|�0(β,γ )〉 = q2. (2)

The relation between (β,γ ) and (q0,q2) is given by β =√
20π (q2

0 + 2q2
2 )/3r2

0 A5/3, γ = arctan(
√

2q2/q0), with r0 =
1.2 fm and A the mass number. These equations are solved for
each (β,γ ) point of a grid in the (β,γ ) plane.

For each HFB vacuum |�0(β,γ )〉 there is a set of corre-
sponding quasiparticle operators αi(β,γ ) satisfying

αi(β,γ )|�0(β,γ )〉 = 0, ∀i. (3)

The second components of our GCM ansatz are the two-
quasiparticle states, defined by

|�ij (β,γ )〉 = α
†
i (β,γ )α†

j (β,γ )|�0(β,γ )〉. (4)

Finally, the HFB vacua and the two-quasiparticle states are
projected onto good angular momentum and particle number.
Thus the complete ansatz for our wave function has the form

|σ,IM〉
=

∫
dβ dγ

∑
K

f
σ,IK
0 (β,γ )P̂ I

MKP̂ N P̂ Z|�0(β,γ )〉

+
∑
ij

∫
dβ dγ

∑
K

f
σ,IK
ij (β,γ )P̂ I

MKP̂ N P̂ Z|�ij (β,γ )〉

=
∑

ρ

∫
dβ dγ

∑
K

f σ,IK
ρ (β,γ )P̂ I

MKP̂ N P̂ Z|�ρ(β,γ )〉

=
∑

ρ

∫
dβ dγ

∑
K

f σ,IK
ρ (β,γ )|IMK,N,β,γ 〉ρ, (5)

where the index ρ runs over the set {0,(ij )} and σ labels the
different states. We have furthermore introduced the notation
|IMK,N,β,γ 〉ρ in an obvious way; the label Z has been
suppressed for simplicity. The projection operators in the
above expression are given by [11]

P̂ I
MK = 2I + 1

8π2

∫
d�DI∗

MK (�)R̂(�), (6)

for the angular momentum projection, and

P̂ N = 1

2π

∫ 2π

0
dφ exp[−iφ(N̂ − N )], (7)

for the particle number projection. It has been shown in
Refs. [3,4,20] that the particle number projection may cause
trouble in the case that the exchange terms of the interaction
are neglected. For this reason in our calculations we will not
neglect any term.

The variational parameters f σ,IK
ρ (β,γ ) of Eq. (5) are

determined by minimization of the energy, and this leads to
the Hill-Wheeler-Griffin (HWG) equation [5]∑

ρ ′β ′γ ′K ′

(HIKK ′
ρρ ′ (βγ,β ′γ ′) − EσIN IKK ′

ρρ ′ (βγ,β ′γ ′)
)

× f σIK ′
ρ ′ (β ′γ ′) = 0, (8)

which has to be solved for each value of the angular
momentum. The GCM norm and energy overlaps have been
defined as

N IKK ′
ρρ ′ (βγ,β ′γ ′) ≡ ρ〈IMK,N,β,γ |IMK ′,N,β ′,γ ′〉ρ ′ ,

HIKK ′
ρρ ′ (βγ,β ′γ ′) ≡ ρ〈IMK,N,β,γ |H |IMK ′,N,β ′,γ ′〉ρ ′ .

(9)

To solve the HWG equations one first introduces an orthonor-
mal basis defined by the eigenvalues, nκI , and eigenvectors,
uκI

ρ (β,γ ), of the norm overlap:
∑

β ′γ ′ρ ′K ′
N IKK ′

ρρ ′ (βγ,β ′γ ′)uκIK ′
ρ ′ (β ′γ ′) = nκIuκIK

ρ (β,γ ). (10)

This orthonormal basis is known as the natural basis and,
for nκI values such that nκI /nI

max > ζ , the natural states are
defined by

|κIM〉 =
∑
βγρK

uκIK
ρ (β,γ )√

nκI
|IMK,N,β,γ 〉ρ. (11)

Obviously, a cutoff ζ has to be introduced in the value of
the norm eigenvalues to avoid linear dependences [21]. Then,
the HWG equation is transformed into a normal eigenvalue
problem: ∑

κ ′
〈κI |Ĥ |κ ′I 〉gσI

κ ′ = EσIgσI
κ . (12)

From the coefficients gσI
κ we can define the so-called collective

wave functions

pσI
ρK (β,γ ) =

∑
κ

gσI
κ uκIK

ρ (β,γ ) (13)

that satisfy ∑
βγρK

∣∣pσI
ρK (β,γ )

∣∣2 = 1, ∀σ, (14)

and are equivalent to a probability amplitude.
In our calculations we use the separable pairing plus

quadrupole Hamiltonian with the same interaction strengths
as in Ref. [19]. These strengths have been fitted to reproduce
the experimental deformation of the erbium isotopes [22]
and to reproduce reasonable one dimensional potential energy
surfaces. We consider three major shells, namely N = 4,5,6
for neutrons and N = 3,4,5 for protons; the single-particle
energies are the same as the ones used in Ref. [19].
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FIG. 1. Particle number and angular momentum projected potential energy surfaces for 156–172Er for I = 0 in the (β,γ ) plane. The units for
the contours are MeV and for γ degrees. The energy origin has been set to zero at the energy minimum in each panel. The black continuous
contour lines are 1 MeV apart and the white dashed lines around the minimum are separated by 0.1 MeV.

III. RESULTS AND DISCUSSION

We apply our theory to the calculation of collective bands in
the erbium isotopes 156–172Er, ranging from the soft ones (with
neutron number N = 88 or 90) to the well deformed ones
(up to N = 104). We solve the constrained HFB equations,
Eqs. (1) and (2), in a triangular mesh of 49 points in the
interval 0 � β � 0.6, 0◦ � γ � 60◦.

A. Potential energy surfaces

The intrinsic HFB states |�0(β,γ )〉, solution of Eq. (1),
are not eigenstates of the symmetry operators. A PN and AM
symmetry conserving state is provided by

|IMK,N,β,γ 〉0 = P̂ I
MKP̂ N P̂ Z|�0(β,γ )〉, (15)

introduced in Eq. (5). They are eigenstates of the operators Î 2,
Îz, Î3, Ẑ, and N̂ and are the building blocks of our theory. The
associated laboratory system state is provided by

|σ,IM,β,γ 〉0 =
∑
K

hσIK (β,γ )|IMK,N,β,γ 〉0, (16)

and the coefficients hσ
K (β,γ ) are determined by the variational

principle. Minimization of the energy with respect to the
coefficients hσ

K provides a reduced HWG like equation,∑
K ′

(HIKK ′
00 (βγ,βγ ) − EσI (β,γ )N IKK ′

00 (βγ,βγ )
)
hσIK ′

(βγ )

= 0. (17)

This simplified HWG equation is solved in the same way
as the full HWG equation. The index σ = 1,2, . . . numbers
the (2I + 1) different states that can be obtained with the
angular momentum projection. However, because of the time
reversal and the eiπĴz symmetries imposed on the intrinsic
wave functions [17], this number is reduced to (I/2 + 1) and
(I − 1)/2 states for even and odd values of I , respectively.

Moreover, if we furthermore have axial symmetry, only one
state can be obtained and only for even values of I . The
eigenvalues EσI (β,γ ) provide the potential energy surfaces
as a function of (β,γ ). The weights hσIK (βγ ) of Eq. (16)
allow us to know the K composition of the given state Iσ . For
I = 0 there is only one state and we display Eσ=1,I=0(β,γ )
in Fig. 1 as a function of (β,γ ) for the 156–172Er nuclei. As an
overview of the results we obtain around the energy minimum
flat triaxial PESs for the lighter isotopes and very steep, almost
axially symmetric ones for the heavier ones. In the first row, left
panel, we display the nucleus 156Er, whose energy minimum
is located at (β = 0.179,γ = 21.5◦); see Table I. This triaxial
nucleus is rather soft in the area 0.1 � β � 0.25, 0◦ � γ �
60◦. For larger β values the energy increases steeply. The
nucleus 158Er, with deformation parameters (β = 0.245,γ =
15.5◦), has a larger β and a smaller γ value than the lighter
156Er. As a matter of fact the PES is very similar to the
one of 156Er, just shifted to larger β deformation. In the
case of 160Er, (β = 0.279,γ = 13.6◦), the shift to larger β

TABLE I. β,γ values of the energy minimum of the potential
energy surface for I = 01 and I = 22.

I = 01 I = 22

β γ β γ

156Er 0.179 21.53 0.200 31.29
158Er 0.245 15.52 0.288 19.48
160Er 0.279 13.60 0.298 17.27
162Er 0.290 11.55 0.306 16.79
164Er 0.299 11.22 0.308 15.22
166Er 0.302 9.60 0.313 12.09
168Er 0.305 8.07 0.313 12.09
170Er 0.310 9.33 0.311 13.61
172Er 0.305 8.07 0.305 12.43
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FIG. 2. Particle number and angular momentum projected potential energy surfaces for 156−172Er for I = 2+
2 in the (β,γ ) plane. The units

for the contours are MeV and for γ degrees. The energy origin has been set to zero at the energy minimum in each panel. The black continuous
contour lines are 1 MeV apart and the white dashed lines around the minimum are separated by 0.1 MeV.

deformation and smaller γ value continues but now the PES
starts to be somewhat steeper and the area within the 1 MeV
contour starts to shrink. For the nuclei 162–164Er the pace of
shifting to larger β deformation slows down, but the PESs
becomes steeper with increasing γ values. In the second
row the nuclei 166–172Er are displayed. Here the tendency
observed in 162–164Er continues, but now in a more moderate
way.

We turn now to the case I = 2. In this case Eq. (17) has two
solutions 21 and 22. Both of them can have K = 0 and K =
±2 components in their wave functions. In general, however,
the lowest one, 21, is a rather pure K = 0 and 22 a rather
pure K = 2. The state 21 is identified as the I = 2h̄ member
of the band built on the deformed intrinsic state |�0(β,γ )〉.
The state 22 on the other hand is interpreted as the band head
of the γ -band built on the same intrinsic state. The PESs of the
states 21 are very similar to the ones of 01 of Fig. 1 and will not
be shown. The PESs of the 22 states for the 156−172Er nuclide
are displayed in Fig. 2. A look at this figure and at Table I
reveals that the β and γ values of the energy minimum of the
γ band head are larger, specially for the lighter isotopes, than
the ones of the ground state. The largest differences between
the PESs of 01 and 22 concern the γ degree of freedom. We
find that, even for the heaviest isotopes where the PESs are
more rigid, the γ values of the 22 energy minima are clearly
larger than for the 01. Another remarkable feature is that the
γ -PESs are much softer in the γ direction than the 01.

B. Spectra

The next step is the solution of the Hill-Wheeler equation,
Eq. (12), corresponding to the ansatz of Eq. (5) which provides
the energies and wave functions of the ground and excited
states. Concerning the number of two-quasiparticle states
considered in the GCM ansatz of Eq. (5), in this calculation

we set the following energy cutoff condition:

Ei(β,γ ) + Ej (β,γ ) + E0(β,γ ) � E(βmin,γmin) + 3.0 MeV
(18)

where Ei(β,γ ) and Ej (β,γ ) represent the quasiparticle ener-
gies of the states i and j . E0(β,γ ) is the energy of the HFB
state with deformation (β,γ ) given by

E0(β,γ ) = 〈�0(β,γ )|Ĥ |�0(β,γ )〉, (19)

with |�0(β,γ )〉 the solution of Eq. (1) and (βmin,γmin) represent
the deformation of the HFB minimum. E(βmin,γmin) is the
energy minimum of the potential energy in the (β,γ ) plane.
The convergence with this cutoff has been checked and is good.

In Fig. 3 we display the energies EσI , the eigenvalues of
Eq. (12), for the collective bands of the 156−172Er isotopes
(alternatively we will also denote these states by EIσ ), namely
the Yrast band, the band based on the 0+

2 state, also called
β band, and the γ band. For the identification of the bands
we have used the transition probability as well as the K
distribution of the corresponding wave functions. Notice that
the high spin members of the 0+

2 bands and the γ bands do
not necessarily coincide with the lowest excited state with
angular momentum I , i.e. with I+

2 state. For the excited bands
and for very high angular momentum, the band structure
may be dominated by two-quasiparticle and four-quasiparticle
states. At present the four-quasiparticle configurations are
not included in our model space, therefore we only show
these bands up to I = 10h̄. Concerning the yrast bands,
our theoretical results (black empty squares) are in excellent
agreement with the experimental data (black filled squares).
For most isotopes the theoretical values are on top of the
experimental ones. It is interesting to notice that these results
are close to the ones obtained in the axially symmetric
calculations of Ref. [19] in spite of the fact that all of them
have a triaxial minimum in the PESs; see Fig. 1. We will
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the γ bands of the 156−172Er nuclei, compared with the experimental
data. The data were taken from [25]. For most of the isotopes the
theoretical values for the Yrast band are on top of the experimental
ones.

return to this point later on, in the discussion of the wave
functions. The small changes in the wave function obtained
by the consideration of the γ degree of freedom improve the
results of Fig. 1. The experimental (red filled circles) and the
theoretical values (red empty circles) of the 0+

2 bands are also
plotted in Fig. 3. The agreement is again very good for most
nuclei. In comparison with the axially symmetric calculations
of Ref. [19] in the γ soft nucleus 156Er, the agreement between
theory and experiment has been considerably improved by the
inclusion of the γ fluctuations in the calculations. It should
also be noticed that the moments of inertia of the 0+

2 bands are
also well reproduced, especially in 164–168Er, in which the 0+

2
bands have larger moments of inertia than the yrast bands.
We now turn to the γ band. The experimental values are
represented by blue filled rhombi and the theoretical values
by blue empty rhombi. For this band the agreement between
theory and experiment is not as good as for the former bands.
The theoretical values are higher than the experimental ones.
But since the experimental moments of inertia are very well
reproduced by the theory for all isotopes, the real problem is

the band head energies, which are too high. This is a common
feature of many theoretical approaches, like the quasiparticle
random phase approximation with the Skyrme force [23] or the
5DMCH [24] with the Gogny force. In particular, in the latter
publication after a study of 354 nuclei the authors conclude
that the theoretical energies of the band heads of the γ bands
are on average about 25% higher than the experimental ones.
Another aspect is the staggering of the γ band. As in the
experimental values, we obtain staggering in the soft 156Er
and 158Er nuclei and no staggering in the heavier rigid ones.
The phase of the staggering in the theory is also the same
as in the experiment, but the theoretical amplitudes are much
smaller than the experimental ones.

From the discussion of the energies of the collective bands
we conclude that the yrast states and the excitation energies of
the 0+

2 bands are well reproduced as shown in Fig. 3. Based
on the good agreement with the experimental results, it seems
that in these Er isotopes, the important degrees of freedom
are the shape vibration and the two-quasiparticle states. The
reason why the band heads of the γ band are higher than in the
experimental data is not clear to us. We think that our theory
contains enough degrees of freedom to describe correctly the γ
band, and that, though more realistic interactions also provide
too high energies for the γ band heads, in our case the reason
must be looked for either in the single-particle energies or in
the simplicity of the pairing plus quadrupole interaction.

In our approach [see Eq. (5)], we have two main de-
grees of freedom, namely the shape vibrations and the
two-quasiparticle excitations. To disentangle the different
contributions to the final energies displayed in Fig. 3 we have
performed different calculations for the band heads of the
collective bands. Let us first discuss the behavior of the γ
band heads with the neutron number. A simple description of
the γ band can be obtained by ignoring shape fluctuations and
quasiparticle degrees of freedom within the projected mean
field approach. First, we consider the energy minimum of
the PES displayed in Fig. 1, which we shall call (β1,0

min,γ
1,0
min),

where the superscripts 1,0 stand for σ = 1,I = 0. Its energy
value is denoted by E01 (β1,0

min,γ
1,0
min) ≡ Eσ=1,I=0(β1,0

min,γ
1,0
min); see

Eq. (17). Second, solve Eq. (17) for I = 2 at the (β1,0
min,γ

1,0
min)

point. The energy of the γ band head is given by

E(2+
γ ) = Eσ=2,I=2

(
β1,0

min,γ
1,0
min

) − Eσ=1,I=0
(
β1,0

min,γ
1,0
min

)
. (20)

This zero-order approach has been denoted “theo0” in Fig. 4
and is represented with green filled down-triangle symbols in
the top panel. This approach assumes that the γ band head
and the ground state have the same minimum. It predicts too
high values for the γ band heads; there is a kind of plateau for
N = 92, 94, and 96 with rising energy values at both sides of
the plateau.

The next degree of sophistication still considers a projected
mean field wave function for the γ band but it includes the
possibility of a different mean field for the γ band and the
ground band. To find this state one explores the (β,γ ) plane
PES of Fig. 2 to look for a lower γ band head. Using a similar
notation this approach provides

E(2+
γ ) = Eσ=2,I=2

(
β2,2

min,γ
2,2
min

) − Eσ=1,I=0
(
β1,0

min,γ
1,0
min

)
, (21)
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FIG. 4. Top panel: Energies of the band head of the γ band for
the erbium isotopes calculated according to Eq. (20) (theo0), Eq. (21)
(theo1), Eq. (22) (theo2), and Eq. (5) (theo3). Middle panel: Energies
of the band head of the β band for the erbium isotopes calculated
according theo2 and theo3. Bottom panel: Energies of the 2+

1 states
according to theo2 and theo3.

where (β2,2
min,γ

2,2
min) denotes the location of the energy minimum

of the PES of Fig. 2. This approach has been denoted “theo1”
in Fig. 4 and is represented by black filled squares. As we
can see in the top panel of this figure, it produces a general
lowering of the γ energy for all isotopes of about 250–500 KeV.
This approach, though considering different intrinsic shapes
for the ground state and the γ band head, does not mix shapes.
Our third approach includes HFB vacua of all deformations,
allowing for shape mixing, but does not include any two-
quasiparticle state; i.e., the ansatz of Eq. (5) is replaced by

|σ,IM〉 =
∫

dβ dγ
∑
K

f
σ,IK
0 (β,γ )P̂ I

MKP̂ N P̂ Z|�0(β,γ )〉.

(22)

This approach is commonly used to describe collective motion
in the scientific literature, in particular γ bands. It has been
denoted “theo2” in Fig. 4 and is represented by red circles.
If we compare this approach with “theo0” we observe an
almost constant lowering of 500 keV for most isotopes with the
exception of the soft nuclei 156Er and 158Er where we obtain
about 850 and 750 keV respectively. These results clearly
illustrate the relevance of shape mixing for the description of
γ bands.

Our last approach corresponds to the full ansatz of Eq. (5)
and includes the HFB vacua of all deformations as well as
two-quasiparticle states built on each of them and allows for
all kind of mixing among all states. This approach has been
denoted “theo3” in Fig. 4 and is represented by blue filled
rhombi symbols in the top panel. In this case we observe that, as
compared with the previous case, the mixing of quasiparticles
produces smaller energy lowering. Interestingly, for the softer
light nuclei the changes are much smaller than for the rigid
heavier ones. Combining the results of the last two approaches
one can conclude that, as expected, shape fluctuations are more
relevant for soft nuclei and quasiparticle degrees of freedom
for rigid ones.

We now turn to the discussion of the different contributions
for the β band; see the middle panel of Fig. 4. Unfortunately the
first two approaches discussed for the γ band are not possible
for the 02 band because for I = 0 the HWG equation, Eq. (17),
provides only one solution at each point of the (β,γ ) plane;
and since there is only one minimum in the PES of Fig. 1,
this corresponds to the 01 state. The results for the last two
approximations, namely “theo2” and “theo3” are presented in
the bottom panel of Fig. 4. As for the γ band, the mixing of
quasiparticle states in the GCM ansatz modifies very little the
energies of the β band head for the light isotopes (soft nuclei)
and it produces a larger energy lowering for the heavier rigid
ones. Though in the γ -band case one observes a lowering
of the energy with increasing neutron number, it is much
more pronounced in the case of the β band. That means the
quasiparticle degrees of freedom are much more relevant for
the β band than for the γ band.

The general behavior of the band heads of the β and
γ bands as a function of the neutron number is different
for the two bands. The β band head energies present a
maximum at N = 98, a marked decrease up to N = 102, and
an increase towards N = 104, whereas the γ band energies
display a minimum at N = 98 and then a smooth increase
up to N = 104. The structure of the β band heads can be
understood in general terms: looking at a Nilsson diagram we
find a deformed shell closure at N = 98 and a less pronounced
one at N = 104. Since for shell closures one expects higher
quasiparticle energies and since these are very relevant for
the description of the β band, the mentioned closures roughly
explain the observed behavior.

Concerning the structure of the γ band heads as a function
of N we do expect a smoother dependence with N than for
the β band since in the former the quasiparticles play a much
smaller role than in the latter.

Last, the behavior of the 2+
1 states is displayed in the bottom

panel of Fig. 4. Here we can observe that the two-quasiparticle
states produce a small decrease of the excitation energy of the
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2+
1 states. This decrease, however, is much smaller than the

ones observed for the heads of the β and γ bands.
In BMFT calculations of light nuclei with effective forces

like Skyrme, Gogny, or relativistic ones, and with only shape
fluctuations, a stretching of the spectrum has been observed;
see for example Ref. [26]. Several reasons have been argued for
this behavior, among others the absence of two-quasiparticle
states in the calculations, the lack of an angular momentum
projection before the variation, or the need to break the
time reversal symmetry. The first two issues are difficult to
implement with effective forces because of the amount of CPU
time needed. The third one, however, has been carried through
in Refs. [8,27] and a significant compression of the spectra has
been obtained. As we have seen in the preceding discussion,
the consideration of 2qp states also produces a compression
of the spectra. It will be interesting to check if the breaking
of the time reversal symmetry in the present calculations will
bring the results of the γ band to a better agreement with the
experimental results.

C. Collective wave functions

For a better understanding of the results it is convenient
to analyze the wave functions of the different states and
approximations.

Based on the collective wave function [see Eq. (13)],
we can define additional quantities which provide relevant
information about the (β,γ ) distribution, thus

PσI (β,γ ) =
∑
Kρ

∣∣pσI
ρK (β,γ )

∣∣2
(23)

gives the total weight of the (β,γ ) point in the wave function.
In the same way

PσI
vac(β,γ ) =

∑
K

∣∣pσI
0K (β,γ )

∣∣2
(24)

and

PσI
2qp(β,γ ) =

∑
K(i,j )

∣∣pσI
(ij )K (β,γ )

∣∣2
(25)

provide the weights of the vacua |�0(β,γ )〉 and the two-
quasiparticle states |�ij (β,γ )〉, respectively, in the total wave
function of the state Iσ . This separation makes sense because
it allows us to differentiate the contribution of the collective
degrees from the single-particle ones.

We concentrate on the wave functions of the band heads
of the yrast, β, and γ bands. For pedagogical reasons we first
discuss the probability amplitude of the vacua [see Eq. (24)]
in these bands. In Fig. 5 we plot PσI

vac(β,γ ) in the (β,γ ) plane
for the isotopes 156–164Er. The results for the nuclei 166–172Er
have been omitted because they are in the rigid deformation
limit and they just peak at the minima of the PESs of Fig. 1
and look similar to the ones of the 164Er nucleus. In all panels
the maximum of the plotted wave function is indicated in the
palette on top of the corresponding panel. The contour lines
start at zero and increase by a tenth of the corresponding
maximal value from one contour to the next. In principle
each panel should present ten contours, but this is not always
the case because the grid is not very dense. It is also due

to the plotting program, which in some cases—very sharp
wave functions, for example—is not able to determine the
contours corresponding to the largest values. That means that
the missing contours, if any, are always the largest ones. In
the top panels the probability amplitude associated to the
wave functions of the ground state of the corresponding
nuclei are presented. In the nucleus 156Er the maximum of
the probability amplitude appears close to (β = 0.2,γ = 0◦).
If we look at Fig. 1 or Table I we find that the potential energy
minimum appears at (β = 0.18,γ = 21.5◦). That means that
the shape and quasiparticle mixing drives the maximum of
the probability amplitude distribution to prolate shapes. This
is not very surprising since the PES of this nucleus is very
flat towards prolate shapes. We also find that the probability
amplitude distribution is soft towards oblate shapes. In the
nucleus 158Er the maximum of the distribution appears close
to (β = 0.25,γ = 0◦), at variance with the potential minimum
values of (β = 0.24,γ = 15.5◦). We also observe a decrease
of the contour values on the oblate side. With increasing mass
number the probability amplitude of the ground states shifts to
larger deformations, loosing thereby softness in the γ = 60◦
direction. We also observe that with growing neutron number
the probability amplitude distributions get sharper. This can
be easily realized by noticing that the maximum value of the
distribution increases (see the palettes) and that the contour
lines corresponding to zero experience a contraction. This is
the behavior one expects from a transition of a soft nucleus to
a rigid one.

In the second row we display the probability amplitude
distribution of the vacua for the β band heads of the erbium
isotopes. As for the ground state, the distribution peaks on the
prolate axis for all isotopes. At first sight one observes clear
differences between the probability amplitude distribution of
this band head and the ground state. Compared with the ground
bands, the β-band distributions are broader for the 156–162Er
isotopes and similar for the 164–172Er isotopes, the heaviest
ones not being shown here. For the lighter isotopes the β-
band distributions are shifted to higher deformations and are
in general flatter (see the maximum value on the palette of each
panel) than in the ground state. Though in principle one could
think that the maximum of the distribution for the band head of
the β band should coincide with the one of the ground state, we
see that this is not the case. The dynamic induced by the shape
mixing shifts the maximum to larger deformations. This is not
the case for the heavier isotopes 166–172Er. There the PESs are
very steep (see Fig. 1), and the maximum of the wave function
coincides with the minimum of the corresponding PES.

One also observes a somewhat strange behavior of the
probability amplitude distribution at small deformations,
especially in the lighter isotopes. In a genuine collective model,
i.e., without coupling to other modes (for example triaxial
deformation), the probability amplitude distribution of a β
vibration will display a zero as a function of the deformation
parameter β; see for example Ref. [19]. In Fig. 5 and for
156Er we have added three more contours in white color to
illustrate the fact that the probability amplitude distribution
presents a minimum along the β axis at β ≈ 0.15, a valley in
the (β,γ ) plane. This minimum is a reminiscence of the zero
that one would obtain without coupling to other modes. For
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FIG. 5. Vacua probability amplitude PσI
vac(β,γ ), Eq. (24), in the (β,γ ) plane, calculated for the 0+

1 states (top panels), the 0+
2 states (middle

panels), and the 2+
γ states (bottom panels) in 156–164Er. The units for γ are degrees. The maximum of the wave function is indicated in the palette

on top of each panel. The contour lines start at zero and increase by a tenth of the corresponding maximal value from one contour to the next.
(See the text.)

slightly heavier isotopes, for example 158Er, this minimum still
persists, but for even heavier ones it is washed out and only
long tails at smaller deformation remain.

The probability amplitude of the vacua for the γ band heads
is presented in the third row of Fig. 5. These distributions are
a reflection of the PESs displayed in Fig. 2, as they should
be in a first approximation. The most genuine is the one
of 156Er. The fact that the distribution presents a maximum
at (β = 0.2,γ = 30◦) indicates that we have to deal with a
quasi-γ band (nγ = 0) [11]. The distribution is broad and
soft in the (β,γ ) degrees of freedom. The next isotope 158Er
presents its probability maximum at (β = 0.288,γ = 20◦).
The shift to larger β values compared to 156Er causes a
considerable decrease in the probability amplitude distribution
close to the oblate axis. The distribution still is broad and
collective [in the sense that many (β,γ ) values do have
a nonzero probability amplitude]. With increasing neutron
number the tendency is maintained: the maximum of the
distribution shifts to larger β deformation, the distribution
becomes sharper, and the collectivity diminishes. All this is
very much in agreement with what one could expect from the

PESs depicted in Fig. 2. It is interesting to realize that, in
contrast with the results for the β band, the maximum of the
wave function is not much affected by the mixing with other
shapes.

We now discuss briefly the total collective wave function
PσI (β,γ ); see Eq. (23). In Fig. 6 we display these quantities
in the same arrangement as in Fig. 5. The ground state
probability amplitude distributions depicted in the first row
look very similar to the vacua distributions plotted in Fig. 5.
The reason is rather simple: the two-quasiparticle contributions
are very small, as we can realize by comparing the maximum
values of the corresponding probability amplitude in both
plots. That means two-quasiparticle states are not relevant
for the description of the low spin members of the ground
band. In the second row we present now the results for
the band heads of the β bands. We now find significant
differences by comparison to the corresponding panels in
Fig. 5: In general, the total distributions are shifted to
smaller β deformations, they are sharper, and thereby a bit
more concentrated. From these features we conclude that the
contribution of the two-quasiparticle states is concentrated on
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FIG. 6. The same as Fig. 5 but for the total probability amplitude distribution PσI (β,γ ), Eq. (23).

the prolate side at smaller deformations than the ones favored
by the shape vibrations. The largest change takes place for
the softer isotopes 156–162Er, where the characteristic valley
of the β vibration is washed out considerably. That means that
the quasiparticle degrees of freedom, as well as the triaxial
one, couple significantly with the genuine shape β vibration.

The probability amplitude distribution of the total collective
wave function of the γ band heads is presented in the third
row of Fig. 6. We find that the maxima of the distribution
do not correspond to the minima of the PESs of Fig. 2;
they are shifted to the prolate axis. They also differ from the
corresponding probability amplitude distributions of the vacua
shown in Fig. 5. As in the β-band case the largest differences
are observed for the softer isotopes 156–160Er. The nucleus
156Er presents a very soft distribution in the γ direction,
indicating a dominance of triaxial shapes, although it has its
maximum close to the prolate axis. Its average deformation,
as in the case of the ground state, is moderate. In 158Er we find
the maximum of the distribution at about 15◦ but the softness
in the γ direction has decreased considerably. The heavier iso-
topes present as probability amplitude distributions: stretched
semicircles centered on the prolate axis. The differences
between the vacua and the total distributions is due to the cou-
pling of the quasiparticle degrees of freedom to the γ vibration.

The two-quasiparticle distributionsPσI
2qp(β,γ ), Eq. (25), are

not shown here. In general their probability amplitudes look
like semicircles centered on the prolate axis at the point where
the corresponding PES of Fig. 1 has its maximum. Looking at
the plots of Figs. 5 and 6 it is easy to localize the center of the
distribution.

1. Total 2qp contribution to the wave function

In Figs. 5 and 6 we have presented the vacua and
the total probability amplitude of the erbium isotopes. As
mentioned above, the two-quasiparticle probability amplitude
distributions as a function of the deformation parameters (β,γ )
are rather similar. However, we can quantify the relevance of
the two-quasiparticle excitations in the different band heads
by calculating the total contribution of all two-quasiparticle
configurations. This term is given by

PσI
2qp =

∑
βγ

PσI
2qp(β,γ ) (26)

and plotted in Fig. 7 as a function of the neutron number. We
find that the quasiparticle contribution to the wave function is
different for the ground state and for the excited states. For the
ground state we obtain always a modest contribution which
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FIG. 7. Contribution of the two-quasiparticle states to the ground
states and the β and γ band heads in 156–172Er, measured by the
summation of the absolute square of the collective amplitudes over
all two-quasiparticle states.

steadily increases with the neutron number. For the 0+
2 states it

starts already with a 20% contribution and increases smoothly
up to N = 96, where it surpasses 50%. The heavier isotopes
166–172Er reach, on the average, 85% of the total wave function.
This is what one would expect in the well deformed limit.
Concerning the quasi-γ band head, it behaves rather similarly
to the β band up to N = 96; afterwards the percentage of two
quasiparticles in the wave functions increases smoothly and it
reaches its maximum of about 70% of the total wave function.

2. K distribution of the wave functions

A quantity interesting to characterise the wave functions
is its K distribution. In terms of the quantities defined in the
subsection above, the K distribution is provided by

PσI
K =

∑
βγρ

∣∣pσI
ρK (β,γ )

∣∣2
. (27)

Since the plots look similar for different nuclei, we only show
the results for the nucleus 158Er. In Fig. 8 we display PσI

K

for several states of the yrast, β, and γ bands which, together
with the transition probabilities, have been used to identify
the different bands. The left-hand panels are for the even spin
values I = 2h̄, 6h̄, and 10h̄ and the right ones are for I = 3h̄
and 7h̄. In the histograms the black bars correspond to the yrast
band, the red to the β band, and the blue to the γ band. For
each value of K on the x axis there are allotted three slots: the
left one for the yrast band, the middle one for the β band and
the right one for the γ band.

The largest component of the yrast band corresponds to
K = 0. For I = 2h̄ this component amounts to 98%, the rest
being shared by K = ±1. For I = 10h̄ the K = 0 value is
reduced to about 65% while the K = +1 increases up to 22%.
For the β band the K components for I = 2h̄ are similar to the
yrast band and for I = 10h̄, K = 0 amounts to 45%, K = −1
amounts to 30%, and K = −2 amounts to 10%. Finally, the γ
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FIG. 8. K distribution of the yrast, β, and γ bands of 158Er for
selected values of the angular momentum.

band has mostly K = ±2 components and small admixtures
of other K values which increase with spin.

D. Transition probabilities

Further relevant information is provided by the intraband
E2 transition probabilities. In Fig. 9 we plot the calculated
B(E2,I → I − 2) values along the yrast, the β, and the γ
bands together with the available experimental information.
We first discuss the yrast bands. With the exception of 156Er
at the largest spin values, the calculated results, black empty
squares, are in reasonable agreement with the data, black filled
squares. In particular, the transition probability from the 2+

1
to the 0+

1 state increases roughly with the neutron number,
corresponding to the transition towards the well deformed
region. The saturation of the experimental B(E2) values at
medium spins is qualitatively reproduced by the theoretical
results.

The theoretical values for the intraband B(E2) along the 0+
2

bands, red empty circles, are also shown in the Fig. 9. For the
lighter isotopes their values are larger than the corresponding
ones along the yrast bands. This can be understood by the
fact that the maximum of the wave function of the β bands
(see Figs. 5 and 6) peak at larger deformation values than the
ground states. In the heavier isotopes the B(E2) along the
0+

2 are similar to or smaller than along the yrast band. This
corresponds to the above mentioned fact that for the heavier
nuclei 166–172Er the wave function of the 0+

2 band peaks at
the same deformation as the ground state due to the rigidity
of the PES. Furthermore if one takes into account that the
wave functions of these isotopes contain a large amount of
two-quasiparticle components (see Fig. 4), one understands
that the B(E2) along the 0+

2 band can be smaller than along
the yrast band. The decrease at around I = 10h̄ is due to the
band crossing with a two-quasiparticle band.

The theoretical values of the E2 transition probabilities
along the γ band, blue empty rhombi, are, in general, smaller
than the corresponding values along the yrast and β bands. This
is also the case for the available experimental values, blue filled
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FIG. 9. Calculated B(E2,I → I − 2) values along the yrast
band, the 0+

2 band, and the γ band of 156–172Er, compared with
available data. The data are taken from [25].

rhombi, compared with the analogous values along the other
bands. Theory and experiment agree reasonably well with the
exception of the spin value I = 8h̄ in 168Er. This discrepancy
is probably due to a two-quasiparticle band crossing that we
do not have in our calculations at this spin value.

In Fig. 4 we have discussed the impact of the 2qp states on
the excitation energies of the first excited state of the collective
bands. Now we would like to know the influence of the 2qp
states on the transition probabilities. In Fig. 10 we display
the indicated transition probabilities in the approaches theo2,
Eq. (22), and theo3, Eq. (5). The results for the γ band and the
ground band are rather similar in both approaches. For the β
band transitions we find that the 2qp states provide, in general,
an increase of about 5%–10%.

Other transitions that provide important clues are the E2
transitions connecting the lowest member of the excited bands
and the ground band, namely the interband B(E2,0+

2 → 2+
1 )

from the head of β band to the 2+ state of the ground band
and the interband B(E2,2+

γ → 0+
1 ) from the head of γ band

to the ground state. These transition rates are related to the
quadrupole collectivity of the initial state. The calculated
interband B(E2) values are shown in Fig. 11 together with
the data measured in erbium isotopes. Let us first study
the decay from the β band for the different isotopes and
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FIG. 10. Top panel: Calculated B(E2,4+
γ → 2+

γ ) for the erbium
isotopes in the theo2 and theo3 approaches. Middle panel: The same
as the top panel but for the transitions B(E2,2+

β → 0+
2 ). Bottom panel:

The same as the top panel but for the transitions B(E2,2+
1 → 0+

1 ).

compare with the experimental data. For the Er isotopes
these transitions probabilities have only been measured for
166Er [28], 168Er [29], and 170Er [30]. Our theoretical values
provide a qualitative agreement with these three values. In
order to examine the neutron number dependence of this
interband B(E2), we also include in Fig. 11 the values of
these transitions measured in some Gd isotones. It is found
that the interband B(E2) values, if the Z dependence is
ignored, decrease with growing neutron number. This trend
is reproduced by our calculations. For 156Er with N = 88, the
calculated interband B(E2) is around 100 W.u., which is of the
order estimated for a β vibration [31] (although the estimation
is made with the assumption of well deformed nucleus). This
suggests that the 0+

2 state in this nuclei is dominated by shape
vibrations. On the other hand, the calculated interband B(E2)
for 168Er is about 0.4 W.u., which suggests that in this case
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FIG. 11. Calculated B(E2,0+
2 → 2+

1 ) and B(E2,2+
γ → 0+

1 ) val-

ues for 156–172Er, compared with experimental data for erbium and
gadolinium isotopes with the same neutron numbers as the Er
isotopes. The data are taken from [25] except for 166Er, 168Er, and
170Er, which are taken from Refs. [28], [29], and [30], respectively.

the 0+
2 state is dominated by two-quasiparticle excitations.

These suggestions are in accordance with what was inferred
from Fig. 4; see also Sec. III C 1. Note that the variation of
the interband B(E2) within these nuclei is as large as three
orders of magnitude, which indicates that these 0+ excitations
are of very different structure. This large variation range has
been well reproduced by our calculation, which is another
justification of our GCM+2qp model space.

We now discuss the reduced transition probabilities from
the γ band head to the ground state, B(E2,2+

γ → 0+
1 ).

In Fig. 11 we show the experimental values, black filled
squares, and the theoretical ones, black empty squares. The
agreement between theory and experiment is qualitatively
good. An intriguing aspect is that in this case the isotopic
dependence of the B(E2,2+

γ → 0+
1 ) is rather constant and

therefore different from that of B(E2,0+
2 → 2+

1 ). We can
understand the differences between the two cases by the
following observations: For the lighter Er isotopes and at small
spin values, the intraband transitions are twice as large for the
β as for the γ band (see Fig. 9), and the wave function of
the 0+

2 state peaks at larger β deformation than the 2+
γ ; see

Fig. 5. That means, for these nuclei, the state 0+
2 is much

more collective than the 2+
γ . This explains the enhancement of

the B(E2,0+
2 → 2+

1 ) compared with B(E2,2+
γ → 0+

1 ) for the
lighter isotopes. For the heavier isotopes, the largest content
of 2qp in the 0+

2 state compared with the 2+
γ state (see Fig. 7)

will explain the drop in the B(E2,0+
2 → 2+

1 ).

IV. SUMMARY AND CONCLUSIONS

In this work the ansatz of the generator coordinate method
has been generalized, for the first time, to include particle
number and angular momentum symmetry conserving fluctu-
ations in the (β,γ ) plane and their symmetry conserving two-

quasiparticle excitations. This ansatz allows us to investigate
microscopically the role played by the collective and the
single-particle degrees of freedom in the most relevant states
of the atomic nucleus, namely, the yrast, β, and γ bands.
This theory has been applied to the N = 88–104 erbium
isotopes. This region includes very soft nuclei, like 156–158Er,
strong deformed ones, like 164–172Er, and the transition nuclei
in between. In the calculations the separable pairing plus
quadrupole Hamiltonian has been used.

The calculated spectra of the yrast and β bands are
in good agreement with the experimental data. The the-
oretical γ bands, in line with other approaches [23,24],
are somewhat higher than the experimental data; we ob-
tain, however, a good agreement for the moments of
inertia.

Concerning the transition probabilities, the available exper-
imental intraband E2 reduced transition probabilities along the
bands are reasonably well reproduced (except for I = 8h̄–10h̄
in 156Er along the Yrast band and for I = 8h̄ in 168Er for
the γ band). The transition from soft to rigid deformation
with increasing neutron number is also well reproduced
by our calculations. The interband B(E2,0+

2 → 2+
1 ) and

B(E2,2+
γ → 0+

1 ) display a disparate behavior. While the
B(E2,0+

2 → 2+
1 ) values show variations of up to three orders

of magnitude in the studied isotopes and Gd isotones, the
B(E2,2+

γ → 0+
1 ) values are more or less constant in the same

interval. These large variations are properly described in our
approach.

A detailed look at the collective wave functions and the
separation of the contributions of the HFB vacua and the
two-quasiparticle states allows us to analyze the characteristic
of the band heads. The ground states (0+

1 ), in general, have
a small component of two-quasiparticle states in their wave
functions for all isotopes. In the lighter isotopes, specially
156–158Er, the wave functions display broad distributions in the
(β,γ ) plane which become more concentrated as the neutron
number increases to the well deformed heavier isotopes. The
band head of the β band has a different character. The
relevance of the quasiparticle states is small for the soft
nuclei and very large for the rigid ones. This change in
the composition of the wave function is able to explain the
three orders of magnitude variation found in the B(E2,0+

2 →
2+

1 ). The genuine β vibration is founded to be strongly
coupled to the triaxiality and the two-quasiparticle states. The
characteristic node of the one-dimensional degree of freedom
(the deformation parameter β) turns out to be a valley in the
(β,γ ) plane. Concerning the relevance of the quasiparticle
states in the γ band head of the Er isotopes, in the lighter,
softer isotopes the relevance is small. In the heavier, rigid ones
it increases steadily but it never becomes as large as in the β

band. For the soft Er isotopes the β band is more collective
than the γ band while for the heavier isotopes they are
comparable.

In conclusion, the presented approach provides an overall
good agreement with the experimental data of nine erbium iso-
topes ranging from very soft to very rigid shapes. Furthermore,
it allows a comprehensive understanding of the microscopic
structure of the most relevant states of the atomic nucleus. The
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only issue not quite understood is the reason why in the present
and other approaches the predicted excitation energy of the γ

band head is systematically higher than what is experimentally
observed.
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[29] T. Härtlein, M. Heinebrodt, D. Schwalm, and C. Fahlander, Eur.

Phys. J. A 2, 253 (1998).
[30] D. D. DiJulio et al., Eur. Phys. J. A 47, 25 (2011).
[31] P. E. Garrett, J. Phys. G: Nucl. Part. Phys. 27, R1 (2001).

024307-13

https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1088/0031-8949/91/7/073003
https://doi.org/10.1088/0031-8949/91/7/073003
https://doi.org/10.1088/0031-8949/91/7/073003
https://doi.org/10.1088/0031-8949/91/7/073003
https://doi.org/10.1016/S0375-9474(01)01219-2
https://doi.org/10.1016/S0375-9474(01)01219-2
https://doi.org/10.1016/S0375-9474(01)01219-2
https://doi.org/10.1016/S0375-9474(01)01219-2
https://doi.org/10.1103/PhysRev.108.311
https://doi.org/10.1103/PhysRev.108.311
https://doi.org/10.1103/PhysRev.108.311
https://doi.org/10.1103/PhysRev.108.311
https://doi.org/10.1103/PhysRevC.78.024309
https://doi.org/10.1103/PhysRevC.78.024309
https://doi.org/10.1103/PhysRevC.78.024309
https://doi.org/10.1103/PhysRevC.78.024309
https://doi.org/10.1103/PhysRevC.81.064323
https://doi.org/10.1103/PhysRevC.81.064323
https://doi.org/10.1103/PhysRevC.81.064323
https://doi.org/10.1103/PhysRevC.81.064323
https://doi.org/10.1103/PhysRevLett.116.052502
https://doi.org/10.1103/PhysRevLett.116.052502
https://doi.org/10.1103/PhysRevLett.116.052502
https://doi.org/10.1103/PhysRevLett.116.052502
https://doi.org/10.1103/PhysRevC.81.044311
https://doi.org/10.1103/PhysRevC.81.044311
https://doi.org/10.1103/PhysRevC.81.044311
https://doi.org/10.1103/PhysRevC.81.044311
https://doi.org/10.1103/PhysRevC.88.014315
https://doi.org/10.1103/PhysRevC.88.014315
https://doi.org/10.1103/PhysRevC.88.014315
https://doi.org/10.1103/PhysRevC.88.014315
https://doi.org/10.1016/0375-9474(68)90044-4
https://doi.org/10.1016/0375-9474(68)90044-4
https://doi.org/10.1016/0375-9474(68)90044-4
https://doi.org/10.1016/0375-9474(68)90044-4
https://doi.org/10.1103/PhysRevC.27.2317
https://doi.org/10.1103/PhysRevC.27.2317
https://doi.org/10.1103/PhysRevC.27.2317
https://doi.org/10.1103/PhysRevC.27.2317
https://doi.org/10.1016/0375-9474(90)90062-Q
https://doi.org/10.1016/0375-9474(90)90062-Q
https://doi.org/10.1016/0375-9474(90)90062-Q
https://doi.org/10.1016/0375-9474(90)90062-Q
https://doi.org/10.1088/0954-3899/36/12/123101
https://doi.org/10.1088/0954-3899/36/12/123101
https://doi.org/10.1088/0954-3899/36/12/123101
https://doi.org/10.1088/0954-3899/36/12/123101
https://doi.org/10.1103/PhysRevC.79.034303
https://doi.org/10.1103/PhysRevC.79.034303
https://doi.org/10.1103/PhysRevC.79.034303
https://doi.org/10.1103/PhysRevC.79.034303
https://doi.org/10.1142/S0218301395000250
https://doi.org/10.1142/S0218301395000250
https://doi.org/10.1142/S0218301395000250
https://doi.org/10.1142/S0218301395000250
https://doi.org/10.1088/0031-8949/91/4/043005
https://doi.org/10.1088/0031-8949/91/4/043005
https://doi.org/10.1088/0031-8949/91/4/043005
https://doi.org/10.1088/0031-8949/91/4/043005
https://doi.org/10.1103/PhysRevC.93.064313
https://doi.org/10.1103/PhysRevC.93.064313
https://doi.org/10.1103/PhysRevC.93.064313
https://doi.org/10.1103/PhysRevC.93.064313
https://doi.org/10.1103/PhysRevC.58.872
https://doi.org/10.1103/PhysRevC.58.872
https://doi.org/10.1103/PhysRevC.58.872
https://doi.org/10.1103/PhysRevC.58.872
https://doi.org/10.1103/PhysRevC.79.044312
https://doi.org/10.1103/PhysRevC.79.044312
https://doi.org/10.1103/PhysRevC.79.044312
https://doi.org/10.1103/PhysRevC.79.044312
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1103/PhysRevC.84.014332
https://doi.org/10.1103/PhysRevC.84.014332
https://doi.org/10.1103/PhysRevC.84.014332
https://doi.org/10.1103/PhysRevC.84.014332
https://doi.org/10.1103/PhysRevC.81.014303
https://doi.org/10.1103/PhysRevC.81.014303
https://doi.org/10.1103/PhysRevC.81.014303
https://doi.org/10.1103/PhysRevC.81.014303
http://www.nndc.bnl.gov/ensdf/
https://doi.org/10.1103/PhysRevLett.99.062501
https://doi.org/10.1103/PhysRevLett.99.062501
https://doi.org/10.1103/PhysRevLett.99.062501
https://doi.org/10.1103/PhysRevLett.99.062501
https://doi.org/10.1016/j.physletb.2015.05.030
https://doi.org/10.1016/j.physletb.2015.05.030
https://doi.org/10.1016/j.physletb.2015.05.030
https://doi.org/10.1016/j.physletb.2015.05.030
https://doi.org/10.1016/j.nds.2008.04.001
https://doi.org/10.1016/j.nds.2008.04.001
https://doi.org/10.1016/j.nds.2008.04.001
https://doi.org/10.1016/j.nds.2008.04.001
https://doi.org/10.1007/s100500050117
https://doi.org/10.1007/s100500050117
https://doi.org/10.1007/s100500050117
https://doi.org/10.1007/s100500050117
https://doi.org/10.1140/epja/i2011-11025-4
https://doi.org/10.1140/epja/i2011-11025-4
https://doi.org/10.1140/epja/i2011-11025-4
https://doi.org/10.1140/epja/i2011-11025-4
https://doi.org/10.1088/0954-3899/27/1/201
https://doi.org/10.1088/0954-3899/27/1/201
https://doi.org/10.1088/0954-3899/27/1/201
https://doi.org/10.1088/0954-3899/27/1/201



